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Abstract
Termites have developed a wide array of defensive mechanisms. One of them is the mandibulate soldier 
caste that crushes or pierces their enemies. However, in several lineages of Termitinae, soldiers have 
long and slender mandibles that cannot bite but, instead, snap and deliver powerful strikes to their 
opponents. Here, we use morphological and molecular evidence to describe Roisinitermes ebogoensis 
Scheffrahn, gen. & sp. n. from near Mbalmayo, Cameroon. Soldiers of R. ebogoensis are unique among 
all other kalotermitid soldiers in that they possess snapping mandibles. The imago of R. ebogoensis is also 
easily distinguished from all other Kalotermitidae by the lack of ocelli. Our study reveals a new case of 
parallel evolution of snapping mandibles in termites, a complex apparatus responsible of one of the fast-
est biological acceleration rates measured to date.
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Introduction

Termites are extremely abundant (Martius 1994, Eggleton et al. 1996) and colonies 
may contain millions of individuals attracting a wide variety of predators (Deligne et 
al. 1981). Additionally, termites experience strong intra- and inter-specific competi-
tion (Levings and Adams 1984, Thorne and Haverty 1991). To combat against the 
plethora of agonistic opponents, termites have developed a rich array of defensive strat-
egies. The most important defenses are expressed in the soldier caste that is ancestral to 
all extent termites (Roisin 2000).

Soldiers are specialized sterile colony defenders possessing exaggerated morphology 
of the head and mandibles (Prestwich 1984). One of their most intriguing defenses is 
exemplified by long and slender snapping mandibles (Deligne et al. 1981). The snap-
ping mandibles are paired with muscles to store potential energy which, when released, 
delivers a powerful strike producing one of the fastest accelerations known among 
animals (Seid et al. 2008). All termite species with snapping soldiers described so far 
belong to the Termitinae (Bourguignon et al. 2017), suggesting that snapping soldiers 
evolved several times independently within this subfamily. Alternatively, soldiers with 
snapping mandibles might have evolved once, and independently reverted to a biting 
strategy in several lineages.

The monophyletic family Kalotermitidae (Inward et al. 2007) constitutes almost 
half of all “lower termite” genera and species (Krishna et al. 2013) and has fossil re-
cords to the mid-Cretaceous (Engel et al. 2009). Kalotermitids live entirely in wood as 
“one-piece” nesters (Abe 1987) which facilitates transoceanic dispersal (Scheffrahn and 
Postle 2013). Kalotermitids occur in all ecozones and numerous genera have vast dis-
tributions (e.g. Calcaritermes, Cryptotermes, Glyptotermes, Kalotermes, Marginitermes, 
Neotermes, and Procryptotermes). A few species of Cryptotermes (Scheffrahn et al. 2009) 
and Incisitermes (James et al. 2013, Yasuda et al. 2003) have also been dispersed by hu-
man activity. A few species are major pests of dry wood (Su and Scheffrahn 2000) or 
minor pests of tree crops (Constantino 2002).

The monumental revision of the Kalotermitidae by Krishna (1961) provided the 
morphological diagnoses for all extant genera with the exception of the recently de-
scribed Longicaputermes (Ghesini et al. 2014). Aside from Longicaputermes, all new 
kalotermitid species described after Krishna’s 1961 revision, ca. 115, have been as-
signed to one of the 21 genera he recognized. The soldier caste of several genera has 
unmistakable characters: e.g., the scooped out frons of Eucryptotermes, the massive 
third antennal article of Marginitermes, the large ovoid head of Pterotermes, or the 
spur on the fore tibia of Calcaritermes. We herein describe a new genus and species 
of Kalotermitidae, Roisinitermes ebogoensis, which possesses equally unmistakable 
soldiers. The soldier of R. ebogoensis is the first outside the Termitinae to have snap-
ping mandibles.
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Material and methods

Illustrations and measurements

Images of individuals were taken as multi-layer montages using a Leica M205C stere-
omicroscope with a Leica DFC 425 module run with Leica Application Suite software 
version 3. Preserved specimens, stored in 85% ethanol, were positioned in a transparent 
petri dish filled with Purell hand sanitizer (70% EtOH). Measurements (Tables 1–2) 
were obtained using an Olympus SZH stereomicroscope fitted with an ocular microm-
eter. A field photograph of live specimens placed in a small paper-lined Petri dish was 
taken with a Canon EOS 5DS R combined with a Canon EF 100mm f/2.8L Macro IS 
USM lens. Morphological terminology follows that of Krishna (1961).

Phylogenetic analyses

DNA was extracted from five individuals of R. ebogoensis, after removal of the di-
gestive tract. The full mitochondrial genome was amplified with TaKaRa LA Taq in 
two long PCR reactions using primers specifically designed for termites (Bourguignon 
et al. 2016). Long PCR fragments were pooled in equimolar concentration, and 75-
bp paired-end reads were obtained using Illumina MiSeq. We subsampled a total of 
10,000 reads and assembled the full mitochondrial genome with SPAdes, under default 
parameters (Bankevich et al. 2012). The total coverage of the assembly was 82-fold.

We used the mitochondrial genomes of ten species of Kalotermitidae, including 
one sample of Roisinitermes ebogoensis sequenced in this study. We used four non-Ka-
lotermitidae termite species as outgroups to root the tree: Zootermopsis angusticollis, 
Hodotermopsis sjostedti, Coptotermes sjostedti, and Termitogeton planus. All mitochon-
drial genomes, except that of R. ebogoensis, have been published recently (Suppl. mate-
rial 1: Table S1). Each gene of the mitochondrial genome was aligned separately using 
MAFFT v7.300b with the option “--maxiterate 1000 --globalpair” for higher accuracy. 
For protein-coding genes, we first aligned genes as protein, then converted protein se-
quence alignments into the corresponding codon alignments using PAL2NAL (Suyama 
et al. 2006). The 22 tRNAs and the two ribosomal RNAs were aligned as DNA. The 
resulting alignments were concatenated with FASTconCAT v1 (Kück and Meusemann 
2010). Alignments were separated in five partitions: one for each codon position of the 
protein-coding genes, one for the combined ribosomal RNA genes, and one for the 
combined tRNA genes.

We reconstructed phylogenetic trees using Maximum Likelihood and Bayesian 
approaches. We ran the analyses twice, once with the third codon position included, 
and once without third codon position. The Bayesian phylogenies were implemented 
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in MrBayes 3.2 (Ronquist et al. 2012) with unlinked partitions, each of four chains 
(three hot and one cold). The chain length was of two million generations with sam-
pling every 2000 generations. 800,000 generations were discarded as burnin, to en-
sure that the chain reached convergence, as determined by Tracer 1.5 (Rambaut and 
Drummond 2007). We ran two replicates of each analysis to ensure consistency of the 
results. For each partition of the data, we assigned an independent Generalized Time 
Reversible model with gamma-distributed rate variation across sites and a propor-
tion of invariable sites (GTR + G +I). The reconstruction of Maximum Likelihood 
phylogenies was carried out with RAxML (Stamatakis et al. 2008). We used the GTR-
GAMMA model of rate heterogeneity across sites. Node support was estimated using 
1000 bootstrap replicates.

Results

Phylogenetic analysis

Our phylogenetic analyses supported the monophyly of Kalotermitidae (Figure 1). 
The four analyses yielded identical tree topologies, with one exception: in the Bayesian 
analysis without third codon position Rugitermes was the sister group of Neotermes + 
Cryptotermes + Incisitermes + Roisinitermes, while in the other three analyses Rugitermes 
+ Neotermes sp. A formed the sister group of Neotermes insularis + Cryptotermes + 
Incisitermes + Roisinitermes. Roisinitermes was consistently placed next to N. insularis.

Systematics

Roisinitermes Scheffrahn, gen. n.
http://zoobank.org/9AE40F98-CA9E-45AC-849E-A034F19E8DAE

Type-species. Roisinitermes ebogoensis Scheffrahn sp. n.
Winged Imago. Ocelli not visible either by pigmentation or cuticular protrusion 

(Figure 2A–C). Fore wing with unsclerotized media and cubitus arising from a com-
mon vein distal from scale suture; radial sector with 5–6 anterior branches; subcosta 
very close and difficult to discern from costal margin (Figure 2D). Hind wing with 
radial sector and cubitus arising from a common vein distal to suture. Tibial spurs 
3:3:3; tarsi without arolia. The left imago/nymph mandible with anterior margin of 
their marginal tooth ca. 1.5 times longer than length of the posterior margin of the first 
plus second marginal tooth; right mandible with posterior margin of second marginal 
tooth 1.4 times as long as molar plate (Figure 3).

Diagnosis. The lack of visible ocelli is unique among all other Kalotermitidae. In 
Krishna’s 1961 generic key, Roisinitermes would lead to couplet 2 (Epicalotermes).

http://zoobank.org/9AE40F98-CA9E-45AC-849E-A034F19E8DAE
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Figure 1. Phylogenetic tree of Kalotermitidae based on full mitochondrial genomes. The tree depicted 
was reconstructed with RAxML using the data matrix without third codon position. Node labels are the 
Maximum Likelihood bootstrap supports and the Bayesian posterior probabilities in the following order, 
from left to right: posterior probability of the analysis with third codon position included, posterior prob-
ability of the analysis without third codon position, bootstrap support of the analysis with third codon 
position included, bootstrap support of the analysis without third codon position, *indicates 100% boot-
strap support and 1.0 posterior probability for all four analyses.

Soldier. Monomorphic (Figs 4, 5). Eye spots prominent; large, dark brown. Frons 
bilobed in dorsal view, crested with rugose longitudinal wrinkles, rugosity below frons 
oriented longitudinally. Small horn-like projection at terminus of ventral genae. Man-
dibles sticklike; downward arching in lateral view. Dentition very weak; basal humps 
project sharply.

Diagnosis. Stick-like mandibles unique among all other kalotermitid soldiers. In 
Krishna’s 1961 key, Roisinitermes leads to couplet 17 (Allotermes). In dorsal view, the 
mandibular blades of Allotermes, especially A. denticulatus Krishna 1962, somewhat 
resemble those of Roisinitermes as those of the former are long, rather narrow and with 
rudimentary dentition. In lateral view, however, the Roisinititermes mandibles differ 
from all other kalotermitids with projecting mandibles in that the Roisinitermes mandi-
bles arch downward. Although the Roisinitermes imago venation and dentition is very 
similar to those of Epicalotermes, the soldier of Roisinitermes shares no major characters 
with the Epicalotermes soldier.

Etymology. The genus is named in honor of Dr. Yves Roisin for his many contri-
butions to the study of termites.
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Figure 2. Imago of Roisinitermes ebogoensis gen. & sp. n. A Dorsal view of head and thorax B Oblique 
view of head C Lateral view of head and thorax D Right forewing (arrow on subcosta) and right hind wing.

Roisinitermes ebogoensis Scheffrahn, sp. n.
http://zoobank.org/129573FB-E5DE-4673-9E1B-EF062D413FEB

Material examined. Holotype. Soldier from colony UF no. AFR3327. CAMEROON: 
Ebogo II, (+3.37723N, +11.46135E), 647 m elev., 18FEB18, col. Raphael Onana, 
AFR3327 ca. 500 alates, 50 soldiers, and many pseudergates, nymphs, larvae, and 
eggs. Paratypes. CAMEROON, Ebogo II (+3.38273N, +11.46190E), 664 m elev., 
10DEC2016, col. Jan Šobotník and collaborators, AFR2982 4 soldiers (1 damaged), 
one female dealate, and 46 brachypterous nymphs.

Diagnosis. See generic diagnosis above.
Description. Winged Imago (Figure 2, Table 1) Head and pronotum light brown-

ish orange; eye ovoid, anterior margin truncate abdominal tergites lighter, concolorous 
with legs and labrum; postclypeus nearly hyaline. Compound eyes black, of medium 
size and protrusion; ellipsoid but truncated near antennal socket, composed of approx-
imately 85 facets. Ocelli not visible either by pigmentation or cuticular protrusion. 
Antennae with more than nine articles; formula 1>2=3=4<5. Pronotum width twice 
that of median length; several long and shorter setae project from lateral margins. Fore 
wing scale with basal origins of all major veins; wing membrane covered with papillae. 
Tibial spurs 3:3:3; tarsi without arolia.

Soldier (Figs 4–6; Table 2) Monomorphic. In dorsal view, head capsule yellowish 
orange in posterior grading to orange in middle and reddish brown from frons to ante-

http://zoobank.org/129573FB-E5DE-4673-9E1B-EF062D413FEB
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clypeus. Three proximal antennal articles sepia brown; distal articles light brown. Post 
clypeus and labrum yellowish with brown highlights. Eye spots prominent; large, dark 
brown, elliptical; formed from a mass of discrete ommatidia. Pronotum concolorous 
with posterior head capsule. Head capsule in dorsal view, subrectangular; lateral mar-
gins nearly parallel, length 1.5 times width. Posterior corners of head evenly rounded; 

Figure 3. Brachypterous nymph of Roisinitermes ebogoensis gen. & sp. n. Top: Dorsal view of mandibles. 
Bottom: lateral view of head and thorax.
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posterior margin rectate. In lateral and oblique view, head capsule almost cylindrical 
with only slight dorso-ventral compression; frons bilobed in dorsal view, crested with 
rugose longitudinal stripes, rugosity lateral below frons to mandibles. In lateral view, 
frons sloping from vertex ~45°; mandibles bow upward to form a 15° arch. Setae short 
and sparse on pronotum and head capsule. Periantennal carina rugose, in dorsal view 
partially eclipsing the first antennal article. Small horn-like projection at terminus of 
ventral genae. Mandibles stick-like; long, blade narrower in middle than distal third, 
dentition very weak; left mandible with faint equilateral tooth approx. three fifths 
from base, serrations along blade from tooth to tip. Right mandible with single tooth 
approx. one third distance from base; blade narrowest before tooth; after tooth blade 
widens slightly and then gradually narrows at tip. In dorsal view, basal humps project 
sharply as rugose hemispheres. In lateral view, humps are columnar and equal in height 
to that of the mandibles. Anteclypeus shallowly incised in middle; labrum linguiform 
with gradual point; 4–5 long terminal setae. Antennae with 12–13 articles, third an-
tennal article subclavate, barely shorter than fourth and fifth combined. Pronotum 
collar-shaped; much wider than long. Anterior margin weakly concave; lateral margins 
weakly convex, posterior margin forming 25° angle with incised middle. Femora mod-
erately inflated, tibial spurs 3:3:3. Habitus as in Figure 6.

Brachypterous nymph (Fig. 3, Table 3) Body hyaline. Head, thorax, and abdo-
men similar in shape and pilosity of imago. Compound eyes with approx. 85 dark 

Table 1. Measurements (mm) of Roisinitermes ebogoensis alates from a single colony.

Males (n=6) Females (n=6)
Measurement max min mean max min mean
Head max. width 1.05 0.95 1.00 1.05 1.00 1.03
Pronotum max. width 1.00 0.89 0.96 1.05 0.93 1.01
No. antennal articles 15 14 14.67 17.00 14.00 15.17
Max diam. eye 0.40 0.32 0.36 0.39 0.35 0.37
Body length with wings 9.63 8.63 9.10 9.88 9.50 9.65
Fore wing length (suture to tip) 7.50 6.80 7.20 7.80 7.20 7.43

Table 2. Measurements of Roisinitermes ebogoensis soldier (n=17 from two colonies).

Measurement Max Min Mean
Head length to lateral mandible base 1.92 1.60 1.79
Head width, maximum 1.28 1.18 1.22
Head height with gula, max. 1.08 0.92 1.00
Pronotum length 0.70 0.56 0.65
Pronotum width 1.18 1.05 1.13
No. antennal articles 14 10 12.70
Left mandible width @ basal humps 0.35 0.21 0.26
Left mandible width @ middle 0.18 0.16 0.17
Max. diam. eye 0.26 0.18 0.21
Length left mandible from condyle (ventral) 1.78 1.46 1.66
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Figure 4. Soldier (holotype) of Roisinitermes ebogoensis gen. & sp. n. Dorsal (A), lateral (B), and ven-
tral (C) views of head and pronotum.
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Figure 5. Dorsal view of frons and mandibles of Roisinitermes ebogoensis gen. n. sp. n. Inset: oblique 
ventral view of columnar hump (arrow).

facets; both eyes and facets smaller than imago. Antennae with 15 articles; formula 
1>2>3=4=5. Left mandible with anterior margin of marginal tooth 1.5 times longer 
than length of the posterior margin of the first plus second marginal tooth. Right man-
dible with posterior margin of second marginal tooth 1.4 times as long as molar plate.

Biology and distribution. The type colony of R. ebogoensis was collected in the 
forest on an island in the Nyong River near the Ebogo II village. The colony lived in a 

Table 3. Measurements (mm) of Roisinitermes ebogoensis brachypterous nymph (n=10).

Measurement Max Min Mean
Head max. width 1.10 1.00 1.07
Pronotum max. width 1.16 1.08 1.11
No. antennal articles 15 15 15
Maximum diam. eye 0.20 0.20 0.20
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relatively thin (3 cm) and long (over 3 m) broad-leaf tree branch suspended from the 
canopy approximately 2 m above the ground. The colony contained roughly 2,000 
members. A second colony of R. ebogoensis was collected in a nearly pristine rain forest 
near the village of Ebogo II. The colony was taken from a dead liana branch (ca. 15 
mm diam.) hanging from the canopy at a height of approx. 1 m above the ground. 
Liana stems have been generally overlooked as a colonization site for Kalotermitidae 
(Scheffrahn et al. 2018). In light of Emerson’s 1925 description of Cryptotermes cubio-
ceps from a single soldier collected from a dead liana, this host should be probed rou-
tinely as a colonization site for kalotermitids.

Etymology. The species is named for the village of Ebogo II, the type locality for 
this termite.

Discussion

Kalotermitids inhabit a single woody item and are largely unable to move to a new 
food source once the original is exhausted. The lone exception is Paraneotermes sim-
plicicornis that builds underground galleries connecting several wood pieces (Light 
1937). The ability to feed on sound wood represents a defensive adaptation in itself 
as the hard food source acts as an efficient physical barrier against intruders. Kaloter-
mitids thus show low soldier-to-worker ratios (see Haverty 1977) and soldiers reach 
a high level of polymorphism, reflected especially in the development of the headcap-

Figure 6. Live habitus of soldier and brachypterous nymphs of Roisinitermes ebogoensis gen.et sp. n.
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sule and mandibles. Some genera such as Bicornitermes, Cryptotermes, Eucryptotermes, 
Calcaritermes, or Glyptotermes, possess very short mandibles and a plug-like headcap-
sule to prevent intruder entry into a nest gallery (phragmosis). In C. cryptognathus 
from Jamaica, the mandibles are reduced to small stubs that do not project beyond the 
frontogenal boundaries of the head capsule, and therefore cannot be used to bite op-
ponents (Scheffrahn et al. 1998). Some other genera (e.g., Bifiditermes, Epicalotermes, 
Incisitermes, Kalotermes, Neotermes) possess long mandibles with robust dentition 
(crushing mandibles sensu Prestwich 1984) used to injure an opponent mechanically. 
This is often combined with release of defensive secretions originating in the labial 
glands (Šobotník et al. 2010, Sillam-Dussès et al. 2012). Epicalotermes pakistanicus 
has particularly long and serrated mandibles (Akhtar 1974). The defensive strategy 
of Roisinitermes soldiers does not match any of these; instead, Roisinitermes employs a 
unique strategy of snapping, achieved by long and slender mandibles pressed against 
each other in a defensive encounter. When this potential energy is released, the left 
mandible springs over the right and the resultant snap is forced onto the opponent if 
it is in the path of the strike. This singular mandibular modification was previously 
known in several lineages of Termitinae (Deligne et al. 1981, Prestwich 1984, Seid et 
al. 2008), and was portrayed as a defensive strategy unique to this group. Roisinitermes 
represents the first undisputable evidence of parallel evolution of snapping soldiers.

Our phylogenetic analyses consistently placed Roisinitermes on a long branch, 
next to N. insularis. Neotermes insularis is a large termite species from Northern Aus-
tralia with soldiers endowed with biting mandibles of crushing type. The smaller 
Roisinitermes shares no obvious similarity with N. insularis, supporting its generic 
status. Currently, the number of mitochondrial genomes available for Kalotermitidae 
is limited to a handful of genera, and there is a possibility that future phylogenetic 
analyses will support affinities between Roisinitermes and yet-to-be sampled taxa. In 
any case, the highly unusual morphology of Roisinitermes suggests that it shares no 
close relatives among modern Kalotermitidae. Future studies should focus on whether 
the mechanisms used by soldiers of Roisinitermes to snap are like those of the distantly 
related Termitinae.
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