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ABSTRACT
Purpose. The therapeutic approach for retinal ganglion cell (RGC) degeneration has
not been fully established. Recently, it has been reported that hypoxia-inducible factor
(HIF) may be involved with retinal neurodegeneration. In this study, we investigated
neuroprotective effects of a HIF inhibitor against RGC degeneration induced in a
murine model of retinal ischemia-reperfusion (I/R).
Methods. Eight-weeks-old male C57/BL6J mice were treated with intraperitoneal
injection of a HIF inhibitor topotecan (1.25 mg/kg) for 14 days followed by a retinal
I/R procedure. Seven days after the I/R injury, the therapeutic effect was evaluated
histologically and electrophysiologically.
Results. The increase of HIF-1α expression and the decrease of retinal thickness and
RGC number in I/R were significantly suppressed by administration of topotecan.
Impaired visual function in I/R was improved by topotecan evaluated with elec-
troretinogram and visual evoked potentials.
Conclusions. Topotecan administration suppressed HIF-1a expression and improved
RGC survival resulting in a functional protection against retinal I/R. These data
indicated that the HIF inhibitor topotecan may have therapeutic potentials for RGC
degeneration induced with retinal ischemia or high intraocular pressure.

Subjects Cell Biology, Molecular Biology, Ophthalmology
Keywords Retinal ganglion cell, Hypoxia-inducible factor, Ischemia-repufusion, Topotecan,
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INTRODUCTION
Tissue ischemia and hypoxia may induce irreversible neuronal degeneration. In the eye,
retinal ganglion cell (RGC) degeneration is observed accompanied with ischemia in
central retinal artery occlusion and ischemic optic neuropathy. Recently, optical coherence
tomography (OCT) angiography technology reveals that capillary dropout is correlated
with the decreased RGC layer thickness and visual field defects in glaucoma (Takusagawa et
al., 2017). Mounting evidence suggests that retinal ischemia plays an important role in RGC
degeneration (Wang et al., 2002). These damages directly affect visual acuity and visual
field; however, therapeutic options for RGC degeneration are limited and establishment of
a protective approach for RGC is desired.
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Hypoxia-inducible factor (HIF) is a transcriptional factor that has a pivotal role in
cellular adaptive response to hypoxic condition. Stabilization and activation of HIF
induces cell survival under hypoxia including neovascularization, cell respiration, apoptosis,
glucose metabolism, and embryogenesis (Semenza, 2011). In the retina, HIF plays a critical
role in development, physiology and pathology related with angiogenesis and anaerobic
metabolism (Kurihara et al., 2016; Kurihara, 2018). It has also reported that HIF-1α
expression is increased in human glaucomatous retina (Tezel & Wax, 2004) suggesting a
correlation between chronic RGC degeneration and HIF activation.

Retinal ischemia-reperfusion (I/R) is a well-established animal model to induce RGC
degeneration (Sellés-Navarro et al., 1996; Vidal-Sanz et al., 2001; Hartsock et al., 2016; Liu
et al., 2019). This model mimics an acute retinal artery occlusion such as CRAO or RGC
death such as glaucoma. A previous report showed a neuroprotective effect of carnosine
against I/R with decrease of HIF-1α expression in the retina (Ji et al., 2014). However,
the relation between retinal neurodegeneration and HIF remains unclear. Topotecan is
a topoisomerase inhibitor and is also known as a potent HIF inhibitor (Rapisarda et al.,
2002). Recently, we reported that topotecan prevented retinal neovascularization and
impaired visual function in a murine model of oxygen-induced retinopathy (Miwa et al.,
2019), while it remains unclear that pharmacological HIF inhibition is effective for RGC
degeneration. In this study, we investigated the protective effect of topotecan for RGC in a
murine model of retinal I/R.

MATERIALS & METHODS
Ethics of animal research
All procedures for animal experiments were approved by IACUC of Keio University
(Approval Number 2808), and were in accordance with NIH guidelines for work with
animals, ARVO statement for the Use of Animals in Ophthalmic and Vision Research and
ARRIVE guidelines.

Drug administration
All experiments were carried out with 8-weeks-old male C57/BL6J mice (CLEA Japan,
Japan). Animals were divided into two groups and intraperitoneally injectedwith phosphate
buffered saline (PBS) or Topotecan dissolved in PBS (1.25 mg/kg, #14129, Cayman
Chemical, United States) once per day for 14days prior to the retinal I/R. All mice were
maintained on a standard rodent diet (MF, Oriental Yeast Co., Ltd, Japan) and given free
access to water. All cages were maintained under controlled lighting (12 h light/12 h dark).

Murine retinal I/R experiment
The murine model of retinal I/R followed with Western blotting, qPCR, retinal thickness
evaluation, RGC retrograde labeling and electrophysiological evaluation were performed
as previously described (Kunimi et al., 2019). Specifically, we performed Western blotting
using mouse anti-HIF-1α (1:1500; #36169; CST, Danvers, MA, USA) and mouse anti-
β-actin (1:4000; #A5316; Sigma-Aldrich, St. Louis, MO, USA) primary antibodies. The
primers for qPCR were synthesized by Thermo Fisher Scientific, Waltham, MA, USA.
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Figure 1 HIF-1α and its target genesexpression in post- I/R retina. (A) Western blots show retinal HIF-
1α expression is increased and maintained 6 h after I/R injury. (B) Hif-1 α and its representative target
genes were upregulated in post-I/R retina detected by qPCR (n= 5). Gapdh was used as the internal con-
trol. Error bars indicate the standard error. Cont; control. **p< 0.01, Mann-Whitney’s U test.

Full-size DOI: 10.7717/peerj.7849/fig-1

Statistical analysis
The data were presented as the mean ± SD. Comparison of two experimental conditions
was evaluated using Mann–Whitney’s U -test. A p < 0.05 was considered statistically
significant.

RESULTS
Expression of HIF-1α and its target genes after retinal I/R injury
In the current study, we examined murine retinal I/R model to induce RGC degeneration.
HIF-1α protein expression in the retina was increased in 6 h after I/R injury (Fig. 1A)
with significant upregulation of hif-1 α and its representative target genes (vegf-a, glut1,
pdk1) (hif-1 α: p = 0.009, vegf-a: p = 0.009, glut1: p = 0.009, pdk1:p = 0.009, respectively)
(Fig. 1B). These data indicated that retinal HIF-1α signaling was activated with I/R injury.

Change of HIF-1α and target gene expressions with topotecan admin-
istration
Next, we administered topotecan intraperitoneally in order to inhibit HIF-1α
pharmacologically in mice. The increased HIF-1α protein expression in post-I/R retinas
(p = 0.009) was significantly (p = 0.009) suppressed in topotecan-treated mice compared
to controls (Figs. 2A, 2B). The upregulated retinal hif-1α and the target genes were also
significantly suppressed except for pdk1 in treated mice compared to controls (hif-1α: p =
0.009, vegf-a: p = 0.016, glut1: p = 0.009, pdk1: p = 0.028, respectively) (Fig. 2C). These
results suggested that systemic administration of topotecan inhibited increased HIF-1α
and upregulated target gene expression in post I/R retinas.
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Figure 2 Topotecan administration suppresses increased HIF-1α and upregulated targetgenes in I/R
retinas. (A) Western blots for HIF-1α and β -actin in control or I/R retinas with or without topotecan ad-
ministration (n= 5). (B) Quantification of the blots indicating that topotecan administration suppressed
increased HIF-1α expression. (C) Hif-1α and its representative target genes detected by qPCR (n = 5).
Note that upregulated genes were suppressed by topotecan administration. Gapdh was used as the internal
control. Error bars indicate the standard error. *p< 0.05, **p< 0.01, Mann–Whitney’s U test.

Full-size DOI: 10.7717/peerj.7849/fig-2

Improvement of RGC survival with topotecan administration in
post-I/R retinas
We examined the retinal thickness to evaluate the effect of topotecan morphologically
with OCT. Total retinal thickness was significantly (p = 0.021) thinner in a week after I/R
injury, while topotecan group showed significantly (p = 0.021) thicker retina compared
to control (Fig. 3). We further examined fluorogold retrograde labeling of RGCs to assess
the cell survival 7 day after I/R injury. While the number of RGCs were significantly (p =
0.009) decreased in post-I/R retinas, topotecan administration significantly (p = 0.009)
suppressed the decrease of RGC number (Fig. 4). These results indicated that topotecan
administration had a neuroprotective effect improving RGC survival against retinal I/R
damage.

Protective effect of topotecan for the impaired visual function with I/R
injury
To evaluate the change of retinal function with topotecan treatment, we examined ERG
after I/R injury. In this study, ERG waveforms in three different stimulating conditions
were recorded 7 days after I/R injury. The amplitudes was significantly decreased in each
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Figure 3 Evaluation of totalretinal thickness with OCT. (A–D) Representative OCT images from each
group. Scale bar; 100 µm. (E) The average of total retinal thickness quantified in OCT (n = 4). Note that
decrease of retinal thickness was suppressed by topotecan administration post-I/R injury. Error bars indi-
cate the standard error. *p< 0.05, Mann–Whitney’s U test.

Full-size DOI: 10.7717/peerj.7849/fig-3

condition after I/R injury (rod b-wave: p= 0.009, mix a-wave: p= 0.009, mix b-wave: p=
0.009, cone b-wave: p= 0.009, respectively), while topotecan administration suppressed the
decrease of amplitudes with I/R injury except for cone b-wave (rod b-wave: p= 0.028, mix
a-wave: p = 0.016, mix b-wave: p = 0.006, cone b-wave: p = 0.056, respectively) (Fig. 5).
In addition to ERG, we also assessed VEP to evaluate the protective effect of topotecan in
I/R injury. I/R injured mice showed a significant (p = 0.009) decrease of amplitudes and
a significantly (p = 0.009) prolonged implicit time. On the other hand, the decrease of
VEP amplitudes was significantly (p < 0.016) suppressed with topotecan administration
(Fig. 6). These results suggested that topotecan had a neuroprotective effect against I/R
damage functionally.

DISCUSSION
In this study, we focused on the role of HIF-1α in the RGC degeneration. The contribution
of HIF to RGC death or nerve fiber degeneration has not well been documented previously.
In the current study, RGC loss was observed after I/R injury accompanied with retinal
excessive expression of HIF-1α while HIF-1α inhibition with topotecan protected RGC
morphologically and functionally in I/R injured retinas. To our best knowledge, this is the
first study to show a protective effect of HIF inhibitor to RGC degeneration. In the current
study, we injected topotecan before the I/R procedure to obtain the maximum effect of the
drug at the onset of the model. Administration of the drug after I/R is required to prove
the therapeutic concept for diseases in future studies.

To date, several neuroprotective materials for RGC degeneration have been reported.
Synthetic steroid showed RGC protection via suppressing the microglial inflammation
(Sun et al., 2019). Rapamycin, an antibiotic agent, promoted autophagy in the retina
and improved RGC survival (Russo et al., 2018). Other antibacterial drug, minocycline,
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Figure 4 Fluorogold retrograde labeling of RGCs. (A) A representative quadrant retina with fluorogold-
labeled RGCs. 200 µm square with red at one mm from optic disc head indicates the area for RGC den-
sitometry. (B–E) Magnified images for control and post-I/R retina with or without topotecan administra-
tion. Scale bars; 200 µm in quadrant retina, 50 µm in magnified images. (F) The quantification of RGC
density for each group (n = 5). Note that decrease of RGCs was suppressed by topotecan administration.
Error bars indicate the standard error. **p< 0.01, Mann–Whitney’s U test.

Full-size DOI: 10.7717/peerj.7849/fig-4

had a neuroprotective effect in retinal I/R (Huang et al., 2018). Bevacizumab, a human
monoclonal antibody to VEGF which is downstream of HIF-1α, also reduced RGC
apoptosis in a rat model of I/R (Kohen et al., 2018). In addition, some of dietary factors also
showed retinal neuroprotective effects. Resveratrol enhanced the survival of RGCs against
I/R via anti-inflammatory action (Luo et al., 2018). Xue-Fu-Zhu-Yu, one of traditional
Chinese medicine protected RGC from retinal ischemia damage (Tan et al., 2017). Thus,
these substrates showing RGC protective effects with various mechanisms are expected for
clinical application.

There are some studies conducted to investigate pathways of RGC apoptosis. Caspases
had been explored to play an important role in neuronal cell apoptosis of the inner retinal
layer in the early stage of I/R (Lam, Abler & Tso, 1999), while RGC necrosis was induced
via extracellular signal-regulated kinase 1/2-receptor-interacting protein kinase 3 pathway
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Figure 5 Retinal functionevaluated with ERG. (A–C) Representative ERG waveforms for rod, mixed,
and cone conditions. Black arrows indicate the timing of the stimulation. The averaged amplitudes were
shown for rod b-wave (D), mixed a-wave (E), mixed b-wave (F), and cone b-wave (G) (n = 5–6). Note
that most of decreased amplitudes were suppressed by topotecan administration. Error bars indicate the
standard error. *p< 0.05, **p< 0.01, Mann–Whitney’s U test.

Full-size DOI: 10.7717/peerj.7849/fig-5

(Gao, Andreeva & Cooper, 2014). Ca-phospholipid binding protein annexin A1 is shown
to increase IL-1β expression promoting RGC death via p65 pathway (Zhao et al., 2017).

As previously reported, the HIF-1α expression in each cell type is functionally related
to the phenotype of angiogenesis physiologically and pathologically. Critical roles of
HIF-1α in retinal neuron including RGC (Nakamura-Ishizu et al., 2012), muller cells (Lin
et al., 2011), astrocytes, and microglia (Kurihara et al., 2011) have been shown by utilizing
cell type specific conditional gene knockout technology. Although the specific cell type
contributing to the effect of the drug administration has not been identified at this point,
we will explore the contribution of HIF in each cell type in future studies. It has been
reported that the activation of NRF2/HO-1 pathway (a downstream of HIF-1α) in RGCs
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Figure 6 Evaluation of visual function detected with VEP. (A) Representative VEP waveforms from
control and post-I/R retina with or without topotecan administration. A black arrow indicates the tim-
ing of the stimulation. (B) The average of VEP amplitudes (n = 5). Note that decrease of VEP amplitude
was suppressed by topotecan administration. (C) The average of VEP implicit time. Error bars indicate the
standard error. *p< 0.05, **p< 0.01, Mann–Whitney’s U test.

Full-size DOI: 10.7717/peerj.7849/fig-6

inhibited RGC degeneration in a rat retinal I/R model (Varga et al., 2013; He et al., 2014).
In a rat chronic high IOP model, HIF-1α expression was increased in muller cells and
astrocytes but not in microglia (Ergorul et al., 2010). These results indicated that the in vivo
phenotype might not be mediated by a single cell type but by the sum of these compensates.

Previously, we described that hypoxic retinal pigment epithelium induced degeneration
of photoreceptor cells altering glucose and lipid metabolism through HIF expression
(Kurihara et al., 2016). In contrast, it has been reported that the expression of HIF
downstream genes such as Erythropoietin (Grimm et al., 2002; Sullivan, Kodali & Rex,
2011) or Vegf (Foxton et al., 2013) have a neuroprotective effect against neuronal damages
in the retina. Thus, further studies are needed to conclude the contribution of HIF in the
degenerative retina. HIF may be related to the neurodegeneration in a cell autonomous
manner such as apoptosis (Greijer & Van der Wall, 2004); besides, non-cell autonomous
mechanisms including recruitment of cytotoxic inflammatory cells or activation of
supporting cells can be considered to induce RGC damages (Zera & Zastre, 2017). HIF
inhibition may suppress these negative reactions against the RGC survival in the process
of the degeneration. Since HIF is a transcription factor, further study should be required
to elucidate the downstream mechanism of HIF in the RGC degeneration. Taken together,
a HIF inhibitor topotecan had a neuroprotective effect for RGCs in retinal ischemia
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following hyper intraocular pressure. This study suggested that pharmacological HIF
inhibition may be possible candidates for RGC degeneration induced with retinal ischemia
or high intraocular pressure.

CONCLUSIONS
In the current study, we hypothesized that HIF was involved with RGC degeneration in
acute retinal I/R. This is the first research to indicate that topotecan had a protective effect
against retinal I/R histologically and electrophysiologically suppressing elevated HIF-1α
expression. Although further study is needed to show the specificity of HIF in retinal
neurodegeneration, topotecan is a possible drug to protect RGC from retinal ischemia and
high intraocular pressure.
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