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Abstract

Safety sciences must cope with uncertainty of models and results as well as information gaps. 

Acknowledging this uncertainty necessitates embracing probabilities and accepting the remaining 

risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into 

account by using uncertainty / assessment factors and worst-case / precautionary approaches and 

thresholds. Probabilistic methods and Bayesian approaches seek to characterize these uncertainties 

and promise to support better risk assessment and, thereby, improve risk management decisions. 

Actual assessments of uncertainty can be more realistic than worst-case scenarios and may 

allow less conservative safety margins. Most importantly, as soon as we agree on uncertainty, 

this defines room for improvement and allows a transition from traditional to new approach 

methods as an engineering exercise. The objective nature of these mathematical tools allows 

to assign each methodology its fair place in evidence integration, whether in the context of 

risk assessment, systematic reviews, or in the definition of an integrated testing strategy (ITS) / 

defined approach (DA) / integrated approach to testing and assessment (IATA). This article gives 

an overview of methods for probabilistic risk assessment and their application for exposure 

assessment, physiologically-based kinetic modelling, probability of hazard assessment (based on 

quantitative and read-across based structure-activity relationships, and mechanistic alerts from in 
vitro studies), individual susceptibility assessment, and evidence integration. Additional aspects 

are opportunities for uncertainty analysis of adverse outcome pathways and their relation to 
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thresholds of toxicological concern. In conclusion, probabilistic risk assessment will be key for 

constructing a new toxicology paradigm – probably!

1 Introduction

Nothing is as certain as death and taxes1. Toxicology (as all of medicine) does not reach this 

level of certainty, as the Johns Hopkins scholar William Osler (1849–1919) rightly stated, 

“Medicine is a science of uncertainty and an art of probability”, and in this sense toxicology 

is a very medical discipline. However, our expectation as to the outcome of safety sciences is 

certainty – a product coming to the market must be safe. This article aims to make the case 

that we are actually working with an astonishing level of uncertainty in our assessments, 

which we hide by using apparently deterministic expressions of results (classifications, 

labels, thresholds, etc.). It is not that we cannot know, but that our predictions have only 

a certain probability of being correct – not very comforting when the safety of sometimes 

millions of patients and consumers is at stake.

The 2017 book The Illusion of Risk Control – What Does it Take to Live with Uncertainty? 
edited by Gilles Motet and Corinne Bieder, makes the important point of acknowledging that 

there is always a risk and that we can only assess and manage its probability. Consequently, 

safety is defined by the absence of unacceptable risk, not as the absence of all risk. Giving 

up on the illusion of safety and acknowledging uncertainty does give a new perspective on 

risk assessment and management as we will discuss here, applying it to toxicology. Dupuy 

(1982) described the problem as “The fundamental incapacity of Industrial Man to control 
his destiny increasingly appears as the paradoxical and tragic result of a desire for total 
control – either by reason or by force”. As we will see, embracing uncertainty can free us to 

adopt a new toxicity testing paradigm.

Uncertainty and probability are two sides of the same coin. Risk assessment under 

uncertainty, therefore, logically leads us to probabilistic risk assessment (ProbRA). We will 

go light on mathematics here. This article is primarily about why to use ProbRA and not on 

how to do it. In recent years, the importance of having a firm understanding of probability 

has become apparent, and as a result there are several books the reader can consult, which 

we recommend:

• Kurt, Will (2019). Bayesian Statistics the Fun Way.

• Mlodinow, Leonard (2008). The Drunkard’s Walk: How Randomness Rules Our 
Lives.

• Wheelan, Charles (2013). Naked Statistics: Stripping the Dread from the Data.

1Supposedly first used by Daniel Defoe, in The Political History of the Devil, 1726: “Things as certain as death and taxes, can be 
more firmly believed.”
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2 Some defining characteristics of (un)certainty versus probability versus 

risk

2.1 Uncertainty

“We know accurately only when we know little; with knowledge, doubt increases” (Johann 

Wolfgang von Goethe in Maxims and Reflections).

Uncertainty in toxicology is at its base the lack of knowledge of the true value of a 

quantity or relationships among quantities. Figure 1 illustrates the path from ignorance 

approximating certainty with some irreducible uncertainty remaining. Walker et al. (2003) 

note that uncertainty is not simply the absence of knowledge, but a situation of inadequate 

information (inexactness, unreliability, and sometimes ignorance). “However, uncertainty 
can prevail in situations where a lot of information is available …. Furthermore, new 
information can either decrease or increase uncertainty. New knowledge on complex 
processes may reveal the presence of uncertainties that were previously unknown or were 
understated. In this way, more knowledge illuminates that our understanding is more limited 
or that the processes are more complex than thought before”. Cullen and Frey (1999) 

address uncertainties that arise during risk analyses:

1. Scenario uncertainty – typically of omission, resulting from incorrect or 

incomplete specification of the risk scenario to be evaluated. In toxicology, for 

example, risk assessment before the actual use of a substance is clear.

2. Model uncertainty – limitations in the mathematical models or techniques 

often due to (a) simplifying assumptions; (b) exclusion of relevant processes; 

(c) misspecification of model boundary conditions (e.g., the range of input 

parameters); or (d) misapplication of a model developed for other purposes. In 

toxicology, this obviously resonates with many aspects of the risk assessment 

process.

3. Input or parameter uncertainty – particular attention must be paid to 

measurement error, which can be either systemic (when there is a bias in the 

data) or random (noise in the data). Toxicology obviously faces both, but these 

are rarely explicitly addressed when risk assessments are made.

Today, additional aspects such as inconsistency, bias, and methodological choices are 

considered as sources of uncertainty. Recent European Food Safety Authority (EFSA) 

guidance (EFSA, 2018) details uncertainty very comprehensively for the safety sciences.

The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) 

working group has issued a guideline (Brozek et al., 2021) on assessing the certainty in 

modelled evidence, which includes the three types of uncertainty mentioned above and 

provides a flowchart for finding, selecting, and assessing certainty in a model. The certainty 

of modelled outputs is recommended to be assessed on the following domains:

1. Risk of bias

a. credibility of the model itself
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b. certainty of all inputs

2. Directness

3. Precision

4. Consistency

5. Risk of publication bias

Variability (a.k.a. imprecision) refers to real differences in results over time, space, or 

members of a population and is a property of the system being studied (e.g., body weight, 

food consumption, age, etc. for humans or ecological species). Uncertainty is usually seen 

as the enemy of safety. But as Pariès (2017) rightly states, “Uncertainty is not necessarily 
bad. Actually we are immerged in uncertainty, we live with it, and we need it to deal with 
the world’s complexity with our limited resources. We have inherited cognitive and social 
tools to manage it and deal with the associated unexpected variability. We need to better 
understand these tools and augment their efficiency in order to engineer resilience into our 
socio-technical systems”.

2.2 Probability

Here we come to the core of the argument. Stephen Jay Gould (1941–2002, US 

paleontologist and historian of science) wrote in The Dinosaur in the Haystack (1995), 

“Misunderstanding of probability may be the greatest of all impediments to scientific 
literacy”. So, what is probability? George Boole (1815–1864, English mathematician and 

philosopher best known for his Boolean algebra) stated, “Probability is expectation founded 
upon partial knowledge. A perfect acquaintance with all the circumstances affecting the 
occurrence of an event would change expectation into certainty, and leave neither room 
nor demand for a theory of probabilities”. A probabilistic approach is based on the theory 

of probability and the fact that randomness plays a role in prediction. It is the opposite 

of deterministic. A deterministic situation, i.e., one without uncertainty, though does not 

exclude imprecision affecting our determination. Probabilistic models incorporate random 

variables and probability distributions into the respective model.

Few probabilities are known, like rolling a perfect die; they are called a priori probabilities. 

Where observed frequencies are used to predict probabilities, we call them statistical 
probabilities, to be distinguished from estimated probabilities, which are based on 

judgement because of the associated uncertainty. Almost all risk decisions in risk assessment 

are based on a combination of the latter two. The critical question is the reliability of the 

probability estimate. The purpose of this article is to stress that there are methods to assess 

the remaining uncertainty and support managing the resulting risk.

The key point we must clarify is that we are not just talking about the p-value of our 

statistical significance tests when talking about probabilities in risk assessment. Aside 

the poor use of statistics in toxicology in general (Hartung, 2013), it will surprise many 

readers that our gold-standard significance test approach, which is increasingly used (Cristea 

and Ioannidis, 2018), is actually ill-suited for the questions we ask (Goodman, 1999ab)2: 

“Biological understanding and previous research play little formal role in the interpretation 
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of quantitative results. This phenomenon is manifest in the discussion sections of research 
articles and ultimately can affect the reliability of conclusions. The standard statistical 
approach has created this situation by promoting the illusion that conclusions can be 
produced with certain ‘error rates,’ without consideration of information from outside 
the experiment. This statistical approach, the key components of which are P values and 
hypothesis tests, is widely perceived as a mathematically coherent approach to inference.” 

The articles discuss the resulting “p value fallacy”. P value fallacy in easy terms means 

“while most physicians and many biomedical researchers think that a ‘P’ of 0.05 for a 
clinical trial means that there is only a 5% chance that the null hypothesis is true, that is not 
the case. Here is what ‘P = 0.05’ actually means: if many similar trials are performed testing 
the same novel hypothesis, and if the null hypothesis is true, then it (the null) will be falsely 
rejected in 5% of those trials. For any single trial, it doesn’t tell us much”. Ioannidis (2008) 

shows the problem for a large number of observational epidemiological studies. Seeing the 

comparatively high standard of statistics in clinical trials and epidemiology, we are for larger 

parts of science reminded of Nassim Taleb (2007), “They only knew enough math to be 
blinded by it”.

It should be noted that an understanding of probability developed only slowly in science; 

Pierre-Simon Laplace classically defined the probability of an event as the number of 

outcomes favorable to the event divided by the total number of possible outcomes. So, the 

probability of throwing a six with a perfect die is 1 in 6. Laplace finalized the classical 

probability theory in the 19th century, which started as early as the 16th century (especially 

Pierre de Fermat and Blaise Pascal in the 17th century) mainly from the analysis of games. 

Jacob Bernoulli expanded to the principle of indifference, taking into account that not all 

outcomes need to have the same probability, and others expanded it to continuous variables. 

In 1933, the Russian mathematician A. Kolmogorov (1903–1987) outlined an axiomatic 

approach that forms the basis for the modern theory defining probability based on the three 

suggested axioms.

In the 20th century, frequentist statistics was developed and became the dominant statistical 

paradigm. It continues to be most popular in scientific articles (with p-values, confidence 

intervals, etc.). Frequentist statistics is about repeatability and gathering more data, and 

probability is the long-run frequency of repeatable experiments.

An alternative approach is “Bayesian inference” based on Bayes’ theorem, named after 

Thomas Bayes, an English statistician of the 18th century. Here, probability essentially 

represents the degree of belief in something, probably closer to most people’s intuitive idea 

of probability.

We can thus distinguish three major forms of probability:

1. The classical or axiomatic (based on Kolmogorov’s axioms) probability

2Thanks to Kimbal Atwood and his blogs Science-based Medicine bringing them to our attention: https://sciencebasedmedicine.org/
author/kimball-atwood/
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2. The experimental / empirical probability of an event is equal to the long-term 

frequency of the event’s occurrence when the same process is repeated many 

times (also termed frequentist statistics or frequentist inference)

3. Subjective probability as the degree of belief or logical support (updated using 

Bayes’ theorem)

One drawback of the frequentist approach that is addressed by Bayesian inference is 

the issue of false-positives, especially for rare events (Szucs and Ioannidis, 2017). We 

have repeatedly stressed this problem for toxicology, where most hazards occur at low 

frequencies (Hoffmann and Hartung, 2005). The other way around, “big data” is bringing 

the reverse challenge of overpowered studies, i.e., “massive data sets expand the number 
of analyses that can be performed, and the multiplicity of possible analyses combines with 
lenient P value thresholds like 0.05 to generate vast potential for false positives” (Ioannidis, 

2019). Another drawback is that frequentists neglect that opinion plays a major role in both 

preclinical and clinical research; Bayesian statistics forces the contribution of opinion out 

into the open where it belongs.

2.3 Likelihood

The distinction between probability and likelihood, a.k.a. reverse probability, is 

fundamentally important3: “Probability attaches to possible results; likelihood attaches to 
hypotheses.” This brings us to Bayesian statistics, which consider our beliefs. “Hypotheses, 
unlike results, are neither mutually exclusive nor exhaustive. … In data analysis, the 
‘hypotheses’ are most often a possible value or a range of possible values for the mean 
of a distribution. … The set of hypotheses to which we attach likelihoods is limited by our 
capacity to dream them up. In practice, we can rarely be confident that we have imagined 
all the possible hypotheses. Our concern is to estimate the extent to which the experimental 
results affect the relative likelihood of the hypotheses we and others currently entertain. 
Because we generally do not entertain the full set of alternative hypotheses and because 
some are nested within others, the likelihoods that we attach to our hypotheses do not have 
any meaning in and of themselves; only the relative likelihoods – that is, the ratios of two 
likelihoods – have meaning. … This ratio, the relative likelihood ratio, is called the ‘Bayes 
Factor’.”3

In toxicology, our hypothesis is usually not articulated, but fundamentally we assume that 

a substance is toxic or, alternatively, that it is non-toxic. This set of hypotheses is neither 

complete nor mutually exclusive: The substance could be beneficial or toxic for some people 

or under certain circumstances. Results, on the contrary, refer to the outcome of a specific 

experiment where associated probabilities are adequate.

2.4 Risk

Risk has in the context of toxicology first to be distinguished from hazard, which is not 

always easy, as many languages do not make this distinction. Hazard is a source of danger, 

3 https://www.psychologicalscience.org/observer/bayes-for-beginners-probability-and-likelihood 
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e.g., a tiger, but it becomes a risk only with exposure, i.e., a possibility of loss or injury with 

a certain probability. The tiger in the cage is a hazard with negligible risk.

Risk is characterized by two quantities:

1. the magnitude (severity) of the possible adverse consequence(s), and

2. the likelihood (probability) of occurrence of each consequence.

Table 1 gives examples of risks with the different combinations of these two properties.

Kaplan and Garrick (1981) defined risk in the context of toxicology as “risk is probability 
and consequences”. So, it is about the severity of possible damage or, as former U.S. 

Environmental Protection Agency (EPA) Administrator William K. Reilly phrased it, “Risk 
is a common metric that lets us distinguish the environmental heart attacks and broken bones 
from indigestion or bruises”4. For toxicology, risk is typically defined for an individual or 

a population. The consequences (hazards) are typically quite clear, but we struggle with the 

probabilities. Taleb (2007) phrased it outside of toxicology, “We generally take risks not out 
of bravado but out of ignorance and blindness to probability!”

3 The lack of certainty in toxicology

For the reader of this series of articles, this argument is a common thread. Some favorites in 

brief: In Hartung (2013, Tab. 1) we list 25 reasons why animal models as the most common 

approach do not reflect humans and cite studies that 20% of drug candidates fail because of 

unpredicted toxicities, and after passing clinical trials ~8% are withdrawn from the market 

mostly because of unexpected side-effects. Major studies by consortia of the pharmaceutical 

industry showed that rodents predict 43% of side effects in humans (n = 150) (Olson et 

al., 2000) and for all species had a sensitivity of 48% and specificity of 84% (n = 182) 

(Monticello et al., 2017).

Animal tests cannot be more relevant for humans than they are reproducible for themselves – 

we showed that of 670 eye corrosive chemicals, a repeat study showed 70% to be corrosive, 

20% to be mild, and 10% to have no effect (Luechtefeld et al., 2016a). For skin sensitization, 

the reproducibility of the guinea pig maximization test was 93% (n = 624) and of the local 

lymph node assay (LLNA) in mice 89% (n = 296) (Luechtefeld, 2016b). Others reported 

for the cancer bioassay 57% reproducibility (n = 121) (cited in Basketter et al., 2012 and 

Smirnova et al., 2018). In our largest analysis (Luechtefeld et al., 2018b), we showed for the 

six most used Organisation for Economic Co-operation and Development (OECD) guideline 

tests and 3,469 cases where a chemical was tested more than twice, an average sensitivity of 

69% (accuracy 81%); this means that the toxic property is missed in one of three tests.

Obviously, we usually do not know how well animal studies predict human health effects. 

However, interspecies comparisons cited in the papers above and in Wang and Gray (2015) 

4William K. Reilly: Aiming Before We Shoot: The Quiet Revolution in Environmental Policy; Address to the National Press Club on 
September 26, 1990
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allow an estimate, as there is no reason to assume that any species predicts humans better 

than they predict each other. These are some examples:

• Skin sensitization (n = 403): 77% guinea pig versus mouse

• Carcinogenicity (n = 317): 57% rat versus mouse

• Reproductive toxicity (n = 167): ~61% rat versus rabbit versus mouse

• Repeat dose toxicity (n = 37): 75–80% rat versus mouse; 27–55% for organ 

prediction

• Repeat dose toxicity (n = 310): 68% rat versus mouse

In conclusion, toxicity tests in animals done according to OECD guidelines and under 

Good Laboratory Practice conditions are roughly 80% reproducible, and different lab 

animal species are concordant about 60% of the time. This quite impressively illustrates 

the uncertainty with which we operate. These are tests to estimate human safety!

For ecotoxicology, Hrovat et al. (2009) have shown an enormous variability of test results: 

For 44 compounds with at least 10 data entries in the ECOTOX database each, they analyzed 

4,654 test reports and report variability exceeding several orders of magnitude (up to 8, i.e., 

one hundred million).

It is important to realize that failure to be realistic about uncertainty in toxicology has 

significant consequences: When a chemical is declared “safe” only to be determined years 

later to result in unexpected toxicity, this increases public skepticism about the ability of 

science to protect people (Maertens et al., 2021).

These reproducibility problems matter especially for the low-frequency events we study 

(Hoffmann and Hartung, 2005). The problem of rare events of big impact has been elegantly 

covered by Nassim Taleb (2007) in his popular book The Black Swan – The Impact of 
the Highly Improbable. Some pertinent quotes5 were cited earlier in this series (Bottini 

and Hartung, 2009). A few others are sprinkled into this article. Furthermore, the reader 

is referred to Taleb’s earlier book (2004) on randomness, where many of the same ideas 

are formulated in a less populistic way. With respect to certainty of our (animal) tools in 

toxicology, the most appropriate quote from Taleb (2007) is, “In the absence of a feedback 
process you look at models and think that they confirm reality”.

Recently, the Evidence-based Toxicology Collaboration (EBTC6) has tried a new approach 

to assessing certainty by evaluating rare toxicological events of drug-induced liver injury 

(DILI), which are poorly predicted by the mandated regulatory test battery. EBTC has put 

together a multi-stakeholder working group, which has searched for published evidence of 

DILI effects of drugs with DILI and no-DILI. The approach demonstrated that mechanistic 

tests reported in the U.S. EPA ToxCast database, and not the mandated regulatory animal 

5Taleb (2007) “What is surprising is not the magnitude of our forecast errors, but our absence of awareness of it”; “True, our 
knowledge does grow, but it is threatened by greater increases in confidence, which makes our increase in knowledge at the same time 
an increase in confusion, ignorance, and conceit”.
6 https://www.ebtox.org 
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tests, predicted rare DILI in humans (Dirven et al., 2021). This evidence-based approach has 

potential for broader application in toxicological methods validation.

4 Probabilistic risk assessment (ProbRA) 101

In the American system, 101 indicates an introductory course, often with no prerequisites. 

In this spirit, let’s summarize the principles and refer to the more comprehensive literature 

for details (Kirchsteiger, 1999; Jensen, 2002; Vose, 2008; Modarres, 2008; Vesely, 2011; 

Ostrom and Wilhelmsen, 2012).

The probabilistic approach is the most widely used method of uncertainty analysis used 

in mathematical models. ProbRA has emerged as an increasingly popular analysis tool, 

especially to evaluate risks associated with every aspect of a complex engineering project 

(e.g., facility, spacecraft, or nuclear power plant) from concept definition, through design, 

construction, and operation, to end of service and decommissioning. It has its origin in the 

aerospace industry before and during the Apollo space program. ProbRA is a systematic 

and comprehensive methodology, which has only rarely been applied to substance safety 

assessments. ProbRA usually answers three basic questions as summarized by Michael 

Stamatelatos, NASA Office of Safety and Mission Assurance7:

1. “What can go wrong with the studied technological entity, or what are the 

initiators or initiating events (undesirable starting events) that lead to adverse 

consequence(s)?

2. What and how severe are the potential detriments, or the adverse consequences 

that the technological entity may be eventually subjected to as a result of the 

occurrence of the initiator?

3. How likely to occur are these undesirable consequences, or what are their 

probabilities or frequencies?”

Quite obviously, these can be applied to toxicology, where the initiator is exposure, and 

the adverse / undesirable consequences are hazard manifestations. For the purpose of this 

article, question 3 is obviously key. However, we will include some thoughts below on 

applying an uncertainty concept to adverse outcome pathways (AOP), which can be seen as 

the toxicological mechanistic aspects of questions 1 & 2. Stamatelatos7 further suggests the 

methodologies listed in Table 2 to answer the three questions above.

For toxicology, the U.S. EPA pioneered ProbRA with the 1997 release of EPA’s “Policy 

for Use of Probabilistic Analysis in Risk Assessment”8. It states that “probabilistic 
analysis techniques as Monte Carlo analysis, given adequate supporting data and credible 
assumptions, can be viable statistical tools for analyzing variability and uncertainty in risk 
assessments”. Monte Carlo simulation (see, for example, textbooks by Melchers, 1999, and 

Madsen et al., 1986) is a technique that involves using random numbers and probabilities to 

7 https://copswiki.org/w/pub/Common/M1922/pra%20-%20Probabilistic%20Risk%20Assessment%20-
%20What%20is%20it%20and%20why%20is%20it%20work%20performing.pdf 
8 https://www.epa.gov/sites/default/files/2014-11/documents/probpol.pdf 
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solve problems. Originally, the EPA used “Monte Carlo method” essentially synonymously 

with ProbRA.

The modern Monte Carlo method / simulation was developed in the late 1940s by Stanislaw 

Ulam and John von Neumann in the nuclear weapons projects at the Los Alamos National 

Laboratory. It is based on the law of large numbers that a random variable can be 

approximated by taking the empirical mean of independent samples of the variable, where 

the input parameters are selected according to their respective probability distributions. 

This repeated random sampling to obtain numerical results uses randomness to solve 

problems that might be deterministic in principle. This way, it propagates variability or 

uncertainty of model input parameters and overcomes the uncertainty or variability in the 

underlying processes. For each combination of input parameters, the deterministic model is 

then solved, and model results are collected until the specified number of model iterations 

(shots) is completed. This results in a distribution of the output parameters, which is often 

parametrized using a Markov chain Monte Carlo (MCMC) sampler.

The Monte Carlo method, however, is just one of many methods for analyzing uncertainty 

propagation, where the goal is to determine how random variation, lack of knowledge, or 

error affects the sensitivity, performance, or reliability of the system that is being modeled. 

An alternative probabilistic methodology is the first- and second-order reliability method 

(FORM/SORM), a.k.a. Hasofer-Lind reliability index, a semi-probabilistic reliability 

analysis method devised to evaluate the reliability of a system. It estimates the sensitivity of 

the failure probability with respect to different input parameters. The method was suggested 

for ProbRA (Zhang, 2010).

Among the typically applied statistical techniques are (non-) parametric bootstrap methods. 

A parametric method assumes an underlying model (e.g., lognormal distribution); a non-

parametric method only depends on the data points themselves. The term “bootstrap” is 

suggested to refer to the saying “to pull oneself up by one’s bootstraps” as a metaphor 

for bettering oneself by one’s own unaided efforts. As a statistical method, it belongs 

to the broader class of resampling methods. Bootstrapping assigns measures of accuracy 

(bias, variance, confidence intervals, prediction error, etc.) to sample estimates (Efron and 

Tibshirani, 1993; Davison and Hinkley, 1997). A great advantage of bootstrap is that it 

makes it easy to derive estimates of variability (standard errors) and confidence intervals 

for estimators of the distribution, such as percentile points, proportions, odds ratios, and 

correlation coefficients.

Similarly, maximum likelihood estimation9 can characterize uncertainty estimates at low 

sample sizes by estimating the parameters of an assumed probability distribution (Rossi, 

2018). Alternatives are least squares regression or the generalized method of moments. 

Advantages and disadvantages of maximum likelihood estimation are10:

9 https://towardsdatascience.com/a-gentle-introduction-to-maximum-likelihood-estimation-9fbff27ea12f 
10 https://www.aptech.com/blog/beginners-guide-to-maximum-likelihood-estimation-in-gauss/ 
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+ If the model is correctly assumed, the maximum likelihood estimator is the most 

efficient estimator. Efficiency is one measure of the quality of an estimator. An 

efficient estimator is one that has a small variance or mean squared error.

+ It provides a consistent but flexible approach that makes it suitable for a wide 

variety of applications, including cases where assumptions of other models are 

violated.

+ It results in unbiased estimates in larger samples.

- It relies on the assumption of a model and the derivation of the likelihood function, 

which is not always easy.

- Like other optimization problems, maximum likelihood estimation can be sensitive 

to the choice of starting values.

- Depending on the complexity of the likelihood function, the numerical estimation 

can be computationally expensive11.

- Estimates can be biased in small samples.

The Bayesian network (BN)12,13, also called Bayes network, belief network, belief net, 

decision net or causal network, introduced by Judea Pearl (1988), is a graphical formalism 

for representing joint probability distributions. Based on the fundamental work on the 

representation of and reasoning with probabilistic independence originated by the British 

statistician A. Philip Dawid in the 1970s, BN aim to model conditional dependence and, 

therefore causation, by representing conditional dependence by edges in a directed graph. 

Through these relationships, inference on the random variables in the graph is conducted 

by using weighing factors. Nodes represent variables (e.g., observable quantities, latent 

variables, unknown parameters or hypotheses). BN offer an intuitive and efficient way of 

representing sizable domains, making modeling of complex systems practical. BN provide a 

convenient and coherent way to represent uncertainty in models. BN have changed the way 

we think about probabilities.

These different mathematical tools have been employed to carry out probabilistic approaches 

in risk assessment. In 2014, the EPA published Probabilistic Risk Assessment Methods 
and Case Studies (EPA, 2014)14, describing ProbRA as “analytical methodology used to 
incorporate information regarding uncertainty and/or variability into analyses to provide 
insight regarding the degree of certainty of a risk estimate and how the risk estimate varies 
among different members of an exposed population, including sensitive populations or 
lifestages” applicable to both human health and ecological risk assessment. Two National 

Academy of Science reports influenced the report, namely, the National Research Council 

(NRC)’s report Science and Decisions: Advancing Risk Assessment (NRC, 2009) and 

Environmental Decisions in the Face of Uncertainty (IOM, 2013).

11This cited point does not really hold any more given the continuous increase in computing power.
12 https://www.bayesserver.com/docs/introduction/bayesian-networks 
13 https://www.bayesfusion.com/bayesian-networks/ 
14 https://www.epa.gov/sites/default/files/2014-12/documents/raf-pra-white-paper-final.pdf 
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There are several comprehensive guides on how to actually do ProbRA (Jensen, 2002; Vose, 

2008; Modarres, 2008; Vesely, 2011; Ostrom and Wilhelmsen, 2012). For our arguments, 

it suffices to say that in ProbRA at least one variable in the risk equation is defined as 

a probability distribution rather than a single number. However, the vision put forward is 

that more and more aspects of the risk equation should be seen as probability distributions 

that can be combined to estimate risk to an individual or, cumulatively, to a population. 

This is equally applicable to human health risk assessment and to the environment. The big 

questions are:

• Is the method sufficiently advanced for the different aspects of the chemical risk 

assessment context?

• What are the advantages and challenges?

• What does it take to make them acceptable for regulators and bring them to 

broader use?

Different stakeholders have embraced this new approach to different extents. EPA and EFSA 

are clearly at the forefront. EPA already in 1997 (!) started defining what makes ProbRA 

approaches acceptable to them (Box 1).

5 Software for ProbRA

Several free and commercial software packages are available for ProbRA (Tab. 3).

5.1 Freely available

US EPA has compiled a sizable list of freely available modeling tools for ProbRA, such 

as RIVM’s ConsExpo and MCRA, ILSI’s CARES, and EPA’s PROcEED, to name a 

few. The complete list, descriptions, and links to models can be found on US EPA 

ExpoBox Website28. RIVM’s MCRA model is a comprehensive probabilistic risk tool, 

while ConsExpo, DEEMS-FCID/Calendex, CARES, and SHEDS are probabilistic exposure 

modeling tools for various exposure scenarios (e.g., consumer products to dietary and 

residential exposures) (Young et al., 2012).

Probabilistic Reverse dOsimetry Estimating Exposure Distribution (PROcEED), developed 

by the US EPA, is used to perform probabilistic reverse dosimetry calculations. In essence, 

PROcEED estimates a probability distribution of exposure concentrations that would likely 

have produced the observed biomarker concentrations measured in a given population, using 

either a discretized Bayesian approach, or, when an exposure-biomarker relation is linear, a 

more straightforward exposure conversion factor approach.

iRisk is a web-based tool created by the FDA that assesses risk associated with microbial 

and chemical contaminants in food using a probabilistic approach. Users enter data for the 

various factors, such as food, hazard, dose-response, etc. to generate a prediction. Further, 

the model can evaluate the effectiveness of prevention and control measures; the results are 

presented as a population-based estimate of health burden.

28 https://www.epa.gov/expobox/exposure-assessment-tools-tiers-and-types-deterministic-and-probabilistic-assessments 
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mc2d is an R package for two-dimensional (or second-order) Monte-Carlo simulations to 

superimpose the uncertainty in the risk estimates stemming from parameter uncertainty29. 

In order to reflect the natural variability of a modeled risk, a Monte-Carlo simulation 

approach can model both the empirical distribution of the risk within the population and of 

distributions reflecting the variability of parameters across the population.

5.2 Commercial

Although not exhaustive, we outline some of the commercially available tools for ProbRA 

here. Agena Risk (Fenton and Neil, 2014) is a commercial software for Bayesian artificial 

intelligence (A.I.) and probabilistic reasoning for assessing risk and uncertainty in fields 

such as operational risk, actuarial analysis, intelligence analysis risk, systems safety and 

reliability, health risk, cyber-security risk, and strategic financial planning.

Oracle’s Crystal Ball and Palisade’s @Risk are commercially available applications used in 

spreadsheet-based tools to report and measure risk using Monte Carlo analysis. Advantages 

to these applications include multiple pre-defined distributions and the ability to use custom 

data distributions, which improves risk estimates. The user can also carry out a sensitivity 

analysis to identify the most impactful metrics.

5.3 PBPK / PBTK model software

Paini et al. (2017) summarized a number of PBK modeling software packages (Tab. 4), 

noting that “the field as a whole has suffered from a fragmented software ecosystem, and the 
recent discontinuation of a widely used modelling software product (acslX) has highlighted 
the need for software tool resilience. Maintenance of, and access to, corporate knowledge 
and legacy work conducted with discontinued commercial software is highly problematic. 
The availability of a robust, free to use, global community-supported application should 
offer such resilience and help increase confidence in mathematical modelling approaches 
required by the regulatory community”.

6 Probability of exposure

The concept that exposure has a certain probability for an individual and cumulatively 

for the population is intuitive and broadly used (Bogen et al., 2009). Cullen and Frey 

(1999) wrote a textbook, Probabilistic Techniques in Exposure Assessment, on the concept. 
Bogen et al. (2009) give a very comprehensive review on probabilistic exposure analysis for 

chemical risk characterization based on a Society of Toxicology’s Contemporary Concepts 

in Toxicology meeting (Probabilistic Risk Assessment (PRA): Bridging Components Along 

the Exposure-Dose-Response Continuum, held June 25–27, 2005, in Washington, DC). 

Jager et al. (2000) give a very comprehensive example for two substances, an existing 

chemical (dibutyl phthalate, DBP) and a new chemical notification (undisclosed) and 

present a review of the approach (summarized also in Jager et al., 2001). Chiu and Slob 

(2015) suggested a unified probabilistic framework for dose-response assessment of human 

29 http://cefic-lri.org/toolbox/pbpkmegen/ 
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health effects. EFSA in 2012 published extensive Guidance on the Use of Probabilistic 
Methodology for Modelling Dietary Exposure to Pesticide Residues39.

The German Federal Institute for Risk Assessment (BfR) lauds probabilistic exposure 

assessment40: “Exposure assessment can help to determine the type, nature, frequency and 
intensity of contacts between the population and the contaminant that is to be assessed. 
Traditional exposure assessment (also called deterministic estimate or point estimate, ‘worst 
case estimates’) of risks from chemical substances estimates a value that ensures protection 
for most of the population. Deviations from the real values are tolerated in order to 
ensure protection of the consumer using simple methods by, in some cases, considerably 
overestimating actual exposure.

For some time now the use of probabilistic approaches (also called distribution-based or 

population-related approaches) has been under discussion for exposure assessment. These 

methods do not merely describe a single, normally extreme case but rather endeavour 

to depict overall variability in the data and, by extension, to present all possible forms 

of exposure. The mathematical tools used in this approach are Monte Carlo simulations, 

distribution adjustments and other principles taken from the probability theory.

In toxicology risks are normally described by establishing limit values. Below a limit value 

there should be no risk; above a limit value health effects through contact with the chemicals 

cannot be ruled out. This approach is frequently challenged. The question has been raised 

whether this approach does justice to transparent, realistic risk assessment. Probabilistic 

methods could highlight this supposed lack of clarity, help to characterise uncertainties and 

take them into account in risk assessment.”

Exposure assessments are complex and have clearly limited throughput. They can typically 

target only a few substances, and individual exposures over time are highly diverse. 

Depending on the agent studied, either peak exposures or cumulative amounts are 

relevant. Metabolism of the chemical and interindividual differences add to the complexity. 

Noteworthy, approaches for rapid exposure assessment exist, such as US EPA’s ExpoCast 

project41, which allow triaging chemicals of irrelevant exposure (Wambaugh et al., 2015). 

Probabilistic approaches are again critical components here.

With the rise of biomonitoring studies, internal exposures, especially blood and tissue 

levels of chemicals, are increasingly becoming available. These depend on exposure 

and bioavailability (and other biokinetic properties to be discussed next). They offer 

opportunities to focus on relevant exposures. The concept has been broadened to exposomics 

(Sillé et al., 2020), which often employs probabilistic analyses for our context here.

39 https://www.efsa.europa.eu/en/efsajournal/pub/2839 
40 http://www.bfr.bund.de/en/probabilistic_exposure_assessment-10420.html 
41 https://www.epa.gov/chemical-research/rapid-chemical-exposure-and-dose-research 

Maertens et al. Page 14

ALTEX. Author manuscript; available in PMC 2022 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.efsa.europa.eu/en/efsajournal/pub/2839
http://www.bfr.bund.de/en/probabilistic_exposure_assessment-10420.html
https://www.epa.gov/chemical-research/rapid-chemical-exposure-and-dose-research


7 Probability as the basis of PBPK / PBTK modeling

We have stressed earlier in this series and elsewhere the importance of pharmacokinetic 

modeling for modern toxicology (Basketter et al., 2012; Leist et al., 2014; Tsaioun et al., 

2016; Hartung, 2017a, 2018a). Pharmacokinetic modeling plays a critical role in informing 

us whether a given dose of a chemical reaches a critical level at the target organ and, 

in reverse, what in vitro active concentrations correspond to as exposure needed, i.e., 

quantitative in-vitro-to-in-vivo-extrapolation (QIVIVE) (McNally et al., 2018).

Here, the most important message in the context of ProbRA is that the most advanced 

body of probabilistic methods is available as physiologically based pharmacokinetic / 

toxicokinetic (PBPK/PBTK) modeling (McLanahan et al., 2012). PK / TK theoretical 

foundation, practical application, and various software packages have been developed in 

pharmacology (Leung, 1991) and later adapted to toxicology (Bogen and Hall, 1989) 

for the environmental health context by friends and collaborators such as Mel Andersen, 

Bas Blaauboer, Frederic Bois, Harvey Clewell, George Loizou, Amin Rostami-Hodjegan, 

Andrew Worth and others; please see their work for more substantial discussions. Several 

workshops have documented the field (Tab. 5). Most recently, a textbook became available 

(Fisher et al., 2020). Loizou et al. (2008) stress the need for kinetics in risk assessment: “The 
need for increasing incorporation of kinetic data in the current risk assessment paradigm is 
due to an increasing demand from risk assessors and regulators for higher precision of risk 
estimates, a greater understanding of uncertainty and variability …, more informed means 
of extrapolating across species, routes, doses and time …, the need for a more meaningful 
interpretation of biological monitoring data … and reduction in the reliance on animal 
testing … . Incorporating PBPK modelling into the risk assessment process can advance all 
of these objectives.”

8 Probability of hazard

What indicates a probability of hazard? These four principal components come to mind:

1. Traditional test data on the given substance, which can range from physico-

chemical measurements to animal guideline studies.

2. Such information on similar substances enabling (automated) read-across.

3. Structural alerts such as functional groups or chemical descriptors enabling 

(quantitative) structure-activity relationships ((Q)SAR).

4. Mechanistic alerts typically from in vitro testing or (clinical) biomarkers.

How these (jointly) indicate a probability of hazard and how to quantify it, is usually not 

clear. Some elements are more established. We have shown earlier how a combination of 

(1) and (2) can be used to derive probabilities of hazard (Luechtefeld et al., 2018a,b). 

These probabilities or, the other way around, measures of uncertainty are among the 

most remarkable features of the approach (Hartung, 2016) as they indicate whether more 

information is needed. The approach called read-across-based structure-activity relationship 

(RASAR) covers the nine most frequently used animal test-based classifications by OECD 

test guidelines. The method has been implemented as Underwriters Laboratories (UL) 
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Cheminformatics Toolkit42; it has been further developed utilizing deep learning, making 

(non-validated) estimates of potency as GHS hazard classes and handling applicability 

domains of chemicals more explicitly. Notably, the method has been included in the new 

Australian chemicals legislation43, the Industrial Chemicals Act 2019 or AICIS (Australian 

Industrial Chemicals Introductions Scheme) in effect since July 1, 2020. This law creates 

a new regulatory scheme for the importation and manufacture of industrial chemicals by 

Australia. Unlike other jurisdictions, “industrial chemicals” includes personal care and 

cosmetics, and there is a full ban on new animal testing for these ingredients and dual-

use ingredients that are used both in cosmetics and industrial uses. However, broader 

international acceptance of read-across as promoted also by the EUToxRisk project44 is 

still outstanding (Chesnut et al., 2018; Rovida et al., 2020). Other A.I.-based methods for 

hazard identification, which are more or less explicit in expressing probabilities of their 

predictions, are available (Zhang et al., 2018; Santin et al., 2021).

The approach under (3) is well-known as (Q)SAR, which has been covered earlier in this 

series of articles (Hartung and Hoffmann, 2009). (Q)SAR are based on structural alerts and 

physicochemical descriptors. Currently, we are exploring the integration of (Q)SAR as input 

parameters of the RASAR approach.

Most development is needed for (4). A read-across type of approach has been introduced 

for the US EPA ToxCast45 data (Shah et al., 2016), which tested about 2,000 chemicals in 

hundreds of robotized assays. This was also termed generalized read-across46. Pioneering 

work showed how to use this to predict endocrine activity (Browne et al., 2015; Kleinstreuer 

et al., 2018a; Judson et al., 2020). However, it is not clear how to extend this to chemicals 

that were not included in the ToxCast program. We discussed the opportunities of read-

across of such biological data earlier (Zhu et al., 2016).

Most toxicologists, out of habit, talk of a xenobiotic exposure “causing” a certain effect, e.g., 

genotoxins cause cancer, etc. Yet, in reality, this is rarely the case – even when chemical 

exposures have a clear role in both initiation and progression, there is still a strong stochastic 

element involved (Tomasetti et al., 2017). For example, bilateral breast cancer is very 

rare, although both tissues have identical exposures. For other endpoints, it is even more 

important to remain mindful of the uncertainty intrinsic to most of the causal associations 

we are looking for in toxicology: For most diseases (Alzheimer’s and autism to name a 

few) we know that the environment plays an important role; however, decades of studies 

have failed to find any chemical “smoking gun”. We are instead likely looking for multiple 

exposures, over a lifetime, each of which may be individually insignificant, but which can, 

in vulnerable individuals, act as a tipping point.

One conceptual alternative to asking which chemicals “cause” which diseases is instead 

thinking of potential chemicals as quantifiable liabilities in a threshold-liability model. The 

42 https://www.ul.com/services/predictive-toxicology-solutions 
43 https://www.legislation.gov.au/Details/C2019A00012 
44 https://www.eu-toxrisk.eu 
45 https://www.epa.gov/chemical-research/toxicity-forecasting 
46 https://www.epa.gov/sites/default/files/2018-09/documents/genra_help_310818.pdf 
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threshold-liability model holds that for a given disease there exists within the population 

some probability distribution of thresholds, with some individuals with a high threshold 

(the life-long smoker who fails to develop lung cancer or heart disease) and others with 

considerably lower thresholds. Disease happens when an individual’s liabilities (which can 

include environmental exposures, stochastic factors, and epigenetic alterations) exceed their 

threshold. Such a model has been applied to amyotrophic lateral sclerosis (ALS) – a disease 

that has no known replicable environmental factors and is likely best characterized as the 

result of a pre-existing genetic load that faces environmental exposures over a lifespan and 

eventually reaches a tipping point, wherein neurodegeneration begins. While the past decade 

has seen an enormous expansion in our understanding of the genetic load component thanks 

to large-scale genome-wide association studies, the environmental component remains 

poorly characterized. While this is no doubt in part due to the much larger search space 

for environmental exposures, it must be acknowledged that the tools toxicologists employ – 

for example, looking for chemicals that will cause an ALS-like neurodegenerative phenotype 

in rodents at very high doses – are likely not ideal (Al-Chalabi and Hardiman, 2013).

An area where ProbRA has shown important (but largely neglected) opportunities is the 

test battery of genotoxicity assays. Depending on the field of use, three to six in vitro 
assays are carried out and, typically, any positive result is taken as an alert, leading 

to a tremendous rate of false-positive classifications as discussed earlier (Basketter et 

al., 2012). Aldenberg and Jaworska (2010) applied a BN to the dataset assembled by 

Kirkland et al., showing the potential of a probabilistic network to analyze such datasets. 

Expanding on work by Jaworska et al. (2013, 2015) for skin sensitization potency, we 

earlier showed how probabilistic hazard assessment by dose-response modeling can be 

done using BN (Luechtefeld et al., 2015). Our contribution was more technical (using 

feature elimination instead of QSAR, hidden Markov chains, etc.), but it moved the model’s 

potency predictions to standing cross-validation. Most recently, Zhao et al. (2021) compiled 

a human exposome database of > 20,000 chemicals, prioritized 13,441 chemicals based 

on probabilistic hazard quotient and 7,770 chemicals based on risk index, and provided 

a predicted biotransformation metabolite database of > 95,000 metabolites. While the 

importance of acute oral toxicity for ranking chemicals can be argued, it shows impressively 

how probabilistic approaches can be applied to large numbers of substances to allow 

prioritization.

9 Probability of risk

The prospect of ProbRA is increasingly recognized by regulators as shown earlier for 

EPA, EFSA and BfR (Tralau et al., 2015) and opinion leaders in the field (Krewski et al., 

2014). A framework for performing probabilistic environmental risk assessment (PERA) 

was proposed (Verdonck et al., 2002, 2003). Risk assessment obviously requires combining 

hazard and exposure information; van der Voet and Slob (2007) suggested an approach 

where exposure assessment and hazard characterization are both included in a probabilistic 

way. Table 6 gives a few examples of ProbRA; notably they are very different in approach 

and quality, but they illustrate possible applications. Slob et al. (2014) used the ProbRA 

approach to explore uncertainties in cancer risk assessment. Together, this very incomplete 

list of examples of ProbRA in toxicology shows the potential of the technology.
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10 Uncertainty and the adverse outcome pathway (AOP) concept

As discussed above, a key element of ProbRA is the analysis of how the system is 

challenged and can fail. This is reminiscent of the AOP approach, which can be seen as 

the implementation of the call for toxicity pathway mapping from the “Toxicity testing in the 

21st century movement” (Krewski et al., 2020). Based on the respective National Academy 

of Sciences / NRC report (NRC, 2007), a change toward new approach methodologies 

(NAMs) away from traditional animal testing, which is based on mechanistic understanding, 

i.e., toxicity pathways, pathways of toxicity (PoT) (Hartung and McBride, 2011; Kleensang 

et al., 2014) or, increasingly, AOP (Leist et al., 2017) is suggested.

A major obstacle to the introduction of NAMs in regulatory decision-making has been the 

lack of confidence, or substantial overall uncertainty, in their fitness-for-purpose. While 

some individual aspects of NAMs contributing uncertainty are assessed in a systematic 

and thorough manner, a comprehensive approach that maps all uncertainties involved 

is lacking. A generic framework that integrates current mechanistic knowledge, e.g., 

condensed into AOP, biological plausibility of NAMs in relation to that knowledge, and 

NAM reproducibility with well-established risk assessment-related uncertainties, such as 

intra- and interspecies differences, has the potential to provide a widely agreed basis for a 

realistic purpose-focused assessment of NAMs. For a given question, e.g., the determination 

of a specific health hazard, mapping available evidence for the various uncertainty sources 

onto the framework will provide a complete overview of strengths, weaknesses, and gaps in 

our mechanistic understanding and ask is the NAM relevant for the health effect? Such an 

understanding will not only guide future NAM development, but it also allows to uncouple 

current regulatory practices, i.e., essentially animal-based approaches, from the aim of 

assessing health effects in humans.

Animal-based approaches are deeply rooted in regulatory approaches, but also in toxicology 

and environmental health, so that they are often used as a surrogate aim, not making their 

strengths and weaknesses explicit and transparent. A clear separation of the two would 

enable a fair and transparent assessment of NAMs, unbiased by current animal-based 

practices, for the purpose of protecting human health. Depending on the complexity of 

the human health effect, this approach will provide a clear path to reducing the overall 

uncertainty in NAM to achieve sufficient confidence in their results (Fig. 2).

For the identification of sources of uncertainty, uncertainty in our mechanistic understanding 

of the biological events that lead to human health effects needs to be identified by 

systematically mapping the peer-reviewed literature that has addressed this topic. Outcomes 

of recent workshops organized by the EBTC6 (de Vries et al., 2021; Tsaioun et al., in 

preparation), relevant information from national and international bodies, especially the 

guidance and case studies of the OECD, and the opinions of leading scientists should be 

incorporated. The sources of uncertainties in NAM need to be identified using a similar 

approach, with a focus on literature and other information on the assessment of individual 

NAM and combinations of NAM in testing strategies.
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In order to build the generic framework, the literature can be screened for initiatives in 

the field of toxicology and environmental health that could be built upon, e.g., by Bogen 

and Spear (1987). A top-down approach is recommended that starts with a (close to) ideal 

situation: That is either the theoretical assumption that hazard or risk for a certain health 

effect upon exposure to an stressor X is known, i.e., quantifiable without uncertainty, or the 

more practical assumption of adapting the concept of a “target” trial, i.e., a hypothetical, not 

necessarily feasible or ethical trial, conducted on the population of interest, whose results 

would answer the question (see, e.g., Sterne et al., 2016). The aim of addressing a human 

health effect exclusively with NAM and identifying the uncertainties introduced by each 

step could be achieved by careful mapping of interdependence of sources of uncertainty and 

will be essential for their integration. This process needs to consider lessons learned from 

the deterministic and probabilistic integration of uncertainties of animal studies that can be 

transferred to NAM.

The resulting frameworks could be explored by applying a select one as a case study. For 

illustration, skin sensitization hazard identification and risk assessment lends itself to this 

purpose for the following reasons:

• low complexity of the etiology of skin sensitization

• availability of a well-described AOP (Fig. 3), including formal confidence 

assessment47 (OECD 2014)

• availability of NAMs for the AOP events, many as OECD Test Guidelines 

(OECD 2018a,b, 2020)

• well-characterized NAMs, e.g., limitations, reproducibility, etc. (Hoffmann et al., 

2018)

• availability of testing strategies, so-called defined approaches (DA) (Kleinstreuer 

et al., 2018b)

• next generation skin sensitization risk assessment (NGRA) approach of cosmetic 

ingredients (Gilmour et al., 2020)

Available evidence for the various sources of uncertainty needs to be collected and plugged 

into the framework. Interdependencies of uncertainties can be explored or modelled, where 

applicable, to inform a qualitative or semi-quantitative integration of all uncertainties to 

characterize the confidence in the final decision.

The main results would be a generic framework that maps all sources of uncertainty 

in NAM-based regulatory decisions on human health. Such an objective evidence-

based framework enables a transparent fit-for-purpose assessment of NAM and NAM 

combinations, e.g., integrated approaches to testing and assessment (IATA) (OECD, 2017). 

Application of the framework will allow for mapping of NAMs and characterization of 

uncertainty in an integrative manner, while highlighting the strengths but especially the 

weaknesses and knowledge and NAM gaps. This in turn will help direct future research 

47 https://aopwiki.org/wiki/index.php/Aop:40 
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to address the identified shortcomings. Ultimately, such a comprehensive and transparent 

approach is a pre-requisite to increase the regulators’ confidence in NAM-based decision-

making to a level that will allow abandoning the traditional animal-based approaches, not 

least as it allows comparison of the approaches.

11 Evidence-based medicine / toxicology and the role of probability and 

uncertainty

Rysavy (2013) titled an editorial “Evidence-based medicine: A science of uncertainty and an 
art of probability”. In fact, a lot of the change brought about by evidence-based medicine 

is replacing the eminence-based (authoritarian) black-and-white of “this is the diagnosis/
this is the treatment” to an acceptance of uncertainties, probabilities for differential 

diagnoses, treatment options, and associated odds for outcome etc., exactly what we describe 

for ProbRA and its challenge to classification and labeling of toxicities. By promoting 

transparency and mapping uncertainties and biases as well as broad evidence use, ProbRA 

promotes very similar goals to evidence-based toxicology.

12 Thresholds of toxicological concern (TTC) as probabilistic approaches

TTC represent a bit of a hybrid between the two worlds. They are based on the distribution 

of no adverse effect levels (NOAEL), and then the 5th percentile is used as a threshold, 

applying a safety factor of typically 100 (Hartung, 2017b). Future refinements of the concept 

might embrace uncertainty and probability considerations. As shown below, TTC might 

already now serve a role in the ProbRA approach.

13 Probabilistic avatars

Virtual representations of patients (avatars, digital twins)48,49 are increasingly developed 

as an approach to personalized medicine and even virtual clinical trials (Brown, 2016; 

Bruynseels et al., 2018). The European DISCIPULUS Project50,51 developed a roadmap 

for research and development. Earlier (Hartung, 2017c), we suggested that this is a logical 

extrapolation of the AOP concept: “A virtual patient is not far from the creation of a 
personal avatar for each patient, where the standard model is adapted to the genetic and 
pharmacokinetic parameters of the patients and where interventions can be modeled and 
optimized in virtual treatments. Certainly still largely science fiction, but these were any of 
the technologies of our current toolbox some decades ago too”. Here, it is important to note 

that the key underlying concept is the probabilistic approach of PB-PK. Similar to modeling 

disease and treatment, the hazardous consequences of exposure might be modelled in the 

future.

48 https://siliconangle.com/blog/2018/04/20/digital-twins-personalized-medicine-promising-caveats/ 
49 https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/20181211-the-digital-patient-will-we-one-day-have-our-
own-health-avatars.html 
50 http://www.digital-patient.net 
51 https://www.vph-institute.org/upload/discipulus-digital-patient-research-roadmap_5270f44c03856.pdf 

Maertens et al. Page 20

ALTEX. Author manuscript; available in PMC 2022 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://siliconangle.com/blog/2018/04/20/digital-twins-personalized-medicine-promising-caveats/
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/20181211-the-digital-patient-will-we-one-day-have-our-own-health-avatars.html
https://www.philips.com/a-w/about/news/archive/blogs/innovation-matters/20181211-the-digital-patient-will-we-one-day-have-our-own-health-avatars.html
http://www.digital-patient.net/
https://www.vph-institute.org/upload/discipulus-digital-patient-research-roadmap_5270f44c03856.pdf


Noteworthy, this is also an interesting concept in the context of animal testing. Similar 

avatars of experimental animals might help with species extrapolations. Furthermore, we 

often point out that tests like the Draize rabbit eye test are not very reproducible. One source 

of variance is probably the animals themselves. Modeling the result of an animal test as 

a function of the chemical and animal tested (here avatar of the animal) would probably 

explain some of the uncertainty.

14 Artificial intelligence (A.I.) as the big evidence integrator delivers 

probabilities

A central problem of toxicology is evidence integration. More and more methodologies and 

results, some conflicting and others difficult to compare, are accumulating. We are facing 

this problem in more and more risk assessments, just thinking of tens of thousands of 

publications on bisphenol A, for example. Similarly, systematic reviews (Hoffmann et al., 

2017; Farhat et al., 2022; Krewski et al., 2022) need to combine different evidence streams 

(EFSA and EBTC, 2018; Krewski et al., in preparation). Last but not least, the combination 

of tests and other assessment methods in integrated testing strategies (Hartung et al., 2013; 

Tollefsen et al., 2014; Rovida et al., 2015), a.k.a. IATA or DA by OECD, need to integrate 

different types of information. Again, probabilistic tools lend themselves to all of these.

We have earlier discussed how probabilistic approaches can help with integrated testing 

strategies, for example by determining the most valuable (next) test (Hartung et al., 2013). 

Briefly, we can ask how much the overall probability of the result can change with any 

outcome. Often, we might conclude that this is not actually worth the additional work, 

bringing an end to endless testing. Value of information analysis (Keisler et al., 2013) has 

enormous potential in toxicological decision-taking. This leads us to a type of information 
economics. Information economics is the discipline of modeling the role of information in 

an economic system as a fundamental force in every economic decision. We have stressed 

economic considerations earlier in this series of articles (Meigs et al., 2018). It seems 

like an interesting extension of this thinking if the investment into testing is contrasted 

quantitatively with the possible gain.

In the extreme, toxicology is seeing the rise of big data, which is defined by the three Vs: 

volume, velocity, and variety. These are key to understanding how we can measure big 

data and just how very different big data is to traditional data. Different technologies fuel 

this, such as omics technologies, high-content imaging, robotized testing (e.g., by ToxCast 

and the Tox21 alliance), sensor technologies, curated legacy databases, scientific and grey 

literature of the internet, etc. (Hartung and Tsatsakis, 2021). A.I. is making big sense 

from big data (Hartung, 2018b). It is worth mentioning that machine learning approaches 

frequently struggle with probabilities. Several existing approaches attempt to merge machine 

learning methods with probabilistic methods by modeling distributions or using Bayesian 

updating52. Frequently the outputs of neural networks are interpreted as probabilities, which 

can be problematic. Here, more work needs to be done.

52 https://towardsdatascience.com/making-your-neural-network-say-i-dont-know-bayesian-nns-using-pyro-and-pytorch-b1c24e6ab8cd 
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Most importantly, by adopting a probabilistic view on safety information, we might come 

to a more flexible use of new approaches over time. If we do not see an individual method 

as definitive but only changing probabilities, we might be able to avoid the “war of faith” 

on the usefulness of animal tests, for example. Over time, we will see how the individual 

evidence sources contribute to the result of our A.I.-based integration. This might allow 

phasing out those methods that do not deliver valuable information and implementing those 

that do.

15 Conclusions and the way forward

As soon as we accept that risk assessment occurs with uncertainty and give up on the 

illusion of absolute safety, we must deal with probabilities. This is what science can deliver, 

as every experiment can only approximate truth. Working with models of reality with 

limited resources and technologies, and inherent variabilities and differences introduces 

uncertainty. The advantage of ProbRA is making these visible and estimating their potential 

contribution. By quantifying these uncertainties, we do not always need to default to the 

most conservative “precautionary” approach but can define acceptable risks and deprioritize 

scenarios clearly below them. ProbRA of chemicals offers numerous advantages compared 

to traditional deterministic approaches as well as several challenges53 (Tab. 7) (Kirchsteiger, 

1999; Verdonck et al., 2002; Scheringer et al., 2002; Parkin and Morgan, 2006; Bogen et al., 

2009; EPA, 2014).

The impressive list of advantages strongly encourages embracing the concept of ProbRA, 

especially as it makes more (transparent) use of evidence, something the authors have 

been arguing for in the context of evidence-based toxicology. This is reminiscent of 

“factfulness” as coined by Hans Rosling and coauthors (2018), who remind us in a very 

different context why we fail to recognize a changing world and grasp new insights. A 

major challenge is education, as the lack of familiarity among stakeholders and the public 

with ProbRA is a major challenge: “Many view PRA [ProbRA] as a highly technical 
discipline that uses sophisticated mathematics and requires extensive training to apply and 
understand. Single point estimates are easier to grasp for most people, based in part on 
familiarity with this approach over the history of EPA. Although some people initially have 
difficulty interpreting probability distributions of values, everyone has a common baseline 
experience with probability, uncertainty and variability from everyday life (e.g., weather 
forecasting, odds of winning a lottery), and this experience could be used to frame the 
discussion of results. It is not necessary to understand the underlying mathematics or even 
to include results as full distributions. Results can be distilled down to the critical essence 
or decision-meaningful input of interest.” (EPA, 2014). To contrast this optimistic view on 

communicating our scientific uncertainty, Bertrand Russell stated, “The fundamental cause 
of the trouble is that in the modern world the stupid are cocksure while the intelligent are 
full of doubt”.

Regulatory agencies play a key role for the implementation of ProbRA: The US EPA 

concluded in 2014 that “Strategic use of PRA [ProbRA] would allow EPA to send the 

53 http://www.bfr.bund.de/en/probabilistic_exposure_assessment-10420.html 
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appropriate signal to the intellectual marketplace, thereby encouraging analysts to gather 
data and develop methodologies necessary for assessing uncertainties” but also noticed: 

“A clear institutional understanding of how to incorporate the results of probabilistic 
analyses into decision making is lacking”. ProbRA is a form of data analysis making use of 

probabilities. There are four major data analytics disciplines54:

1. Descriptive analytics, e.g., for automated insights, large patterns, anomalous 

patterns, multivariate analysis

2. Diagnostic analytics, e.g., for value of information, reasoning, troubleshooting, 

tracing anomalies

3. Predictive analytics, e.g., for supervised or unsupervised learning, anomaly 

detection, time series, latent variables

4. Prescriptive analytics, e.g., for decision automation, cost-based decision-making, 

decision support, decision-making under uncertainty.

To some extent, ProbRA touches on all four aspects, but the central argument here is its 

use to predict risks. Toxicology would be well-served to address the value of probabilistic 

approaches in all of these.

ProbRA is a key element of the European flagship project ONTOX55 (Vinken et al., 

2021) and the ASPIS cluster56 formed with two sister projects. ONTOX shall deliver a 

generic strategy to create innovative NAMs in order to predict systemic repeated dose 

toxicity effects that, upon combination with tailored exposure assessment, enable human risk 

assessment. The six specific adversities addressed are in the liver (steatosis and cholestasis), 

kidneys (tubular necrosis and crystallopathy) and developing brain (neural tube closure and 

cognitive function defects). A workshop on ProbRA jointly organized by CAAT through the 

transatlantic think tank for toxicology (t4)57 and ONTOX will further address this topic this 

summer. With a broad participation of regulators from both sides of the Atlantic in ASPIS, 

this promises to stimulate renewed discussion about ProbRA in regulatory sciences.

Here, we would like to put forward a vision for ProbRA. Figure 4 shows the combination 

of the different probabilistic approaches above. Noteworthy, we see a key role for TTC to 

abrogate risk assessment where exposure and/or bioavailability (internal TTC) (Hartung and 

Leist, 2008; Partosch et al., 2015) is negligible. A.I. will play a key role for data extraction 

as well as for evidence integration. Here, especially Bayesian approaches lend themselves 

to the deduction of a probability of risk. Probability of hazard as the other starting point 

will be informed by data available on a given chemical including through (Q)SAR as well 

as data on similar chemicals through automated read-across. Here, we will build on the 

RASAR (Hartung, 2016; Luechtefeld et al., 2018a,b). An additional line of information on 

possible hazard will come from mechanistic alerts. The ontology approach of organizing 

such knowledge (Desprez et al., 2019) will be followed.

54Modified from: https://www.bayesserver.com/docs/introduction/bayesian-networks
55 https://ontox-project.eu 
56 https://www.aspis-cluster.com 
57 https://caat.jhsph.edu/about/t4.html 
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A key question for the future will be whether to employ a frequentist or Bayesian ProbRA? 

Based on the discussion of the Bayesian approach above, this seems to be most promising 

but might overwhelm risk assessment practitioners with its additional complexities. In areas 

like evidence integration by BN and similar, it might already sneak in as part of the data 

analysis procedures. A big limitation of machine learning models is causal inference. BN 

can sometimes handle that better. There are relationships between probabilistic inference 

and causal inference. If your training data has only been built within a certain environment, 

then machine learning models (and even probabilistic methods) can learn conditional 

probability relationships that are not valid – basically the same thing as saying correlation 

is not causation. It is worth mentioning that the problems A.I. has with learning probability 

distributions also can apply to animal testing, particularly methods like weight of evidence. 

Overall, there is great promise of Bayesian tools for risk assessment (Linkov et al., 2015).

16 Is ProbRA the keystone, the capstone, or the cornerstone of a new risk 

assessment?

While well-defined in masonry58, these terms are sometimes used interchangeably in the 

figurative sense. It is worth thinking what the different terms mean relative to “building” 

the new toxicology (Fig. 5). The cornerstone, i.e., “the first stone laid when constructing a 
masonry foundation. It is considered the most important stone in the building, as all other 
stones are laid in reference to this first, cornerstone”, represents the hazards and exposures 

to protect against. The subsequent stones are the technologies and models, which allow to 

assess the two. As laid out above, ultimately, this leads to a probability of hazard and a 

probability of exposure for an individual by integration of the population. The two sides 

of the arch need to be combined by the keystone, i.e., “the central stone placed at the top 
of an arch. The keystone is the apex of an arch, without it the arch would not stand. The 
keystone is placed last when constructing an arch, locking all the other stones into place.” 

This is, in the authors’ view, the role of ProbRA, as the title of this article already gives 

away. Noteworthy, “The word keystone is often used figuratively to mean the central idea of 
a philosophy, process, business proposition or principle upon which the entire philosophy, 
process, business proposition or principle stands.”

What about the capstone then? “A capstone is a finishing stone atop an exterior wall or roof 
or other exterior architectural feature. The capstone protects the masonry, causing water to 
flow in a certain way as to mitigate erosion.” The best match would be the risk management 

implemented on the basis of probability of risk and policy decisions, i.e., what is best for 

society, the “polis”. As laid out above, it is tempting to call for this to be an evidence-based 
risk management.

Let’s close this reasoning about building ProbRA with a quote from the English author 

Walter Bagehot (1826–1877), “Life is a school of probability”. We are looking forward to 

making probability a greater part of the life of toxicologists.

58 https://grammarist.com/usage/capstone-keystone-or-cornerstone/ 
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Glossary and abbreviations

Extracted from Last (2001), EPA (2014, 1999), EFSA (2018), Ferrario et al. (2014) and59

ADME
Generally used as the abbreviation for absorption, distribution, metabolism, excretion.

Adverse outcome pathway (AOP)
An AOP is a sequence of events from the exposure of an individual or population to a 

chemical substance through a final adverse (toxic) effect at the individual level (for human 

health) or population level (for ecotoxicological endpoints). The key events in an AOP 

should be definable and make sense from a physiological and biochemical perspective. 

AOPs incorporate the toxicity pathway and mode of action for an adverse effect. AOPs may 

be related to other mechanisms and pathways as well as to detoxification routes.

Applicability domain
The physicochemical, structural, or biological space and information that was used to 

develop a (Q)SAR model and for which that model gives predictions with a given level 

of reliability.

Bias
A systematic error or deviation in results or inferences from the truth.

Biokinetics (in toxicology)
Science of the movements involved in the distribution of substances.

Biomarker
Indicator signaling an event or condition in a biological system or sample and giving a 

measure of exposure, effect, or susceptibility.

Data analysis procedure (DAP)
DAP refers to a procedure incorporating both a data interpretation procedure (DIP) and a 

prediction model (PM).

Deterministic
A methodology relying on point (i.e., exact) values as inputs to estimate risk; this obviates 

quantitative estimates of uncertainty and variability. Results also are presented as point 

values. Uncertainty and variability may be discussed qualitatively or semi-quantitatively by 

multiple deterministic risk estimates.

59 https://www.cebm.ox.ac.uk/resources/ebm-tools/glossary 
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Frequentist (or frequency) probability
A view of probability that concerns itself with the frequency with which an event occurs 

given a long sequence of identical and independent trials.

Hazard
1) A biological, chemical, or physical agent with the potential to cause an adverse health 

effect. 2) The inherent characteristic of a material, condition, or activity that has the potential 

to cause adverse effects to people, property, or the environment.

Hazard identification
The risk assessment process of determining whether exposure to a stressor can cause an 

increase in the incidence or severity of a particular adverse effect, and whether an adverse 

effect is likely to occur.

Integrated testing strategy (ITS)
In the context of safety assessment, an integrated testing strategy is a methodology 

which integrates information for toxicological evaluation from more than one source, thus 

facilitating decision-making. This should be achieved whilst taking into consideration the 

principles of the Three Rs (reduction, refinement, and replacement).

Likelihood ratio
The likelihood that a given test result would be expected in a patient with the target disorder 

compared to the likelihood that the same result would be expected in a patient without that 

disorder.

for a positive test result = LR+ = sensitivity/(1-specificity)

for a negative test result = LR− = (1-sensitivity)/specificity

Model
A mathematical representation of a natural system intended to mimic the behavior of the real 

system, allowing description of empirical data and predictions about untested states of the 

system.

Modeling
Development of a mathematical or physical representation of a system or theory that 

accounts for all or some of its known properties. Models often are used to test the effect of 

changes of components on the overall performance of the system.

Monte Carlo analysis or simulation
A repeated random sampling from the distribution of values for each of the parameters in 

a generic exposure or risk equation to derive an estimate of the distribution of exposures or 

risks in the population.

NAM
New approach methodologies

One-dimensional Monte Carlo analysis
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A method for making probability calculations by random sampling from one set of 

distributions, all representing uncertainty about non-variable quantities or categorical 

questions. A numerical method of simulating a distribution for an endpoint of concern as a 

function of probability distributions that characterize variability or uncertainty. Distributions 

used to characterize variability are distinguished from distributions used to characterize 

uncertainty.

Parameter
A quantity used to calibrate or specify a model, such as “parameters” of a probability model 

(e.g., mean and standard deviation for a normal distribution). Parameter values often are 

selected by fitting a model to a calibration data set.

Physiologically-based pharmacokinetic models (PBPK)
A computer model that describes what happens to a chemical in the body. This model 

describes how the chemical gets into the body, where it goes in the body, how it is changed 

by the body, and how it leaves the body.

Probability
Defined depending on philosophical perspective: (1) the frequency with which sampled 

values arise within a specified range or for a specified category; (2) quantification of 

judgement regarding the likelihood of a particular range or category. A frequentist approach 

considers the frequency with which samples are obtained within a specified range or for a 

specified category (e.g., the probability that an average individual with a particular mean 

dose will develop an illness).

Probability density function
In probability theory, a probability density function (pdf) of a continuous random variable 

is a function, often denoted as f(x), that describes the relative likelihood for this random 

variable to take on a given value.

Probabilistic modeling
A technique that utilizes the entire range of input data to develop a probability distribution 

of exposure to risk rather than a single point value. The input data can be measured values 

and/or estimated distributions. Values for these input parameters are sampled thousands of 

times through a modeling or simulation process in order to develop a distribution of likely 

exposure or risk. Probabilistic models can be used to evaluate the impact of variability and 

uncertainty in the various input parameters, such as environmental exposure levels, fate, and 

transport processes.

Probabilistic risk analysis (ProbRA)
A risk assessment that uses probabilistic methods (e.g., Monte Carlo analysis) to derive 

a distribution of risk based on multiple sets of values sampled for random variables. 

Calculation and expression of health risks using multiple risk descriptors to provide the 

likelihood of various risk levels. Probabilistic risk results approximate a full range of 

possible outcomes and the likelihood of each, which often is presented as a frequency 

distribution graph, thus allowing uncertainty or variability to be expressed quantitatively.
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QIVIVE
Quantitative in vitro to in vivo extrapolation

Quantitative structure-activity relationship (QSAR)
A QSAR is a theoretical model for making predictions of physicochemical properties, 

environmental fate parameters, or biological effects (including toxic effects in environmental 

and mammalian species). QSARs relate quantitative measures of chemical structure to 

continuous or categorical variables describing the property to be predicted.

Risk
A measure of the probability that damage to life, health, property, and/or the environment 

will occur as a result of a given hazard. 1. Risk includes consideration of exposure to the 

possibility of an adverse outcome, the frequency with which one or more types of adverse 

outcomes may occur, and the severity or consequences of the adverse outcomes if such 

occur. 2. The potential for realization of unwanted, adverse consequences to human life, 

health, property, or the environment. 3. The probability of adverse effects resulting from 

exposure to an environmental agent or mixture of agents. 4. The combined answers to: What 

can go wrong? How likely is it? What are the consequences?

Risk analysis
A process for identifying, characterizing, controlling, and communicating risks in situations 

where an organism, system, subpopulation, or population could be exposed to a hazard. 

Risk analysis is a process that includes risk assessment, risk management and risk 

communication.

Risk assessment
Qualitative and quantitative evaluation of the risk posed to human health and/or the 

environment by the actual or potential presence and/or use of specific pollutants 1. A process 

intended to calculate or estimate the risk to a given target organism, system, subpopulation, 

or population, including the identification of attendant uncertainties following exposure to 

a particular agent, taking into account the inherent characteristics of the agent of concern, 

as well as the characteristics of the specific target system. 2. The evaluation of scientific 

information on the hazardous properties of environmental agents (hazard characterization), 

the dose-response relationship (dose-response assessment), and the extent of human 

exposure to those agents (exposure assessment). The product of the risk assessment is 

a statement regarding the probability that populations or individuals so exposed will be 

harmed and to what degree (risk characterization). 3. Qualitative and quantitative evaluation 

of the risk posed to human health or the environment by the actual or potential presence or 

use of specific pollutants.

Risk management
A decision-making process that takes into account environmental laws, regulations, 

and political, social, economic, engineering and scientific information, including a risk 

assessment, to weigh policy alternatives associated with a hazard.

Sensitivity analysis
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The process of changing one variable while leaving the others constant to determine its 

effect on the output. This procedure fixes each uncertain quantity at its credible lower and 

upper bounds (holding all others at their nominal values, such as medians) and computes the 

results of each combination of values. The results help to identify the variables that have the 

greatest effect on exposure estimates and help focus further information-gathering efforts.

Two-dimensional Monte Carlo analysis
A method for making probability calculations by random sampling from two sets of 

distributions, one set describing the variability of variable quantities, and the second set 

representing uncertainty, including uncertainty about the parameters of the distributions 

describing variability. An advanced numerical modeling technique that uses two stages 

of random sampling, also called nested loops, to distinguish between variability and 

uncertainty in exposure and toxicity variables. The first stage, often called the inner loop, 

involves a complete 1-D MCA simulation of variability in risk. In the second stage, often 

called the outer loop, parameters of the probability distributions are redefined to reflect 

uncertainty. These loops are repeated many times resulting in multiple risk distributions, 

from which confidence intervals are calculated to represent uncertainty in the population 

distribution of risk.

Uncertainty
Uncertainty occurs because of a lack of knowledge. It is not the same as variability. For 

example, a risk assessor may be very certain that different people drink different amounts 

of water but may be uncertain about how much variability there is in water intakes within 

the population. Uncertainty often can be reduced by collecting more and better data, whereas 

variability is an inherent property of the population being evaluated. Variability can be better 

characterized with more data, but it cannot be reduced or eliminated. Efforts to clearly 

distinguish between variability and uncertainty are important for both risk assessment and 

risk characterization, although they both may be incorporated into an assessment.

Uncertainty analysis
A detailed examination of the systematic and random errors of a measurement or estimate; 

an analytical process to provide information regarding uncertainty.

Value of information
An analysis that involves estimating the value that new information can have to a risk 

manager before the information is actually obtained. It is a measure of the importance of 

uncertainty in terms of the expected improvement in a risk management decision that might 

come from better information.

Variability
Refers to true heterogeneity or diversity, as exemplified in natural variation. For example, 

among a population that drinks water from the same source and with the same contaminant 

concentration, the risks from consuming the water may vary. This may result from 

differences in exposure (e.g., different people drinking different amounts of water and 

having different body weights, exposure frequencies and exposure durations), as well as 

differences in response (e.g., genetic differences in resistance to a chemical dose). Those 
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inherent differences are referred to as variability. Differences among individuals in a 

population are referred to as inter-individual variability, and differences for one individual 

over time are referred to as intra-individual variability.
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Box 1:

The U.S. Environmental Protection Agency Conditions for Acceptance of 
ProbRA8

1. The purpose and scope of the assessment should be clearly articulated in a 

“problem formulation” section that includes a full discussion of any highly 

exposed or highly susceptible subpopulations evaluated (e.g., children, the 

elderly). The questions the assessment attempts to answer are to be discussed 

and the assessment endpoints are to be well defined.

2. The methods used for the analysis (including all models used, all data upon 

which the assessment is based, and all assumptions that have a significant 

impact upon the results) are to be documented and easily located in the 

report. This documentation is to include a discussion of the degree to which 

the data used are representative of the population under study. Also, this 

documentation is to include the names of the models and software used to 

generate the analysis. Sufficient information is to be provided to allow the 

results of the analysis to be independently reproduced.

3. The results of sensitivity analyses are to be presented and discussed in 

the report. Probabilistic techniques should be applied to the compounds, 

pathways, and factors of importance to the assessment, as determined by 

sensitivity analyses or other basic requirements of the assessment.

4. The presence or absence of moderate to strong correlations or dependencies 

between the input variables is to be discussed and accounted for in the 

analysis, along with the effects these have on the output distribution.

5. Information for each input and output distribution is to be provided in the 

report. This includes tabular and graphical representations of the distributions 

(e.g., probability density function and cumulative distribution function plots) 

that indicate the location of any point estimates of interest (e.g., mean, 

median, 95th percentile). The selection of distributions is to be explained 

and justified. For both the input and output distributions, variability and 

uncertainty are to be differentiated where possible.

6. The numerical stability of the central tendency and the higher end (i.e., tail) of 

the output distributions are to be presented and discussed.

7. Calculations of exposures and risks using deterministic (e.g., point estimate) 

methods are to be reported if possible. Providing these values will allow 

comparisons between the probabilistic analysis and past or screening level 

risk assessments. Further, deterministic estimates may be used to answer 

scenario-specific questions and to facilitate risk communication. When 

comparisons are made, it is important to explain the similarities and 

differences in the underlying data, assumptions, and models.

8. Since fixed exposure assumptions (e.g., exposure duration, body weight) are 

sometimes embedded in the toxicity metrics (e.g., reference doses, reference 
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concentrations, unit cancer risk factors), the exposure estimates from the 

probabilistic output distribution are to be aligned with the toxicity metric.
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Fig. 1: Knowledge gain versus uncertainty
Modified and combined from Njå et al. (2017) and Augenbaugh (2006)
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Fig. 2: 
Increasing confidence in new approach methodologies (NAM) through mechanistic 

understanding and biokinetics of human health effects
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Fig. 3: Example of skin sensitization adverse outcome pathway (AOP) confidence assessment
MIE, molecular initiating event; KE, key event; AO, adverse outcome
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Fig. 4: A vision for probabilistic risk assessment (ProbRA) of substances
ProbRA is fueled by probability of exposure and probability of hazard and susceptibility. 

Exposure is first characterized by a population distribution (cumulative from the individuals’ 

exposure distributions). Where they do not exceed applicable thresholds of toxicological 

concern (TTC), the assessment might be abrogated on the ground of negligible exposure. 

Probabilistic physiology-based pharmacokinetic (or toxicokinetic, respectively) modeling 

(PBPK) translates these into resulting tissue concentrations. This can be refined by 

adsorption, metabolism, distribution & excretion (ADME) measurements or estimates. 

Internal TTC again might allow to abrogate the assessment in case of irrelevant tissue level 

concentrations. The second line of evidence is establishing the probability of hazard. This 

can be based on mechanistic data, mechanistic tests, and read-across to similar chemicals 

and any combination thereof. This probability is ideally combined with a distribution 

of susceptibility of different individuals. Together, tissue level concentrations and hazard 

probabilities give a probabilistic risk for an individual and cumulatively for the population. 

Low risk can lead to deprioritization depending on the use scenario, while high risk 

should lead to classification and risk management measures as appropriate. Intermediate 

probabilities of risk, i.e., high uncertainties, should be considered for additional testing, 

ideally considering the economics of possible information gain, or precautionary risk 

management.
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Fig. 5: “Building” safety assessmentsby probabilistic risk assessment (ProbRA)
Terminology from masonry was adapted to risk assessment to illustrate the integrating 

role of ProbRA. Graphic elements modified from: https://www.redbubble.com/shop/

keystone+posters, https://pngset.com/download-free-png-yggdq
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