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Genome‑wide association and selective 
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Abstract 

Background:  As a major economic trait in poultry, egg production efficiency attracts widespread interest in breed-
ing and production. However, limited information is available about the underlying genetic architecture of egg 
production traits in ducks. In this paper, we analyzed six egg production-related traits in 352 F2 ducks derived from 
reciprocal crosses between mallard and Pekin ducks.

Results:  Feed conversation ratio (FCR) was positively correlated with feed intake but negatively correlated with 
egg-related traits, including egg weight and egg production, both phenotypically and genetically. Estimates of 
pedigree-based heritability were higher than 0.2 for all traits investigated, except hip-width. Based on whole-genome 
sequencing data, we conducted genome-wide association studies to identify genomic regions associated with these 
traits. In total, 11 genomic regions were associated with FCR. No genomic regions were identified as significantly 
associated with hip-width, total feed intake, average daily feed intake, and total egg production. Analysis of selec-
tive sweeps between mallard and Pekin ducks confirmed three of these genomic regions on chromosomes 13, 3 
and 6. Within these three regions, variants in candidate genes that were in linkage disequilibrium with the GWAS 
leader single nucleotide polymorphisms (SNPs) (Chr13:2,196,728, P = 7.05 × 10–14; Chr3:76,991,524, P = 1.06 × 10–12; 
Chr6:20,356,803, P = 1.14 × 10–10) were detected. Thus, we identified 31 potential candidate genes associated with 
FCR, among which the strongest candidates are those that are highly expressed in tissues involved in reproduction 
and nervous system functions of ducks: CNTN4, CRBR, GPR63, KLHL32, FHL5, TRNT1, MANEA, NDUFAF4, and SCD.

Conclusions:  For the first time, we report the identification of genomic regions that are associated with FCR in ducks 
and our results illustrate the genomic changes that occurred during their domestication and are involved in egg 
production efficiency.
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Background
Eggs are considered an excellent source of animal pro-
tein, supplying proteins, fatty acids, vitamins, minerals, 
etc., in the daily lives of humans [1]. Thus, egg production 

is an important trait in poultry breeding and is favorably 
associated with reproduction efficiency and feed effi-
ciency in egg-layers. Egg production traits include egg 
production amount, egg weight, feed/egg conversion 
ratio [2], and others. Some studies have identified quanti-
tative trait loci (QTL) for these egg production traits [3–
5]. In addition to genetic factors, several environmental 
factors, including nutrient level [6], lighting programs [7], 
and feeding management [8], have significant impacts on 
the egg production of poultry. In the past few decades, 
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traditional selection based on phenotypic information 
has greatly improved poultry egg production but it has 
some limitations, including the fact that egg production 
traits can only be recorded in adult females and, there-
fore, these records arrive late for use in selection. In addi-
tion, the focus on cumulative egg production over longer 
time periods further delays the availability of phenotypes. 
Thus, achieving breeding progress in egg production effi-
ciency through conventional selection using phenotypic 
information only is difficult.

In recent years, with the advances in molecular genetic 
technologies and the availability of DNA markers, iden-
tifying QTL that control egg production traits in poul-
try for application in marker-assisted selection (MAS) 
has progressed rapidly [9]. Combined with advances in 
nucleotide sequencing technologies and their decreas-
ing costs, technologies such as chip array-based geno-
typing [10], reduced-representation genome sequencing 
[11, 12], and whole-genome sequencing can yield tens of 
thousands, hundreds of thousands, and even millions of 
genome-wide single nucleotide polymorphisms (SNPs), 
which help to unravel the genetic basis of individual dif-
ferences in egg production efficiency. Depending on the 
availability of high-resolution SNPs, genome-wide asso-
ciation study (GWAS) is one of the most effective ways to 
identify important SNPs and candidate genes [13]. Based 
on GWAS, QTL for egg production traits in poultry can 
be screened much more quickly than before. Based on 
the records available in the chicken QTL database, to 
date, 600 QTL related to egg production traits have been 
identified [14].

Ducks (Anas platyrynchos) are one of the most impor-
tant farm animals in China, efficiently providing meat 
and eggs for humans. All domesticated duck breeds were 
derived from the mallard duck in central China within 
a very short period, since about 500 B.C. [15]. The mal-
lard duck has a small body size, low egg production 
rate, and high disease resistance. Under strong artificial 
selection, divergence between the mallard duck and the 
domesticated ducks has reached a high level for many 
traits, including body size, physiology, metabolic state 
[16–18], and, especially, egg production efficiency [19]. 
Pekin ducks with a big body size and high egg production 
efficiency are a commercial duck breed (including the 
Cherry Valley and Maple Leaf strains) that has diverged 
from the domestic duck through artificial selection and 
has become a world-famous breed with a high produc-
tion performance in meat and eggs.

Although QTL for egg production traits have been 
extensively studied in poultry [14], the genetic basis 
underlying egg production traits has been little investi-
gated in ducks. Moreover, the genomic changes that have 
led to the tremendous improvement in egg production 

efficiency of the Pekin duck during their domestication 
from the mallard duck are still largely unknown.

An F2 cross design can generate large genetic variation 
through recombination and has achieved great success in 
QTL mapping studies and GWAS for target traits, includ-
ing in chickens [20, 21]. Therefore, the present study used 
an F2 duck population that was previously constructed by 
reciprocal crosses between mallards and Pekin ducks [18] 
to identify QTL for egg production traits in ducks and 
the genomic changes that occurred during domestica-
tion of the Pekin duck from the mallard by combining a 
GWAS and selective sweep analysis.

Methods
Ethics statements
All procedures for the experimentation and care of ducks 
were approved by the Animal Care and Use Committee 
of the Institute of Animal Sciences, Chinese Academy of 
Agricultural Science (CAAS). The methods and protocols 
were in accordance with their guidelines. All efforts were 
made to minimize suffering.

Population and measurement of traits
Ducks that were previously produced by reciprocal 
crosses of mallards and Pekin ducks [18] were mated to 
produce 400 F2 ducks that were raised at the Pekin Duck 
Breeding Center of the Chinese Academy of Agricultural 
Sciences. In the orthogonal cross, 100 female mallards 
and 10 male Pekin ducks were selected as parents. In the 
reciprocal cross, four male mallards and 40 female Pekin 
ducks were selected as parents. All experimental ducks 
were raised under identical environmental and man-
agement conditions. Feed (pellet form) and water were 
provided ad libitum. The feed nutrient components are 
provided in Additional file 1: Table S1. During the laying 
period, lighting lasted 17 h per day, using artificial light as 
a complement, at a light intensity of 5 lx.

We recorded the total egg production (EP) of each 
female duck during their laying period that ranged from 
226 to 329  days of age by using individual cages (see 
Additional file 2: Fig. S1). Between 230 and 267 days of 
age, eggs were collected every day, the cage number 
was marked on the eggshell, and eggs were individually 
weighed. The total egg weight (EW) for each female duck 
was the sum of the weights of the eggs produced during 
the 37 days. The difference subtraction method was used 
to calculate total feed intake (FI) during the test period, 
i.e., feed was provided to each individual cage by a spe-
cial trough (see Additional file 2: Fig. S1) on the first day 
of the testing period (230-day-old), the remaining feed 
was weighed at the end of the testing period (267-day-
old), and then subtracted from the initial weight to obtain 
the total feed intake for each duck over the test period. 
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Average daily feed intake (DFI) was obtained by divid-
ing FI by 37 days. Feed conversion ratio (FCR) was cal-
culated as the ratio of total feed intake (FI) to total egg 
weight during the test period. Hip-width (HP) was meas-
ured on 35-week old ducks, when they were in the peak 
period of laying, as the straight length between the two 
ischial tubercles on both sides of the body, using a vernier 
caliper.

Estimation of genetic parameters
We estimated genetic parameters for the F2 duck popu-
lation using the multiple-trait derivative-free restricted 
maximum likelihood (MTDFREML) software and the 
following animal model [22]:

where y is the vector of observations, b is the vector of 
fixed effects, a is the vector of genetic effects, e is the 
vector of random errors, and X and Z are the incidence 
matrices of fixed and genetic effects, respectively. In this 
analysis, batch was the fixed effect since the environment 
can vary between batches because of different feeding 
conditions:

where A is the additive relationship matrix that was con-
structed from the ducks’ pedigree data (recorded for 
three generations, including F0, F1 and F2), I is an identity 
matrix, and σ2a and σ2e are the direct additive genetic vari-
ance and the residual variance for the trait, respectively. 
Heritability and genetic correlations were estimated by 
using the following equations:

where σ2α1 and σ2α2 are the additive genetic variances for 
traits 1 and 2, and σα1α2 is the genetic covariance between 
the traits.

Genomic sequencing, alignment, and variant calling
Blood was obtained from the wing veins of 352 F2 ducks 
and was rapidly frozen at − 20  °C. Genomic DNA was 
extracted using the standard phenol–chloroform pro-
tocol. The quality and quantity of DNA were assessed 
by using a Nanodrop spectrophotometer and agarose 
gel electrophoresis. For each sample, two paired-end 

y = Xb+ Za + e,

Var(a) = Aσ2a ,

Var(e) = Iσ2e ,
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2
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libraries were generated using standard procedures 
according to the manufacturer’s protocols (Illumina, 
USA). The average insert size was 500 bp and the length 
of the reads was 150 bp. All libraries were sequenced on 
an Illumina®Hiseq X-Ten platform in a Bio-company 
(Berry Genomics, Pekin, China) to generate a raw read 
sequence coverage of 5×. These sequence data are stored 
in the Genome Sequence Archive (GSA) under the Pro-
ject name of PRJCA003535 and have been published [23].

Adapter sequences and low-quality raw reads were 
removed by using the Trimmomatic (v0.36) software [24] 
with the following parameters: LEADING:20, TRAIL-
ING:20, SLIDINGWINDOW:4:20, and MINLEN:50. The 
resulting high-quality reads were mapped to the duck 
reference genome (IASCAAS_Peking Duck_PBH1.5, 
GCF_003850225.1) using the ’mem’ algorithm of the 
Burrows–Wheeler Alignment (v0.7.12) tool with default 
parameters [25]. After mapping, SNPs and InDels were 
called using the GATK (version 3.5.0) HaplotypeCaller 
tool [26] with the following cut-off values: QUAL < 100.0, 
QD < 2.0, MQ < 40.0, FS > 60.0, SOR > 3.0, MQRank-
Sum < − 12.5, and ReadPosRankSum < − 8.0. The out-
put was further filtered using VCFtools (version 0.1.15) 
[27] based on the following criteria: (1) only SNPs with a 
minor allele frequency higher than 0.05 and a maximum 
allele frequency lower than 0.99 were retained; (2) the 
maximum missing rate was set at < 0.1; and (3) SNPs had 
to have only two alleles. After filtering, 9,584,532 SNPs 
remained and were distributed along the 29 autosomes, 
the Z and W sex chromosomes, and in Un (unplaced 
scaffolds), with a mean density of 8.5 SNPs/kb across the 
genome.

Genome‑wide association analysis
GWAS was performed on the F2 population to detect 
genomic regions that affect egg production traits in 
ducks, using the mixed linear model program EMMAX 
[28]. The linear model used to test each SNP individually 
was:

where y is the vector of observed phenotypes; Xα rep-
resents the fixed effects, including the first three prin-
cipal component values (PCA eigenvectors) derived 
from the whole-genome SNP genotypes, to correct for 
population stratification [28], and the batch effect; Zβ 
represents the effect of the tested SNP, with β the allele 
substitution effect; Wµ represents the random animal 
effect, with variance–covariance structure based on the 
kinship matrix estimated using the whole-genome SNP 
genotypes; and e is the vector of random residual errors. 
SNPs with a P-value that reached a Bonferroni-corrected 
threshold (− log10 (P) ≥ 8.16) were considered significant.

y = Xα+ Zβ+Wµ+ e,
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Screening for signatures of selection
Whole-genome sequencing data of 96 ducks (62 Mal-
lard and 34 Pekin ducks) were downloaded from NCBI 
(https://​www.​ncbi.​nlm.​nih.​gov) (see Additional file  3: 
Table  S2) [17, 18]. Variant mapping and calling steps 
were performed as described above.

To analyze the regions that have been affected by long-
term selection and are associated with the domestication 
of the Pekin duck from the mallard, we used VCFtools 
v0.1.13 to calculate the fixation index (FST) and the 
population nucleotide diversity ratio Pi (mallards/Pekin 
ducks). The average FST and Pi were calculated in 20-kb 
sliding windows with a 10-kb step. The logarithmic func-
tion was used to transform the Pi ratio. We considered 
the windows with the top 5% values for the FST and log2 
(θπ ratio) simultaneously as candidate outliers under 
strong selective sweeps. And the selective sweep regions 
were further genetically annotated by Bedtools v2.17.0 
[29] to list the genes. The genes were finally subjected to 
GO analysis and KEGG analysis using DAVID 6.8 [30] 
and KOBAS 3.0 to annotate functions [31].

Gene expression analyses
Gene expression data that were generated in a previ-
ous global transcriptome project in Jinding ducks were 
used for gene expression analyses (deposited in GSA: 
CRA005297). The data were from 60 samples repre-
senting five tissues involved in reproductive functions, 
i.e. the hypothalamus (n = 6 for 14-week-old, n = 6 for 
19-week-old, and n = 6 for 30-week-old animals, respec-
tively), pituitary gland (n = 6 for 14-week-old, n = 6 for 
19-week-old, and n = 6 for 30-week-old animals, respec-
tively), ovary (n = 6 for 30-week-old animals), oviduct 
(n = 12 for 30-week-old animals), and follicular mem-
brane (n = 6 for 30-week-old animals). RNA was iso-
lated from these tissues using the TRIzol (Takara, China) 
method according to the manufacturer’s instructions. 
The quantity and quality of the isolated total RNA were 

assessed with a Nanodrop spectrophotometer and by 
agarose gel electrophoresis. The cDNA library construc-
tion was performed according to the manufacturer’s pro-
tocol (Illumina, USA). The libraries were sequenced on 
the Illumina HiSeq 2500 platform, and 150-bp pair-end 
reads were generated. Analysis of mRNA transcript-
level gene expression was performed according to the 
framework established by Pertea et  al. [32]. Specifi-
cally, all paired clean transcriptome reads were mapped 
to the duck genome (IASCAAS_Peking Duck_PBH1.5, 
GCF_003850225.1) using the HISAT2 (V2.1.0) software. 
Then, the number of reads per gene was counted with the 
Htseq package and the counts per million (CPM) value of 
each gene was calculated.

Results
Phenotypic statistics and estimates of genetic parameters
The phenotypic statistics for each trait are in Table 1 and 
show that the coefficient of variation was greater than 
10% for all traits, except for HP, and was largest for FCR, 
at 50%. The phenotypic values for HP, FI, DFI, and EP 
tended to follow a normal distribution with small skew-
ness and kurtosis values, as their absolute values were 
less than 1. For the EW and FCR, they tended to be closer 
to a normal distribution; therefore, we tried a logarithmic 
transformation for these two traits for the subsequent 
analysis.

Estimates of genetic parameters for all traits are in 
Table  2. Estimates of the pedigree-based heritability 
ranged from 0.10 to 0.51 across traits (Table 2). Three of 
the traits, i.e. FI and DFI (both related to feeding intake) 
and HP (a body measurement) were highly heritable, i.e. 
with estimates higher than 0.4. FCR and EW were mod-
erately heritable at 0.23 and 0.25, respectively, and EP 
was lowly heritable, at 0.1. FI was positively correlated 
with the four other traits at both the phenotypic and 
genetic levels, which reached significance (P < 0.05). EW 
was positively correlated with DFI and EP, respectively, 

Table 1  Descriptive statistics for six egg production traits in the F2 population

The difference in the number of individuals between traits are mainly due the death of some ducks before phenotyping

HP, hip-width (35-week old ducks); FI, feed intake (determined over 37 days); EW, egg weight (determined over 37 days); FCR, feed conversion ratio (determined over 
37 days); DFI, daily feed intake; EP, egg production (between 226 and 329 days of age); CV, coefficient of variation; N, sample number for determination; SD, standard 
deviation

N Mean SD Minimum Maximum Skewness Kurtosis CV (%)

HP (mm) 338 46.4 3.6 36.2 61.2 0.24 0.56 7.69

FI (g) 330 7112 1113 3247 10,525 − 0.05 0.41 15.65

EW (g) 330 2741 3889 1267 3633 − 1.17 2.21 14.18

FCR (%) 330 2.9 1.5 1.9 15.5 5.76 38.10 50.00

DFI (g) 330 195.6 32.0 199.1 292.4 − 0.09 0.24 16.34

EP 330 89.0 18.6 30.0 120.0 − 0.93 0.58 20.88

https://www.ncbi.nlm.nih.gov
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but negatively correlated with FCR at both the pheno-
typic and genetic levels, which means that higher EW is 
associated with better FCR, which is favorable for poul-
try production. FCR was positively correlated with both 
food intake traits (FI and DFI) but negatively correlated 
with the egg-related traits (EW and EP), at both the phe-
notypic and genetic levels. Among all pairs of traits, the 
highest correlations were obtained between EP and EW, 
with a phenotypic correlation of 0.77 and a genetic cor-
relation of 0.57.

Genome‑wide association study
The Manhattan and quantile–quantile (Q–Q) plots are 
shown in Fig.  1. The Bonferroni-corrected threshold 
− log10(P) to identify significant marker-trait associations 
was set at 8.16. No SNPs were identified as significantly 
associated with HP, FI, DFI, and EP. Only four SNPs 
were significantly associated with EW, of which two 
were located on chromosome 3 (P = 1.38 × 10–9; Fig.  1), 
and the other two on chromosomes 1 and 7. The small 
number of significant SNPs associated with EW on these 
chromosomes could not support a reliable candidate 
genomic region.

The Q–Q plots for FCR revealed that SNPs devi-
ated from the distribution under the null hypothesis, 
which indicated a moderate association between the 
SNPs and the phenotype (Fig.  1). In total, 155 SNPs 
passed the Bonferroni-corrected significance thresh-
old (− log10(P) ≥ 8.16). These SNPs contributed to the 

formation of at least 11 GWAS peaks. The top three sig-
nificant SNPs were on chromosome 5 at 37,345,836  bp 
(P = 1.79 × 10–22), on chromosome 13 at 2,196,728  bp 
(P = 7.05 × 10–14), and on chromosome 6 at 1,017,750 bp 
(P = 5.48 × 10–13). The genomic regions underlying the 11 
significant GWAS peaks harbored at least 126 genes (see 
Additional file 4: Table S3), which were classified by gene 
ontology (GO) analysis; the most significant GO terms 
were cytoplasm, positive regulation of transcription from 
the RNA polymerase II promoter, and protein binding 
for the cellular component (CC), biology process (BP) 
and molecular function (MF) categories (see Additional 
file 5: Fig. S2 and Additional file 6: Table S4). According 
to the KEGG enrichment analysis, the top three signifi-
cant enriched pathways were related to glycosaminogly-
can biosynthesis and selenocompound metabolism. The 
ovarian steroidogenesis pathway was also significantly 
enriched, with an enrichment factor of 10.2%. Five genes, 
including PLA2G4B (chromosome 5), IGF1R (chromo-
some 11), IGF1 (chromosome 1), PLA2G4F (chromo-
some 5), and HSD17B7 (chromosome 8), were present 
in this pathway, which are also involved in reproduction 
functions (see Additional file  7: Fig. S3 and Additional 
file 8: Table S5). Although several pathways were signifi-
cantly enriched and the identified candidate genes are 
known to play essential roles in egg production, it is dif-
ficult to provide reliable evidence to support any one of 
them in duck egg production based the GWAS results 
only.

Table 2  Estimates of genetic parameters for egg production traits in the F2 population

On the diagonal, in italic characters heritability estimates

Upper triangle, phenotypic correlations

Lower triangle, genetic correlations

HP, hip-width (35-week old ducks); FI, feed intake (determined over 37 days); EW, egg weight (determined over 37 days); FCR, feed conversion ratio (determined over 
37 days); DFI, daily feed intake; EP, egg production (between 226 and 329 days of age)

Significant differences among groups are indicated as **P < 0.01 and *P < 0.05

HP FI EW FCR DFI EP

HP 0.43 0.14* 0.04 0.01 0.11* − 0.04

FI 0.127* 0.51 0.54** 0.26** 1.00** 0.33**

EW 0.04 0.53** 0.25 − 0.67** 0.54** 0.77**

FCR 0.05 0.19** − 0.64** 0.23 0.26** − 0.55**

DFI 0.10 0.96** 0.50** 0.19** 0.51 0.41**

EP − 0.09 0.23** 0.57** -0.40** 0.33** 0.10

Fig. 1  Manhattan and Q–Q plots of the genome-wide association studies for the six egg production traits analyzed. Each dot in the Manhattan plot 
represents an SNP in the dataset. The black dotted lines indicate the Bonferroni corrected significance threshold (− log10 P = 8.16). The Manhattan 
plots indicate the − log10 (P) values for genome-wide SNPs (y-axis) against their corresponding position on each chromosome (x-axis), while the 
Q–Q plots show the expected − log10 (P) vs. the observed − log10 (P). HP, hip-width; FI, feed intake (37 days); EW, egg weight (37 days); FCR, feed 
conversion ratio (37 days); DFI, daily feed intake; EP, egg production (between 226 and 329 days of age)

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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Candidate genomic regions for FCR based on combined 
analyses of GWAS and signatures of selection
The Pekin duck was domesticated from the mallard, and 
they are highly differentiated in egg production efficiency. 
In this study, we tried to reveal the genomic changes 
underlying egg production efficiency that occurred dur-
ing the domestication of the Pekin duck from the mal-
lard. We downloaded the whole-genome re-sequencing 
data of 96 ducks (62 Mallard and 34 Pekin ducks) and re-
analyzed them based on the latest duck reference genome 
(IASCAAS_Peking Duck_PBH1.5, GCF_003850225.1) 
to screen for genomic regions and genes that have been 
under selection based on a selective sweep analysis using 
the FST and Pi indices between a mallard and Pekin ducks. 
We considered the windows with the top 5% values for 
the FST and log2 (θπ ratio) simultaneously as candidate 
outliers under strong selective sweeps. We detected 34 
selective regions that harbored 28 genes.

Then, we combined the GWAS results with the 
detected signatures of selection to screen for candi-
date genomic regions contributing to FCR in ducks. The 
GWAS peaks on chromosomes 13, 3, and 6 overlapped 
with regions of the genome with signatures of selection 
(see Additional file  9: Fig. S4). This suggests that these 
regions harboring QTL were not only associated with 
FCR in the GWAS, but also were under selection during 
domestication. Thus, we focused on these three regions 
to identify candidate genes.

To identify genomic regions for positional candi-
date genes, LD analysis based on the significant GWAS 
SNPs was performed and the haplotype blocks were 
visualized using the Haploview software [33]. Based on 
the strong LD associated with each GWAS leader SNP 
(Chr13:2,196,728, P = 7.05 × 10–14; Chr3:76,991,524, 
P = 1.06 × 10–12; Chr6:20,356,803, P = 1.14 × 10–10), the 
three previously identified overlapping regions, between 
the GWAS and selection analysis, were confined to a 
0.21-Mb region on chromosome 13 between positions 
2,133,672 and 2,334,566  bp (Fig.  2), a 0.69-Mb region 
on chromosome 3 between positions 76,530,738 and 
77,219,884 bp (Fig. 3), and a 2.16-Mb region on chromo-
some 6 between positions 19,438,854 and 21,603,295 bp 
(Fig.  4). Within these candidate regions, the average Pi 
values of the sliding windows showed greater nucleotide 
diversities in mallards than in Pekin ducks. Moreover, 
the log2 Pi (mallard/Pekin duck) and FST also suggested 

that these regions were in soft selective sweeps (Figs. 2, 
3 and 4). Annotated genes in these regions were identi-
fied as positional candidate genes for FCR, including 
five genes on chromosome 13 (LOC106017218, CRBN, 
TRNT1, IL5RA, and CNTN4) (Fig.  2), nine genes on 
chromosome 3 (MMS22L, KLHL32, LOC106017657, 
NDUFAF4, GPR63, FHL5, LOC106017656, FUT9, 
and MANEA) (Fig.  3), and 17 genes on chromo-
some 6 (GDF2, RBP3, ZNF488, ANTXRL, ANXA8L1, 
LOC106017915, LOC101795151, LOC101795347, 
LOC101795539, ZFAND4, ALOX5, LOC101797666, 
BLOC1S2, LOC101797254, PKD2L1, LOC106018867, 
and SCD) (Fig. 4).  

Candidate genes for FCR based on transcriptome analyses
For laying ducks, FCR is influenced by many direct fac-
tors, such as feed intake behavior, digestion and absorp-
tion capacity, and egg production ability [34]. Therefore, 
the candidate genes that participate in the regulation of 
any one of the above physiological and biochemical pro-
cesses may ultimately affect FCR. Based on the transcrip-
tome data (deposited in GSA: CRA005297), we checked 
the transcriptional levels of all the candidate genes in the 
hypothalamus, pituitary gland, ovary, oviduct, and folli-
cular membrane (Fig.  5), since these organs and tissues 
could have a role in regulating the feed intake behavior 
and laying performance of ducks. Among the candidate 
genes on chromosome 13, CNTN4 was highly expressed 
in nervous tissues (CPM > 96 in the hypothalamus, 
CPM > 29 in the pituitary gland), whereas TRNT1 and 
CRBR were expressed in all investigated tissues. Among 
the candidate genes on chromosome 3, MANEA was 
highly expressed in all investigated tissues, with FHL5 
being the most highly expressed gene in the ovary and 
the follicular membrane, whereas GPR63, NDUFAF4, 
KLHL32, and MMS22L had relatively moderate expres-
sion levels in all investigated tissues. Among the can-
didate genes on chromosome 6, SCD a key gene that 
regulates lipid metabolism had a moderate expression 
level in all tissues, with the highest expression level in 
the hypothalamus. LOC101795347 was annotated as a 
lncRNA and had the highest expression level in the ovi-
duct, an essential organ for egg formation, and ZNF488, 
ANTXRL, ZFAND4 and ALOX5 were moderately 
expressed in the ovary, oviduct, and the follicular mem-
brane of ducks.

(See figure on next page.)
Fig. 2  Analyses of the signatures of selection of the candidate region on chromosome 13 that affects FCR. a GWAS peaks located on chromosome 
13. b Linkage disequilibrium (LD) of the significant SNPs. The red rectangle represents the region in LD with the leader SNP from the GWAS 
(Chr13:2,196,728, P = 7.05 × 10–14). c Average nucleotide diversities (Pi-value) of SNPs located in the sliding windows of the candidate region. d log2 
Pi (mallard/Pekin duck) of the sliding windows. e Population differentiation analysis. f Each vertical blue line represents an SNP that reached the 
significance threshold of − log10 P = 8.16. The annotated genes are located in the candidate region according to the newly updated duck reference 
genome (IASCAAS_Peking Duck_PBH1.5, GCF_003850225.1)
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Fig. 2  (See legend on previous page.)



Page 9 of 16Liu et al. Genetics Selection Evolution           (2021) 53:98 	

Fig. 3  Analyses of the signatures of selection of the candidate region on chromosome 3 that affects FCR. a GWAS peaks located on chromosome 
3. b Linkage disequilibrium (LD) of the significant SNPs. The red rectangle represents the region in LD with the leader SNP from the GWAS 
(Chr3:76,991,524, P = 1.06 × 10–12). c Average nucleotide diversities (Pi-value) of SNPs located in the sliding windows of the candidate region. d log2 
Pi (mallard/Pekin duck) of the sliding windows. e Population differentiation analysis. f Each vertical blue line represents an SNP that reached the 
significance threshold of − log10 P = 8.16. The annotated genes are located in the candidate region according to the newly updated duck reference 
genome (IASCAAS_Peking Duck_PBH1.5, GCF_003850225.1)
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We also checked whether there were any potential 
regulatory relationships among these candidate genes. 
Using the STRING database, analysis of protein-to-
protein interactions (PPI) showed that several proteins 
have potential interactive relations, although there was 
no other strong evidence to support regulatory relation-
ships between them (see Additional file 10: Fig. S5). Since 
genes that have similar functions or within regulatory 
relationships usually have similar expression profiles, we 
performed a gene expression cluster analysis to check 
whether there was a potential regulatory relationship 
among these candidate genes. According to the heat map 
(Fig. 6), all the candidate genes could be classified mainly 
into two categories—genes that are highly expressed in 
the ovary, oviduct, and follicular membrane, and genes 
that are highly expressed in nervous tissues, including the 
hypothalamus and pituitary gland.

Discussion
Availability of accurate and reliable genetic parameters 
for quantitative traits are of great significance for design-
ing breeding programs, predicting response to selection, 
and explaining genetic effects [35]. In poultry production, 
feed represents over 60% of the production costs. Many 
studies have been carried out on traits related to feed effi-
ciency. In egg-type poultry, several heritability estimates 
have been reported for FCR. In this study, we found that 
the heritability estimates were higher than 0.4 for two 
feed intake-related traits (FI and DFI) and equal to 0.23 
for FCR. Similar to our results, Zeng et al. [36] reported 
heritability estimates for FCR, FI, and residual feed 
intake (RFI) of 0.19, 0.22, and 0.27 in Shaoxing ducks, 
and of 0.19, 0.24, and 0.24 in Jinyun ducks, respectively. 
These studies provide evidence that direct selection can 
improve the feed efficiency of laying ducks. Nevertheless, 
genetic parameters for feed efficiency traits in egg-type 
poultry of different genetic backgrounds are still lacking. 
Our findings help to decipher the genetic background of 
feed efficiency and egg production traits and contribute 
to duck breeding and genomic studies.

Our results show that the analyzed egg production 
traits were highly correlated with each other, both phe-
notypically and genetically, which indicates that they 
may share similar genetic components or be influenced 
by some pleiotropic genomic regions [37, 38]. How-
ever, based on the GWAS results, significant SNPs were 

detected for FCR only. Currently, 600 QTL associated 
with egg production traits have been identified in chick-
ens according to the records of the chicken QTL database 
[14]. Most of the GWAS have been performed based on 
SNP arrays. Currently, the commercial high-density chip 
that is widely used in chickens is a 600 k SNP array [39]. 
In the past few years, the reduction in the cost of whole-
genome sequencing technologies has favored its wide-
spread application and more and more GWAS now use 
whole-genome SNPs [40–42]. In our GWAS, we used 
more than 7 million SNPs in the duck genome to identify 
significant marker-trait associations with a strict Bon-
ferroni-corrected threshold (− log10(P) ≥ 8.16). Because 
of the multiple statistical tests and the large number of 
SNPs, it was more difficult to identify significant associa-
tions [43], and in addition, the limited sample size used 
may have affected our findings. Thus, SNPs with small 
effects may be missed because they do not reach the sta-
tistical threshold.

FCR is a very complex trait because it is influenced by 
feed intake behavior, digestion and absorption capacity, 
and egg production ability [34]. Pekin ducks have become 
a world-famous farm breed with high performances in 
meat and egg yields. We assume that FCR of Pekin ducks 
and mallards differ largely because of the long domestica-
tion process of the former from the latter and of closed 
breeding populations. In this study, the coefficient of 
variation of phenotypic values for FCR was 50% in the F2 
population that was constructed using Pekin ducks and 
mallards, which suggests that the phenotypic value of 
FCR was different in the F2 population.

Through GWAS, we identified 18 genomic regions that 
were associated with FCR-related traits but these associa-
tion signals were not strong, as shown by the Q–Q results 
(Fig.  1), which displayed moderate leftward deflections 
of the observed distribution. This phenomenon is often 
attributed to “spurious inflation” and would be expected 
under a polygenic architecture. In a recent review for 
complex traits, Yang et al. [44] assumes that the genetic 
variations that are below the GWAS threshold could 
also contribute largely to heritability and pointed out the 
polygenic characteristics of complex traits.

We identified 126 annotated genes in the 18 significant 
genomic regions. Based on GO and KEGG enrichment 
analyses, genes with the GO terms of glycosaminoglycan 
biosynthesis and selenocompound metabolism were found 

(See figure on next page.)
Fig. 4  Analyses of the signatures of selection of the candidate region on chromosome 6 that affects FCR. a GWAS peaks located on chromosome 
6. b Linkage disequilibrium (LD) of the significant SNPs. The red rectangle represents the region in LD with the leader SNP from the GWAS 
(Chr6:20,356,803, P = 1.14 × 10–10). c Average nucleotide diversities (Pi-value) of SNPs located in the sliding windows of the candidate region. d log2 
Pi (mallard/Pekin duck) of the sliding windows. e Population differentiation analysis. f Each vertical blue line represents an SNP that reached the 
significance threshold of − log10 P = 8.16. The annotated genes are located in the candidate region according to the newly updated duck reference 
genome (IASCAAS_Peking Duck_PBH1.5, GCF_003850225.1)
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Fig. 4  (See legend on previous page.)
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to be enriched in the significant regions. These terms are 
related to hormone synthesis and metabolism in reproduc-
tion [45, 46]. In addition, some of the positional candidate 
genes are involved in ovarian steroidogenesis, including 
PLA2G4B, IGF1R, IGF1, PLA2G4F, and HSD17B7. These 
findings suggest that the identified genomic regions may 
contain the actual causative loci that affect FCR.

An important research strategy to reveal the genetic 
basis of complex traits is to combine signatures of selec-
tion and GWAS results [47, 48], especially for traits that are 
assumed to have been strongly selected for during domes-
tication. Historically, farmers probably selected poultry for 
egg production, which is likely to have affected egg weight 
and egg laying rate, and thus the effect on FCR may have 
been a correlated response to selection on egg production. 
By integrating GWAS and analyses of signatures of selec-
tion, we identified three genomic regions related to FCR 
on chromosomes 13, 3, and 6, respectively. In the end, 
31 of the 126 positional candidate genes related to FCR 
were supported by LD analysis and in which the GWAS 
leader SNP was located (Chr13:2,196,728, P = 7.05 × 10–14; 
Chr3:76,991,524, P = 1.06 × 10–12; Chr6:20,356,803, 
P = 1.14 × 10–10). Some of these functional candidate genes 
were highly expressed in tissues with reproductive func-
tions. FHL5 may be involved in the regulation of spermat-
ogenesis [49], and among the tissues investigated here, its 
expression was highest in the ovary and the follicular mem-
brane. Some of the functional candidate genes are involved 
in essential functions of metabolic processes, e.g., TRNT1 
is expressed in all investigated tissues, and has basic func-
tions in the mRNA translation process to produce peptides 
[50]; NDUFAF4 is involved in energy metabolism in the 
mitochondria [51]; and SCD is a crucial gene that regulates 
lipid metabolism [52]. We also found that LOC101795347, 
as a lncRNA, had the highest expression in the oviduct, 
which is an essential organ for egg formation. Some of the 
functional candidate genes were highly expressed in nerv-
ous tissues (hypothalamus and pituitary gland) and it is well 
known that genes associated with neural processes were 
initially under selection during the domestication of ani-
mals [53–56]. Some of the genes that are highly expressed 
in nervous tissues are involved in feed intake behaviors or 
linked to stress responses, potentially giving a calmer, less 

stressed bird that may be more feed-efficient than the wild 
mallard duck, i.e., they could affect FCR (reducing FI and 
increasing EW). Examples of such genes include CNTN4, 
which has a role in synaptogenesis [57], CRBN, which is 
related to the intelligence quotient of humans [58], and 
GPR63, which has a function in the brain [59].

The integration of GWAS and analyses of signatures of 
selection helped us identify three genomic regions that 
affect FCR in the duck, with positional candidate genes that 
are involved in nervous activity, metabolism, and repro-
duction processes. However, this does not mean that the 
other regions identified by GWAS do not contribute to the 
genetic architecture underlying FCR. Detection of addi-
tional genomic regions that are involved in FCR and egg 
production traits requires further studies, by, e.g., increas-
ing sample size or performing functional analyses. Never-
theless, our findings not only provide GWAS results that 
shed light on the genetics of duck feed efficiency but also 
deepens our understanding of the genomic changes under-
lying the domestication process. By incorporating the iden-
tified SNPs into breeding programs, selection for FCR in 
ducks can be implemented to save production costs.

Conclusions
We have reported genetic parameters for six egg produc-
tion traits in ducks based on an F2 population that was con-
structed from mallard and Pekin ducks. We performed a 
GWAS to identify genetic loci that underlie these six egg 
production traits but only detected 11 genomic regions, 
which were all associated with FCR. Three of these regions, 
on chromosomes 3, 6, and 13, were confirmed by analyses 
of signatures of selection. These three genomic regions har-
bor 31 functional candidate genes, among which, CNTN4, 
CRBR, GPR63, KLHL32, FHL5, TRNT1 MANEA, NDU-
FAF4, and SCD are the main candidate genes, based on 
their high expression in nervous and reproductive tissues. 
Our study is the first to provide genomic regions associ-
ated with FCR in ducks, which will be useful for genomic 
selection in duck breeding. Our data also illustrate that the 
genes that appear to have been selected in ducks during 
their domestication are related to nervous, reproduction 
and metabolic functions.

Fig. 5  mRNA expressions of candidate genes for FCR. a Candidate genes located in a 0.21-Mb region on Chr13 (Chr13: 2,133,672–2,334,566 bp). 
b Candidate genes located in a 0.69-Mb region on Chr3 (Chr3: 76,530,738–77,219,884 bp). c Candidate genes located in a 2.16-Mb region on Chr6 
(Chr6:19,438,854–21,603,295 bp). The data originate from a database of duck gene expressions determined by transcriptome analyses of 60 samples 
from five tissues, including the hypothalamus, pituitary gland, ovary, oviduct, and follicular membrane

(See figure on next page.)
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Fig. 5  (See legend on previous page.)



Page 14 of 16Liu et al. Genetics Selection Evolution           (2021) 53:98 

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12711-​021-​00684-5.

Additional file 1: Table S1. Composition of the diet (g/kg as fed) used to 
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top 2000 SNPs associated with FCR in the GWAS. The top 2000 SNPs were 
screened according to − log10 (P). The cells highlighted in red on the 
chromosome line represent SNPs that reached the Bonferroni threshold. 
The average FST and Pi of the slide windows are also provided based on 
the analysis of selective sweeps.

Additional file 5: Figure S2. The top five GO terms by enrichment factor 
with a significant P value, which were enriched in the categories cellular 
component (CC), biology process (BP), and molecular function (MF), 
respectively. The genes used for GO analysis were from the annotated 
genes according to the top 2000 SNPs in the GWAS.

Additional file 6: Table S4. GO enrichment results of the genes anno-
tated based on the top 2000 SNPs in GWAS.
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from the annotated genes according to the top 2000 SNPs in GWAS.
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Additional file 10: Figure S5. Protein–protein interactions (PPI) show the 
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