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1  |   INTRODUCTION

The circulatory system is oscillatory in its nature. Oscillations 
can be traced back to physiological processes, such as heart 

contraction, respiration, and rhythmic contraction of the vas-
culature, and these oscillatory processes are controlled by 
regulatory mechanisms. The result is a highly irregular and 
complex oscillatory profile. Autonomic regulation is essential 
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Abstract
The circulatory system is oscillatory in its nature. Oscillatory components linked 
to physiological processes and underlying regulatory mechanisms are identifiable 
in circulatory signals. Autonomic regulation is essential for the system's ability to 
deal with external exposure, and the integrity of oscillations may be considered a 
hallmark of a healthy system. Loss of complexity is seen as a consequence of several 
diseases and aging. Heart rate variability is known to decrease after cardiac surgery 
and remain reduced for up to 6 months. Oscillatory components of circulatory sig-
nals are linked to the system's overall complexity. We therefore hypothesize that the 
frequency distributions of circulatory signals show loss of oscillatory components 
after cardiac surgery and that the observed changes persist. We investigated the de-
velopment of the circulatory frequency distributions of eight patients undergoing 
cardiac surgery by extracting three time series from conventional blood pressure and 
electrocardiography recordings: systolic blood pressure, heart rate, and amplitude 
of the electrocardiogram's R-wave. Four 30-min selections, representing key events 
of the perioperative course, were analyzed with the continuous wavelet transform, 
and average wavelet power spectra illustrated the circulatory frequency distributions. 
We identified oscillatory components in all patients and variables. Contrary to our 
hypothesis, they were randomly distributed through frequencies, patients, and situ-
ations, thus, not representing any reduction in the overall complexity. One patient 
showed loss of a 25-s oscillation after surgery. We present a case where noise is mis-
classified as an oscillation, raising questions about the robustness of such analyses.
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for the system's ability to deal with external exposure, and 
the integrity of circulatory oscillations can be considered a 
hallmark of a healthy system. Circulatory signals, such as 
continuous blood pressure (BP) and electrocardiography 
(ECG) signals, show traces of these underlying oscillations. 
Traditional heart rate variability and frequency analyses have 
identified specific oscillations and they have been attributed 
to different parts of autonomic regulation (Akselrod et al., 
1981; Bracic & Stefanovska, 1998; Pomeranz et al., 1985). 
Loss of complexity has been reported in several cardiac 
and non-cardiac diseases (Claydon & Krassioukov, 2008; 
Goldstein et al., 1998; Kleiger, Miller, Bigger, & Moss, 1987; 
Riordan, Norris, Jenkins, & Morris, 2009; Wolf, Varigos, 
Hunt, & Sloman, 1978) and simply as a feature of aging 
(Kaplan et al., 1991; Lipsitz & Goldberger, 1992; Umetani, 
Singer, McCraty, & Atkinson, 1998; Takahashi et al., 2012). 
Heart rate variability is known to decrease after cardiac sur-
gery, and remain reduced for up to 6 months (Hogue, Stein, 
Apostolidou, Lappas, & Kleiger, 1994; Kuo et al., 1999).

There is no clear definition of complexity. However, com-
plex systems are built up by components that interact in mul-
tiple ways and with the external environment, resulting in 
organized and disorganized behavior that cannot be predicted 
from the components alone (Johnson, 2009). Linking this to 
biological signals, complexity is related to the degree of infor-
mation in the signal, the predictability of the signal, and the 
ability to describe the signal in a simple manner (Goldberger, 
Moody, & Costa, 2012). The definition is too diffuse to pro-
vide a quantitative measure of complexity that applies univer-
sally. Oscillatory components of biological systems represent 
underlying components that interact and produce the behav-
ior of the system as a whole. Altogether, they both reflect 
the system's overall complexity (Goldberger, 1996) and are 
linked to underlying regulation. On this basis, the exploration 
of oscillatory distributions of biological signals provides in-
formation about the overall state of biological systems, which 
could be altered by disease or invasive procedures. If the ob-
served changes are generalizable between patients, such in-
formation can be implemented to future monitoring tools. 
This is beneficial as changes in patients’ clinical state could 
be identified and clinicians notified before overall variables 
such as heart rate (HR) or BP are changed.

We explore frequency and amplitude modulations of BP 
and ECG signals by extracting three time series: systolic BP 
(SBP), HR, and amplitude of the ECG’s R-wave. The Brody 
effect states that variations in R-wave amplitude are related 
to ventricular preload (Brody, 1956). R-wave amplitude can 
thus be seen in relation with SBP and HR. By combining 
the frequency distributions of the three mentioned variables, 
we illustrate unique circulatory frequency distributions. In 
this work, we investigated the development of the circulatory 
frequency distributions of eight patients undergoing cardiac 
surgery. Four 30-min selections, representing key events of 

the perioperative course, were analyzed with the continuous 
wavelet transform (CWT), and average wavelet power spec-
tra illustrated the circulatory frequency distributions. We hy-
pothesize that the circulatory frequency distributions show 
loss of oscillatory components with surgery and that the 
observed changes persist, measured until the morning after 
surgery.

2  |   MATERIAL AND METHODS

2.1  |  Study population, ethics, and 
confidentiality

From March to May 2016, patients scheduled for coronary 
artery bypass grafting were invited to participate in the study, 
recruiting a total of 10 patients. Two patients were excluded 
due to non-sinus rhythm at one or several time points of the 
recording. Other exclusion criteria are left ventricular ejec-
tion fraction below 0.5, severe valve disease, right ventricular 
failure, pulmonary hypertension, and severe postoperative 
hemorrhage. Finally, we had a study group consisting of six 
men and two women, age ranging from 47 to 88. The patients 
were enumerated 1–10, with patient 6 and 9 excluded.

The surgery was performed at Trondheim University 
Hospital, Norway. Written consent was collected prior to data 
collection. The study protocol was approved by the Regional 
Committee for Medical and Health Research Ethics (refer-
ence: 2015/2019/REK midt). Confidentiality was strictly 
maintained throughout the study.

2.2  |  Equipment and study protocol

Data collection was performed in two sessions: before and 
after surgery. The patients were lying in bed during both peri-
ods. The study equipment includes a 3-electrode ECG, a laser 
Doppler flowmeter (LDF) attached to the calf, and an arterial 
cannula inserted to the left radial artery. Additionally, pa-
tients 1–3 had a photoplethysmograph (PPG) finger sensor at-
tached. The study equipment was provided by ADInstruments 
(Oxford, UK), as well as hardware and software (PowerLab 
16/35 and LabChart 8.1.3). The signals were recorded with a 
sampling rate of 400 Hz.

The preoperative recordings were collected with the patients 
resting in bed in a quiet room without disturbances at the tho-
racic surgery ward. The duration of the recordings ranged from 
47 to 86 min. The patients did not receive premedication prior to 
surgery, and surgery was performed under general balanced an-
esthesia (thiopental, fentanyl, isoflurane, and propofol). During 
surgery, the study equipment was removed. After surgery, the 
study equipment was reattached using new ECG patches and 
a new arterial cannula inserted to the right radial artery. The 
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postoperative recording was collected from the patients arrived 
at the thoracic intensive care unit, until the next morning. The 
duration of the recordings ranged from 14 to 18.5 hr.

2.3  |  Data handling and preprocessing

The BP and ECG recordings were exported from LabChart as 
mat.files and analyzed in R, version 3.5.1, with the packages 
R.matlab, signal, robustHD, and WaveletComp (Alfons, 2016; 
Bengtsson, 2016; R Foundation for Statistical Computing, 
2018; Roesch & Schmidbauer, 2018; Signal developers, 2013). 
We subdivided the data into four situations: preoperatively (A); 
postoperatively, on respirator (B); postoperatively, after extu-
bation (C); and postoperatively, the next morning (D).

We extracted 30-min selections representing each situ-
ation and preprocessed the BP and ECG signals into three 
time series: SBP, HR, and R-wave amplitude (Figure  1). 
Baseline wander was removed from the ECG signals by ap-
plying a Savitzky–Golay smoothing filter before further anal-
yses (Nahiyan & Amin, 2017). We defined the SBP and the 
R-wave amplitude as the maxima of the BP and ECG, respec-
tively. The heart rate was defined as HR = 60/RRi, where RRi 
is the time interval in seconds between R-peak i and i + 1 of 
the ECG. Some episodes of noise were misclassified as heart-
beats; thus, we removed outliers from SBP, RR-intervals, and 
R-amplitude before further calculation. To provide evenly 
sampled time series, we performed a cubic spline interpo-
lation to a sampling frequency of 10 Hz. The final variables 
were called interpolated SBP (iSBP), interpolated HR (iHR), 
and interpolated R-wave amplitude (iAmp).

To examine one specific identified oscillation, the PPG 
and LDF signal of patient 1 were included in a subanalysis. 
To provide comparable results, the PPG was preprocessed 
with the same algorithm as iSBP and iAmp, creating a new 
time series of the amplitude of the signal, interpolated to a 
sampling rate of 10 Hz. The final variable was called PPG-
iAmp. The LDF was downsampled to 10 Hz.

2.4  |  Analysis

We performed the CWT to identify frequency components 
present in iSBP, iHR, and iAmp. The CWT is a convolu-
tion of the signal with a function generated from the mother 
wavelet (Fugal, 2009). We used the Morlet wavelet, which 
by mathematical definition is a Gaussian enveloped cosine 
wave, and has been widely used for investigation of bio-
logical signals, especially the ECG (Addison, 2005). In the 
convolution process, it is shifted in time and stretched and 
shrunk, quantifying different frequency components’ pres-
ence in the signal at different time points. We presented the 
results in average wavelet power spectra, illustrating the av-
eraged frequency distributions of the signals. Furthermore, 
we performed the CWT for bivariate time series identifying 
frequency components that  are present in two time series 
with a significance level of 0.05. The results are presented 
in cross-wavelet spectra, with significant frequencies marked 
by white lines and phase differences by arrows. The CWT 
for bivariate time series was performed on the variable pairs, 
iAmp-iSBP and iSBP-iHR.

In order to visually examine the individual time-series’ 
oscillations, we decomposed the time series with locally 
weighted estimated scatterplot smoothing (Loess) (Cleveland 
& Devlin, 1988). We applied the regression three times, each 
time subtracting the smoothed curve from the signal, provid-
ing a set of oscillating components of increasing frequency. 
The extracted components were called Loess #1, Loess #2, 
and Loess #3. By plotting the components of all variables 
together, we visually inspected their oscillating behavior and 
phase differences. From the CWT and Loess, we identified 
the components that are highly present in all variables and 
performed a cross-correlation analysis, which calculates the 
correlation of two time series as a function of the displace-
ment of one relative to the other—the cross-correlation func-
tion (CCF). By defining CCFmax, we identified at which time 
lag the correlation is highest, and thus at which relative dis-
placement the studied variables oscillate.

F I G U R E  1   Preprocessing of the BP and ECG signals generating the variables iSBP, iHR, and iAmp. The SBP and the R-wave 
amplitude were defined as the maxima of the BP and ECG, respectively. The HR was calculated from the time interval between two subsequent 
R-peaks of the ECG (RRi [s]). The time series were interpolated to a sampling rate of 10 Hz
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3  |   RESULTS

By performing the CWT on iSBP, iHR, and iAmp, we identi-
fied each patient's circulatory frequency distribution through-
out the perioperative course, illustrated by situation A–D. We 
hypothesize that we will see loss of oscillatory components 
from situation A to B, and that the changes persist through 
situations C and D. Figure 2 shows the average wavelet power 
spectra of iSBP, iHR, and iAmp of all patients and situations. 
The spectra include periods between 10 and 1,000 s. Lower 
periods are not included, as the respiration is a powerful os-
cillatory component, overshadowing the presence of slower, 
less dominating oscillations.

We identified oscillatory components in all patients and 
situations. Patient 1 shows a distinct peak around 25  s in 
situation A. This oscillation is present in all three variables, 
and not visible in any of the situations B, C, or D. A less 
prominent oscillation around 800 s in 3A is observed, which 
arguably disappears after surgery. Patient 8 showed loss of 
oscillations in the range between 20 and 50  s in iHR, and 
in situation D, an oscillation just above 100 s is observed in 
all variables. We see other examples of loss of power in the 
mid-range after surgery, but no cases with loss of distinct 
oscillatory components. Altogether, we illustrate frequency 
distributions that change through the perioperative course, 
but the observed changes do not display any trend or sys-
tem. Overall, the number of oscillatory components and their 
power are more or less randomly distributed through patients 
and situations. Linking this to the signals’ overall complexity, 
we did not identify any clear reduction of such after surgery. 
iAmp does not show any distinct oscillatory peaks in any pa-
tients in situation B. This is due to a domination of the respi-
ration during mechanical ventilation.

The 25-s oscillation in 1A stands out as the only oscilla-
tion that is clearly present in all variables before surgery and 
gone after. To examine the specific variables’ oscillatory be-
havior, we performed a Loess regression, illustrated by Loess 
#2 in Figure 3.

Figure  3 shows that iSBP and iHR oscillate in phase, 
iHR leading. iAmp oscillates off phase with respect to the 
other two. By performing a cross-correlation analysis on 
the variable pairs, iAmp-iSBP and iSBP-iHR, we found that 
CCFmax of iAmp and iSBP is 0.75, with a lag of 8.2 s. The 
corresponding values for iSBP and iHR are 0.80 and 3.5 s. 
Altogether, this tells us that iHR is leading, with a time lag of 
3.5 s to iSBP and 11.7 s to iAmp. Maximum correlation val-
ues of 0.75 and 0.80 are high when it comes to biological time 
series. The preoperative recording of patient 1 included both 
a PPG and a LDF signal. The signals were preprocessed as 
described in Methods and analyzed with the CWT. Figure 4 
shows the average wavelet spectrum of all variables, and we 
see that the 25-s oscillation is present in the amplitude of the 
PPG signal but not in LDF.

Figure 2 shows an 800-s oscillation in patient 3, situa-
tion A. It is present in all three variables and is partly gone 
postoperatively. Looking at the raw signals and performing 
a Loess regression, we find that the extracted component is 
caused by short events of noise, thus not representing a true 
physiological oscillator.

Patient 8 showed loss of oscillations in the range between 
20 and 50  s in iHR, and an oscillation just above 100  s in 
situation D that is present in all variables. Figure 5 shows the 
cross-wavelet spectra of iAmp-iSBP and iSBP-iHR of situa-
tion D.

Both variable pairs show high power just above 128  s, 
confirming that the oscillation is present in all three time se-
ries. Both variable pairs show variations in phase differences 
through the time course, but mostly iAmp-iSBP show arrows 
pointing to the lower right, meaning that they oscillate in 
phase, iSBP leading. iSBP-iHR show arrows pointing to the 
lower left, meaning that they oscillate off phase, iSBP lead-
ing. Thus, iHR and iAmp oscillate in phase, and iSBP out of 
phase with respect to the other two.

4  |   DISCUSSION

We illustrate the frequency distributions of variables ex-
tracted from BP and ECG signals of eight patients under-
going coronary artery bypass grafting. The circulatory 
frequency distributions illustrate the presence of oscillatory 
components in all variables, patients and situations, and the 
oscillations are randomly distributed over the examined fre-
quency range. The high variety seems to represent interindi-
vidual variations, more than factors of the performed surgery. 
Considering the heterogeneity of our findings, we have not 
presented information that is suitable for use in any monitor-
ing device or other clinical decision tools.

The identified oscillations do not correspond to the dis-
tinct pattern of frequency bands that are described in the lit-
erature (Akselrod et al., 1981; Bracic & Stefanovska, 1998; 
Pomeranz et al., 1985). Linking the circulatory frequency 
distributions to the overall complexity of circulatory sig-
nals, no reduction of such is identified. Either the complex-
ity is not reduced with cardiac surgery, or our method is not 
able to identify it. One case showed a 25-s oscillation that 
is present preoperatively (1A) and not postoperatively (1B, 
1C, 1D). The oscillation is found in all three variables, and 
additionally in the amplitude of the PPG (PPG-iAmp). It has 
a frequency of 0.04 Hz, corresponding to the limit between 
low frequencies and very low frequencies (Task Force of 
the European Society of Cardiology & the North American 
Society of Pacing & Electrophysiology, 1996). According to 
the literature, low frequencies reflect baroreceptor activity, 
but findings are inconsistent regarding whether this activ-
ity is mediated by the sympathetic or the parasympathetic 
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F I G U R E  2   The average wavelet power spectra of iSBP, iHR, and iAmp of all patients through situation A to D. Each spectrum represents 
one patient in one situation, named with a number and a letter. Patients are separated by rows, and situations by columns. The situations represent 
key events of the perioperative course: preoperatively (A); postoperatively, on respirator (B); postoperatively, after extubation (C); postoperatively, 
the next morning (D). Average wavelet power is shown on the x-axis and period (in seconds) on a logarithmic scale on the y-axis. The variables are 
distinguished by color. Patient 1 shows loss of a 25-s oscillation between situation A and B. Patient 3 shows loss of an 800-s oscillation, and patient 
8 shows loss of oscillations in the range between 50 and 100 s in iHR
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nervous system (Shaffer, McCraty, & Zerr, 2014; Task 
Force of the European Society of Cardiology & the North 
American Society of Pacing & Electrophysiology, 1996). 
Patient 8 showed loss of oscillations in iHR with surgery and 
return of an oscillation in situation D that is present in all 
variables. The oscillation in 8D has a frequency of 0.007 Hz, 
corresponding to the ultra-low frequency band. The physi-
ological correlate to ultra-low frequencies is insecure. This 
study was not designed to explore underlying physiological 
mechanisms of identified oscillations.

We are developing methods for analyzing biological sig-
nals, both focusing on preprocessing and choice of analyses. 
We find that there are several challenges related to analyz-
ing biological signals, mainly related to noise-handling. We 
have identified a case where noise is misinterpreted as an 

oscillation. This leaves us wondering which of the identified 
oscillations are true physiological oscillators, and which rep-
resent methodological errors. As we are not able to provide 
completely noise-free recordings in controlled settings of 
bedbound patients, we believe that tools meant for clinical 
use must be robust for noise. Thus, the algorithms must either 
remove all noise, or the results not being affected by the pres-
ence of it. We did not identify the distinct frequency bands that 
are reported in the literature (Shaffer et al., 2014; Task Force 
of the European Society of Cardiology & the North American 
Society of Pacing & Electrophysiology, 1996). Noise could 
be the problem here as well. However, the signals are mostly 
noise-free, so we would expect to identify the oscillations if 
they were present. This raises the question if the use of strict 
frequency intervals is a simplification of a highly complex 
and variable field. Features that are incorporated in biologi-
cal signals, such as nonlinearity and nonstationarity, are chal-
lenging when analyzing them. We have earlier addressed the 
challenge by applying Fourier-based analyses to such signals, 
suggesting the data-driven Hilbert–Huang Transform as a 
better approach (Knai, Kulia, Molinas, & Skjaervold, 2017). 
However, the Hilbert–Huang transform is hampered by being 
computationally challenging and requiring thorough valida-
tion. If the developed methods at some time point are meant 
to be used real-time, for instance in intelligent alarm systems, 
the chosen analyses should be quick and easily adaptive to 
different biological signals. In this work, visual inspection 
was required to secure that the algorithms applied correctly 
and to validate the results, identifying the case where noise 
was misinterpreted as an oscillation.

4.1  |  Methodological considerations

Our study population is small. We recruited 10 patients 
scheduled for coronary artery bypass grafting over a period 

F I G U R E  3   Loess regression of iSBP, iHR, and iAmp of 1A, illustrated by Loess #2 which is the second extracted component. We see that 
iSBP and iHR oscillates in phase, and iAmp off phase
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F I G U R E  4   Average wavelet power spectra of 1A including PPG 
and LDF signals. The PPG is preprocessed with the same algorithm as 
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of 3 months in 2016, whereof two patients were excluded due 
to non-sinus rhythm. The final data material includes three 
extracted variables from four situations of eight patients—96 
analyzed time series. Being derived from only eight patients, 
we cannot generalize our findings to the total population of 
cardiac surgery patients.

The recruited patients are heterogeneous individuals 
featuring different medical backgrounds, pharmacological 
profiles, and general health. However, the group altogether 
holds common features such as high age and coronary heart 
disease. One could raise the question of selection bias as we 
recruited patients over a short time period and excluded pa-
tients with serious illness such as heart failure, valve disease, 
and perioperative complications. However, we investigate 
universal physiological features without performing statisti-
cal hypothesis testing or other comparisons on group level. 
The comparisons we do are only between situations of the 

perioperative course, and in such cases, the patients serve as 
their own controls. Interpretation of the results must be done 
with these aspects in thought, and the results’ generalizability 
should be investigated in bigger study groups.

To minimize autonomic activation and artifacts caused 
by postural changes, the patients were kept lying during 
data collection. The data were collected with research 
hardware and software to secure complete control of fil-
tering and preprocessing algorithms applied to the data. 
To avoid putting the patients through unnecessary stress 
by inserting two arterial cannulas prior to surgery, we used 
different cannulas pre- and postoperatively. A consequence 
of this could be different absolute values of the BP record-
ings before and after surgery. However, we believe that 
the frequency distributions of the signals are unchanged. 
Vasoactive and analgesic medications, and fluids were 
administered postoperatively according to the individual 

F I G U R E  5   Cross-wavelet spectra of 
the variable pairs iAmp-iSBP and iSBP-
iHR of patient 8, situation D. Time (in 
seconds) is shown on the x-axes, and period 
(in seconds) on a logarithmic scale on the 
y-axes. Power is given by color, according 
to the scale next to the plots. Significant 
frequencies are marked by white lines and 
phase differences by arrows. Both spectra 
show high power just above 128 s
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patient's clinical state. Thus, the patients may have received 
different amounts of medications, with varying contribu-
tion to their oscillatory profile.

5  |   CONCLUSION

In this study, we decomposed BP and ECG recordings from 
eight cardiac surgery patients to time series of SBP, HR, 
and R-wave amplitude. Four 30-min selections, represent-
ing key events of the perioperative course, were analyzed 
with the CWT and average wavelet power spectra were used 
to illustrate the patients’ circulatory frequency distributions. 
We identified oscillatory components in all variables, pa-
tients, and situations, and they were more or less randomly 
distributed through the examined frequency range. The high 
variety in circulatory oscillations seems to represent inter-
individual variations, more than factors of the performed 
surgery. Linking the circulatory frequency distributions to 
the overall complexity of circulatory signals, no reduction of 
such is identified. Considering the heterogeneity of our find-
ings, we have not presented information that is suitable for 
use in any monitoring device or other clinical decision tools. 
The study is limited by challenges regarding noise-handling, 
and generalizability due to small sample size.
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