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Personalized identification of autism-related
bacteria in the gut microbiome
using explainable artificial intelligence

Pierfrancesco Novielli,1,2,5 Donato Romano,1,2,5 Michele Magarelli,1 Domenico Diacono,2 Alfonso Monaco,2,3

Nicola Amoroso,2,4 Mirco Vacca,1 Maria De Angelis,1 Roberto Bellotti,2,3,6 and Sabina Tangaro1,2,6,7,*
SUMMARY

Autism spectrum disorder (ASD) affects social interaction and communication. Emerging evidence links
ASD to gutmicrobiome alterations, suggesting that microbial compositionmay play a role in the disorder.
This study employs explainable artificial intelligence (XAI) to examine the contributions of individual mi-
crobial species to ASD. By using local explanation embeddings and unsupervised clustering, the research
identifies distinct ASD subgroups, underscoring the disorder’s heterogeneity. Specific microbial bio-
markers associated with ASD are revealed, and the best classifiers achieved an AU-ROC of 0.965 G
0.005 and an AU-PRC of 0.967G 0.008. The findings support the notion that gut microbiome composition
varies significantly among individuals with ASD. This work’s broader significance lies in its potential to
inform personalized interventions, enhancing precision in ASD management and classification. These in-
sights highlight the importance of individualized microbiome profiles for developing tailored therapeutic
strategies for ASD.

INTRODUCTION

The relationship between the gastrointestinal (GI) tract and the brain, known as the gut-brain axis, is a complex and dynamic system involving

neural pathways, hormones, and various molecules. This bidirectional communication was first described by BanksW.A., who highlighted the

modulation of cholecystokinin secretion by bombesin.1 Recent studies have expanded on this concept, demonstrating a significant link be-

tween brain health and the functioning of the intestinal microbiota.2,3 The gut microbiota, a diverse community of microorganisms including

bacteria, fungi, viruses, and protozoans,4 is predominantly located in the GI tract, which hosts over 70% of these microorganisms.5 Research

has shown that the gut microbiota plays a crucial role in modulating the gut-brain axis, influencing various brain disorders, including autism

spectrum disorder (ASD). ASD is characterized by challenges in language and communication, social interaction difficulties, and repetitive

behaviors. It affects males more frequently than females, with a ratio of 4:1. Symptoms of ASD typically emerge between 12 and 24 months

of age, though they can appear earlier if developmental delays are severe or later if symptoms aremilder. Despite ongoing research, the exact

causes of ASD remain unclear, with neurobiological, genetic, and environmental factors all contributing to its development. Notably, individ-

uals with ASD often experience GI issues such as diarrhea, constipation, bloating, and gastroesophageal reflux.6 Several studies have

compared the gut microbiota of individuals with ASD to that of typically developing (TD) individuals, revealing differences in both species

diversity and abundance.7,8 To further explore these differences, we employed a machine learning (ML) approach using explainable AI

(XAI) to identify specific microbiota fingerprints that can distinguish patients with ASD from TD individuals. The application of ML in micro-

biome analysis has gained significant attention due to advancements in high-throughput sequencing technologies, which have led to an ex-

plosion in microbiome data. ML algorithms offer powerful tools for deciphering the complex relationships within microbial communities and

understanding their functional impacts. These techniques have been increasingly used to analyze microbiome composition, dynamics, and

interactions, providing novel insights into their roles in human health and disease.9–11 In this study, we utilized the XGBoost classifier to differ-

entiate between children with ASD and TD individuals based on their gut microbiota profiles. XGBoost, a robust ML algorithm, was used to

evaluate the global importance of various features in classification. The integration of explainableAI (XAI) methods allowed us to provide local

explanations and assess the contribution of each feature for individual subjects,12–14 enhancing the interpretability of our model.15 The
1Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
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Table 1. Comparison between evaluation metrics of XGBoost (XGB), random forest (RF), and decision tree (DT) classifiers

Accuracy Sensitivity Specificity Precision AU-ROC AU-PRC

XGB 0.914 G 0.008 0.946 G 0.012 0.872 G 0.012 0.905 G 0.008 0.965 G 0.005 0.967 G 0.008

RF 0.921 G 0.006 0.978 G 0.010 0.847 G 0.011 0.892 G 0.007 0.964 G 0.003 0.962 G 0.005

DT 0.826 G 0.016 0.857 G 0.027 0.785 G 0.036 0.838 G 0.021 0.839 G 0.024 0.840 G 0.028

The metrics evaluated include accuracy, sensitivity, specificity, precision, AUC-ROC, and AUC-PRC.
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motivation behind using this methodology lies in its potential to uncover novel bacterial biomarkers16 associated with ASD, offering deeper

insights into the disease’s pathophysiology. By leveragingML andXAI, we aim to improve the accuracy of ASDdiagnosis and contribute to the

development of targeted interventions based on gut microbiota profiles. The contributions of this article are 3-fold. First, it introduces an

innovative application of XAI to microbiome analysis, emphasizing the importance of transparency and interpretability in AI-driven biomed-

ical research. Second, it demonstrates the potential of personalized medicine to uncover unique microbiome profiles related to ASD, paving

the way for customized therapeutic strategies. Third, leveraging local explanation embeddings and an unsupervised clustering method suc-

cessfully clusters ASD subjects into subgroups. The chosen methodology is particularly well-suited to address the complexities and variabil-

ities inherent in ASD. By leveraging explainable AI, we ensure that our findings are not only robust but also accessible and actionable, facil-

itating their translation into clinical practice. This approach represents a significant advancement over traditional methods, providing deeper

insights into the microbiome-ASD relationship and highlighting the potential for personalized medicine in this field.12–14
RESULTS

The goal of this study is to explore the alterations of the gut microbiota in subjects with ASD to respect the TD subjects.

To identify the microbiome alterations in ASD compared to TD, a classification model based on machine learning has been trained, and

the feature contributions have been discussed.

In this study, the performances of three supervised machine learning algorithms, XGBoost, Random Forest, and a simpler one such as de-

cision tree, were compared. The bestmodel was chosen as the one having the highest AU-PRC (Area Under Precision-Recall curve), which was

XGBoost, as it outperformed the other twomodels in terms of AU-PRC, Specificity, and Precision. As summarized in Table 1, themost efficient

model was XGBoost.

Figure 1 presents the boxplots representing the distributions of model performances across 50 runs, including metrics such as Accuracy,

Sensitivity, Specificity, Precision, AU-ROC, and AU-PRC.

The feature importance has been explored in order to extract biological features with high discriminating power in the classification.

In particular, XGBoost incorporates an embedded feature importance mechanism that enables the effective analysis and optimization of

selected features during the classification process.15 The results of feature importance obtained through the XGBoost algorithm are summa-

rized in Figure 2 where the boxplot of the importance coefficients of repetited cross-validation is represented. In XGBoost, the feature impor-

tance is calculated based on the ‘‘total gain’’ metric. This importance type can be defined as the cumulative gain achieved by a feature across

all splits it is used in during the boosting process. During the training of the XGBoost model, each feature is evaluated for its ability to split the

data and improve themodel’s performance. The gain is calculated for each split by considering the improvement in themodel’s loss function

achieved through the use of that feature. The total gain for a feature is the sum of the gains across all the splits in which the feature is involved.

By considering the total gain of a feature, XGBoost identifies the features that contribute the most to reducing the loss function and making

accurate predictions. Higher values of total gain indicate greater importance, indicating that the feature has a more significant impact on the

model’s performance. The feature importance analysis for the Random Forest model is provided in Figure S1. This figure highlights the most

influential features in the classification task, ranked by their importance scores. The feature importance is calculated based on the average

decrease in impurity (Gini importance) across all trees in the Random Forest. The top features identified align closely with those determined

by the XGBoost model, indicating consistency between the models. Specifically, the Dice index for the top 20 important features is 0.5, while

for the top 5 features, the Dice index is 0.8, demonstrating a strong overlap in the most significant features.

Explainable AI solutions has been implemented, providing results that are understandable and verifiable for each subjects. SHAPmethods

is a local model-agnostic as explains the predictions at individual level regardless the selected models. Basically, this method learns an inter-

pretable linearmodel around each test instance and estimate feature importance at local level. Figure 3 shows themost important features for

classification according to the SHAP algorithm for the XGB model. The SHAP analysis for the Random Forest model is provided in the Fig-

ure S2. This plot provides a comprehensive view of the impact of each feature on themodel’s output, with SHAP values indicating the direction

andmagnitude of feature effects. The features are ranked by their average absolute SHAP values, showing the most impactful features at the

top. The Shapley values are calculated by averaging across all iterations of the algorithm for each subject, taking into account the 50 repe-

titions. The plot offers insights into howdifferent feature values influence themodel’s predictions, facilitating an understanding of themodel’s

decision-making process. The comparison of SHAP values between Random Forest and XGBoost shows a good overlap, particularly for the

top features, with a Dice index of 0.6 for the top 20 features and 0.8 for the top 5 features.

Figure 3 shows that there are OTUs, such as OTU625, for which a high relative abundance (red areas of the violin plots) is present on the

positive side of the x axis, and a low relative abundance (blue areas of the violin plots) is more prevalent on the negative side of the x axis. This
2 iScience 27, 110709, September 20, 2024



Figure 1. Comparative performance metrics of ML models across 50 runs with statistical significance annotations

(These boxplots represent the distribution of metrics for three different models, providing insights into the model performance across 50 runs of the algorithms.

Panel (a) shows Accuracy, (b) shows Sensitivity, (c) shows Specificity, (d) shows Precision, (e) shows AU-ROC, and (f) shows AU-PRC. The asterisks (*) on the plots

indicate the p-value from the statistical comparison between different distributions, obtained using the Mann-Whitney U test. The significance levels are as

follows: * for p-values between 0.05 and 0.01, ** for p-values between 0.01 and 0.001, *** for p-values between 0.001 and 0.0001, and **** for p-values less

than 0.0001. The Decision Tree consistently performs worse than the other two models. The Random Forest outperforms the others in terms of Accuracy and

Sensitivity, while XGB outperforms the others in terms of Specificity, Precision, and AU-PRC).
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means that a high relative abundance of these bacteria is generally associated with a higher probability value to ASD, whereas a low relative

abundance is associated with a lower probability value t ASD. On the contrary, there are OTUs, such as OTU1301, that exhibit an opposite

pattern, suggesting that a high abundance of these species is linked to a lower probability of ASD. These insights regarding the direction of

effects cannot be deduced using global explanation methods such as XGBoost’s built-in feature importance.

The importance ranking of features obtained from both XGB and SHAP values exhibit a substantial degree of overlap (Jaccard Index =

0:54), underscoring the robustness and stability of themodel. This convergence confirms the consistency and reliability of themodel’s assess-

ment of feature relevance. As example of local effects of feature in Figures 4A and 4B two example of subjects classified respectively as ASD

and TD. For each local explanation, it can be observed the contributions of each feature (bacteria) to the prediction, arranging the bacteria in

order of importance. These figures also reveal which features are confounding for themodel’s outcome. For instance, in Figure 4B, illustrating

the SHAP values of a TD subject, there are features such as OTU910 or OTU679, according to which the subject would be classified as ASD.

However, when considering the contribution of all other features, the subject is correctly classified as TD.
Autism subgroups

In this study, a comparison was made between the outcomes of PCA conducted on SHAP values and those resulting from PCA applied to

microbial abundance data.17 To accomplish this, after the computation of SHAP values, PCA was performed on these values. The first two

principal components, PC1 and PC2, were subsequently calculated, followed by the determination of PC loadings, and the visualization of

the results (Figure 6). For the purpose of comparison, Figure 5 also includes the results of PCA obtained from relative abundance values.

Figure 6 presents the projection of SHAP values onto the two principal components. Upon examining the findings, a consistent pattern

emerges, revealing a distinct segregation between TD and ASD subjects along PC1. In contrast, the PCA results based on relative abundance

data (Figure 6) do not exhibit a clear differentiation between TD and ASD samples. Additionally, ASD-associated bacteria, such as OTU625,

OTU976, OTU1301, OTU390, and OTU1225, exhibit high PCA loadings in the SHAP value-based PCA (Figure 6). SHAP value embeddings,
iScience 27, 110709, September 20, 2024 3



Figure 2. XGB features important plot

(Feature importance plot obtained using XGBoost. The image displays the top 20 features ranked by their importance, based on the analysis performed with

cross-validation repeated 50 times. The distributions of the feature importance values are shown as boxplots for each fold of the cross-validation process,

providing insights into the relative significance of these features in the predictive model).
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also known as local explanation embeddings, outperform in capturing insights, making it easier to discern variations of interest (TD vs. ASD)

compared to the original abundance data.

Furthermore, in Figure 7, the PCA plots of SHAP values are color-coded based on the ASD probability values obtained from the classifier.

A consistent pattern emerges where individuals situated on the right side of the PC1 axis tend to exhibit lower ASD probabilities, and vice

versa. This highlights an additional advantage of employing PCA on SHAP values, as it provides more interpretable results in terms of the

trend in ASD probability across the PC space.

Another widely used technique for data visualization and dimensionality reduction, t-SNE, was also explored. t-SNE is a popular algorithm

that originates from probability theory. It projects high-dimensional data points into 2D by aiming to give the projected data a similar distri-

bution to the original data points, achieved through the minimization of the Kullback-Leibler divergence.18 Although t-SNE yielded similar

visualization results, PCA was preferred because, with PC loadings (Figure 7), it was possible to observe features highly correlated with

the two principal components. It was observed that the features most correlated with the principal components correspond to the most

important features listed in the summary plot in Figure 3.

Given the clear separation observed between ASD and TD (Figure 6) and the consistent ASD probability trend (Figure 7), it becomes plau-

sible to cluster the ASD data points into distinct subgroups, presuming that these subgroups would manifest similar ASD probabilities. To

assess this hypothesis, K-means clustering was conducted on the PC1 and PC2 values derived from the SHAP values associated with the

ASD subjects. The determination of the optimal number of clusters involved the application of the Elbowmethod and Silhouette score. Addi-

tionally, the Silhouette score was utilized to compare the clustering outcomes derived from the first two principal components of PCA with

those from the two t-SNE components and all SHAP values. The comparison revealed that clustering on all SHAP values exhibited a signif-

icantly lower Silhouette coefficient compared to clustering on the first two PCA components and t-SNE components (with the latter showing

comparable results). This finding underscores the efficacy of dimensionality reduction on SHAP values, serving not only for visualization but

also to enhance clustering performance.

The resulting K-means clusters of ASD subjects are shown in Figure 8. Three distinct clusters can be identified from this figure. As illustrated

in Figure 9, both Cluster 1 and Cluster 2 showed higher ASD probabilities compared to the other clusters. Particularly, individuals grouped in

Cluster 3 displayed the lowest median ASD probability. From this unsupervised analysis conducted on ASD subjects, has emerged a cluster

(Cluster 3) in which are present all the ASD subjects misclassified as TD by the ML model, thus representing the false negatives.

DISCUSSION

The healthy adult gut microbiota (GM) is composed of four main phyla which together represent almost the totality of the bacterial popula-

tion: Bacteroidetes (Gram-negative, such as Bacteroides and Prevotella genera), Firmicutes (Gram-positive aerobic and anaerobic bacteria

such as Lactobacillus, Clostridium, and Ruminococcus), Proteobacteria (e.g., Enterobacteriaceae) and Actinobacteria (e.g., Bifidobacterium),

followed by the minor phyla Fusobacteria and Verrucomicrobia. By means of data from the biggest studies on GM,19–21 it was shown how

Bacteroidetes and Firmicutes comprise around the 90% of the total bacteriome relative abundance. On average, the phylum Bacteroidetes

is responsible for the proteolytic metabolism and secondary digestion of polysaccharides exerting a broad range of activities in hosts, from

beneficial to pathogenic, based on specific conditions and according to the strain belonging.22 The phylum Firmicutes, instead, predomi-

nantly contributes to the metabolism of food fatty acids and influences the nutrient intestinal absorption through the primary breakdown

of complex substrates undigested by hosts.23 In health, GM supports the immune system, aids in dietary nutrientmetabolism and absorption,
4 iScience 27, 110709, September 20, 2024



Figure 3. SHAP summary plot with violin plots

(SHAP summary plot illustrating the violin plots of the SHAP values for each feature. Each point on the plot represents a Shapley value of a subject, with the y axis

indicating the corresponding feature and the x axis representing the Shapley value itself. The color gradient reflects the feature value, ranging from low to high.

The features are ordered based on their mean importance, with more important features positioned toward the top. Violin plots utilize ‘‘violin-shaped’’ figures to

illustrate the distribution and density of SHAP values for each feature, offering insights into range, variability, skewness, symmetry, andmultimodality of the SHAP

value distribution).
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and produces beneficial molecules (e.g., specific vitamins and bacteriocins) to promote the host’s well-being. However, when gut homeosta-

sis is disrupted, whatever decrease in GM diversity, loss in keystone taxa and bloom of pathobionts leads to the status widely identified as

intestinal dysbiosis.24,25 Dysbiosis entails the onset of adverse events, e.g., increased intestinal permeability, exogenous food-borne pep-

tides, or neurotoxic bacterial-derived peptides and lipopolysaccharide (LPS) leading to an increased expression of inflammatory cytokines

in hosts. Similarly, a broad spectrum of diseases contributes to the dysbiosis onset as the result of alterations in the host physiology, including

ASD.26

In this study, a framework was developed to use XAI techniques in identifying the most relevant features for predicting ASD in children

based on species-level microbiome abundance data. The strength of this analysis lies in the utilization of a multivariate approach to construct

a machine learning framework that achieves the accurate classification of ASD versus TD children. The addition of SHAP values provides

insightful information regarding the contribution of each feature. Furthermore, SHAP analysis enables the exploration of both global and local

effects, offering a comprehensive understanding of the interplay between features and the classification algorithm. This capability has prom-

ising implications for personalized medicine, as it allows for an individualized assessment of the role played by each feature in the predictive

model for each subject.27

Through a Shap analysis, themost important OTUs were identified out of 1322, deriving from the analysis of themicrobiota of 254 subjects

aged between 2 and 13 years, 143 of these with typical development and 111 with ASD.8 Each OTU corresponds to a microbe, classified at

domain, phylum, class, order, family, genus, and species level. In particular, the first 20 most important OTUs reported in Table 2 has been

examined.

The results of the Shap analysis highlight that two Phyla, Firmicutes and Bacteroidetes, were the most representative of differences

featuring the GM in ASD. The two Bacteroidetes taxa (OTU 625 and 390) belong to the class Bacteroidia and to the order Bacteroidales,

differing at the family level in Prevotellaceae and Porphyromonadaceae, respectively. According to the study by Arumugam et al., Prevotella

was identified as a keystone taxon of the enterotype 2.28 In the GM, the Prevotella genus is a dietary fiber fermenter and shows potential as a

biomarker due to itsmetabolite signature and high genetic diversity. Contributing to polysaccharide breakdown, Prevotella abundances were

positively associated with beneficial propionate metabolism.29 However, due to its strain variability in hosts,30 Prevotella can also be
iScience 27, 110709, September 20, 2024 5



Figure 4. SHAP values bar plots

(A) SHAP values bar plot for a child with autism spectrum disorder (ASD) (A) and a child with TD (B). The plot identifies the most influential feature(s) and their

impact on the ASD or TD classification. The SHAP values for these subjects are associated with a single iteration of the pipeline workflow, but the average SHAP

values per subject show a similarity to these results).
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considered an intestinal pathobiont, as it has been correlated with HIV31,32 and colitis.33 Porphyromonadaceae (i.e., Barnesiella), identified as

significantly impacting the ASD fingerprint, has demonstrated the capability to produce butyrate and iso-butyrate from glucose.34 Sixteen

taxa, instead, belong to the phylum Firmicutes, fourteen of these belong to the class Clostridia, order Clostridiales. Among Clostridiales,

12 out of 14, were Ruminococcaceae (OTU 976, 910, 222, 75, 970, 628, 789, and 788) or Lachnospiraceae (OTU 1225, 679, 893, 793, 784). Spe-

cies from both families are recognized as the main colonizers of GM since birth and are considered part of the core GM in humans.35 More-

over, their genomes have beenwidely investigated for their fibrinolytic specialization36 and their involvement in themetabolismof short-chain

fatty acids (SCFAs).37 Similar to Prevotella, Lachnospiraceae has shown controversial results in terms of activity in hosts, being found to in-

crease in a wide number of patients.36 However, considering the involvement of Prevotella and Barnesiella and the high number of OTUs
Figure 5. PCA biplot of relative abundance data for TD and ASD subjects

(PCA biplot displaying relative abundance data, where blue dots correspond to TD subjects and orange dots represent individuals with ASD. The OTUs with the

largest PC loadings can be seen in the figure, showing a strong correlation with the principal components. The x and y axes represent the first two principal

components (PC1 and PC2), with their explained variance ratio).
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Figure 6. PCA biplot of SHAP values in TD and ASD subjects

(PCA biplot of SHAP values displaying relative abundance data, where blue dots correspond to TD subjects and orange dots represent individuals with ASD.

Bacteria linked to autism spectrum disorder (ASD), including OTU625, OTU976, OTU1301, OTU390, and OTU1225, exhibit high PC loadings, indicating

robust associations with the principal components. The x and y axes represent the first two principal components (PC1 and PC2), with their explained

variance ratio).
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from Ruminococcaceae and Lachnospiraceae, it is possible to speculate that impaired SCFA metabolism could be recognized in ASD, as

suggested by previous investigations.38 The other OTUs of Firmicutes were identified as Megasphaera (OTU 1301), Christensenellaceae

R-7 group (OTU 813), and Holdemanella (OTU 103). The Megasphaera metagenome has been studied, allowing us to define its bile resis-

tance, presence of various sensory and regulatory systems, stress response systems, membrane transporters, and antibiotic resistance.39

Few studies have focused on the Christensenellaceae R-7 group and Holdemanella, mainly reporting correlation analyses in various exper-

imental settings, such as obesity,40,41 major depressive disorder,42 and HIV.43 The last two OTUs belonged to the Proteobacteria phylum.

Sutterella (OTU 1087) has been noticed as a potential biomarker of ASD,44 whereas OTU 550, lacking identification at the genus level, was

identified as a microbe belonging to the Enterobacteriaceae family, a usual colonizer of the GM.

Moreover, in this study was explored the potential use of SHAP values for enhancing the interpretability of PCA outcomes in the context of

microbiome-disease data. Microbiome datasets typically exhibit high dimensionality, characterized by a considerably larger number of fea-

tures (taxa) compared to the total number of samples. The reduction of data dimensionality and its projection onto a lower-dimensional space

offer valuable insights for data exploration and visualization purposes. Specifically, PCA frequently serves as a means to visualize sample sim-

ilarities within a 2D or 3D space, representing a valuable preliminary step prior to sample clustering or classification.45
Figure 7. PCA plots of SHAP values with ASD probability overlay

(PCA plots illustrating SHAP values overlaid with ASD probability, revealing a distinct pattern of escalating ASD likelihood from the right to the left side of PC1.

The x and y axes represent the first two principal components (PC1 and PC2), with their explained variance ratio).

iScience 27, 110709, September 20, 2024 7



Figure 8. K-means clustering outcome on local explanation embeddings for ASD individuals

(Outcome of K-means clustering applied to the local explanation embeddings of individuals with ASD. The x and y axes represent the first two principal

components (PC1 and PC2), with their relative explained variance).
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In the PCA plot of microbial relative abundance data, a clear separation between TD and ASD samples is not evident. On the contrary,

when PCA is applied to SHAP values, amore pronounced separation becomes observable. Additionally, a trend of increasing ASDprobability

along PC1 was also observed, as subjects located on the left side of PC1 exhibit a higher probability of ASD, and vice versa.

Furthermore, by leveraging local explanation embeddings and an unsupervised clusteringmethod, it was possible to cluster ASD subjects

into subgroups. This analysis revealed a cluster with a lower ASD probability, which allowed the identification of false negatives. The recog-

nition of false negatives holds substantial clinical implications, necessitating a deeper exploration of its ramifications for patient care. This

observation prompts a critical examination of potential factors contributing to false negatives, thereby offering valuable insights for refining

the accuracy of ASD classification. The identification of a cluster with lower ASD probability not only contributes to the understanding of ASD

heterogeneity but also presents opportunities for tailoring diagnostic strategies and interventions based on individualized profiles within this

subgroup.
Conclusion

In summary, this study has explored the application of explainable artificial intelligence (XAI) in the context of gut microbiome-based autism

spectrumdisorder (ASD) classification. The utilization of the SHapleyAdditive exPlanations (SHAP) algorithmhas demonstrated its capacity to

derive personalized feature importance, enabling the identification of potential bacterial biomarkers associated with ASD. The proposed
Figure 9. Boxplots of ASD probability distributions across different clusters

(Boxplots of the distributions of ASD probabilities among different clusters).
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Table 2. Classification of the first 20 OTUs deriving from the Shap analysis

OTU Phylum Class Order Family Genus Species

625 Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 2 Uncultured bacterium

976 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae

UCG-014

Unclassified bacterium

390 Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Barnesiella Uncultured bacterium

1301 Firmicutes Negativicutes Selenomonadales Veillonellaceae Megasphaera Uncultured bacterium

1225 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium Uncultured bacterium

910 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae

UCG-014

Unclassified bacterium

222 Firmicutes Clostridia Clostridiales Ruminococcaceae Intestinimonas Intestinimonas

butyriciproducens

813 Firmicutes Clostridia Clostridiales Christensenellaceae Christensenellaceae

R-7 group

Uncultured bacterium

75 Firmicutes Clostridia Clostridiales Ruminococcaceae Subdoligranulum Uncultured bacterium

679 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira Uncultured bacterium

1087 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Sutterella Gutmetagenome

Sutterella

970 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium 6 Unclassified bacterium

893 Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes Anaerostipes hadrus

628 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium 6 Eubacterium siraeum

DSM15702

789 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 1 Uncultured bacterium

793 Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiraceae

NK4A136 group

Uncultured bacterium

788 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae

UCG-004

Uncultured bacterium

550 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae Unclassified bacteria Unclassified bacteria

784 Firmicutes Clostridia Clostridiales Lachnospiraceae Eubacterium

xylanophilum

Unclassified bacterium

103 Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Holdemanella Uncultured bacterium

The OTU column indicates the top 20 most impacting OTUs in the predictive model. The Phylum, Class, Order, Family, Genus and Species columns indicate the

classification of bacteria corresponding to each OTU.
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methodology extends its utility to facilitate data exploration in the domain of microbiome-disease association, particularly through the gen-

eration of interpretable Principal Component Analysis (PCA) results. Notably, this approach effectively unveils distinct ASD subgroups with

varying probabilities. This study contributes valuable insights and tools to advance our understanding of ASD and microbiome interactions.
Limitations of the study

As a pilot study, our research is subject to several limitations. First, it is an observational study wherein we examine the microbiota of certain

children without any intervention procedures. Given the nature of this study, establishing a cause-and-effect relationship betweenmicrobiota

dysbiosis and the onset of autism is challenging. Consequently, this study is confined to exploring the association between these two phe-

nomena, and a clinical intervention study will be necessary to investigate causal relationships. Another limitation of this study is the lack of
iScience 27, 110709, September 20, 2024 9



Table 3. Demographic characteristics of the study participants

ASD (111) TD (143) p-value

Age 5.09 G 1.99 4.94 G 1.85 0.59

Gender 99 M/12 F 130 M/13 F 0.65

The Mann-Whitney test was performed for age, while the chi-squared test for gender.
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external validation using gut microbiota data from other geographical locations. The current study’s dataset was sourced entirely from Dan

et al. 2020,8 and no external datasets were available for testing themodel’s performance. Future research should aim to include external data

to evaluate the generalizability and robustness of the model across different populations. Access to diverse datasets will help in understand-

ing the influence of geographical and environmental factors on the gut microbiome composition in ASD and TD children.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The OTU abundance data have been

downloaded from Gene Expression

Omnibus (GEO) - NCBI

(GEO Database: accession number GSE113690)

https://doi.org/10.1080/19490976.2020.1747329 https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE113690

All analyzed data and code This study https://doi.org/10.5281/

zenodo.12826282

Software and algorithms

Python software version 3.11.5 Python Software Foundation https://www.python.org/

Python package: numpy version 1.24.4 Python Software Foundation https://numpy.org/

Python package: pandas version 1.5.3 Python Software Foundation https://pandas.pydata.org/

Python package: matplotlib version 3.7.2 Python Software Foundation https://matplotlib.org/

Python package: shap version 0.43.0 Python Software Foundation https://shap.readthedocs.io/en/latest/

Python package: sklearn version 1.2.2 Python Software Foundation https://scikit-learn.org/stable/

Python package: xgboost version 2.0.2 Python Software Foundation https://xgboost.readthedocs.io/en/stable/

Python package: seaborn version 0.12.2 Python Software Foundation https://seaborn.pydata.org/

Python package: scipy version 1.10.1 Python Software Foundation https://scipy.org/

Python package: statannotations version 0.2.3 Python Software Foundation https://statannotations.readthedocs.io/

en/latest/statannotations.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sabina Tangaro

(sabina.tangaro@uniba.it).
Materials availability

This study did not generate new unique materials.
Data and code availability

� The OTU abundance data have been downloaded fromGene Expression Omnibus (GEO) - NCBI (accession number GSE113690). The

DOI is listed in the key resources table.

� All original code has been deposited at Zenodo and is publicly available as of the date of publication. The DOI is listed in the key re-

sources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The analyzeddataset is composedof 254 children aged 1–13 years: 111 affectedbyASD and 143 TD.8 The average age of childrenwith Autism

SpectrumDisorder (ASD) is 5.09 years, while the average age of childrenwith Typical Development (TD) is 4.94 years. Regarding gender, there

are 99males and 12 females in the ASD group, and 130males and 13 females in the TD group. Themain informations about it are summarised

in Table 3.

Obtained from the 16S rRNA gene sequence, the relative abundance of 1322 gut microbiota operational taxonomic units (OTUs) were

available for each subject.
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METHOD DETAILS

Metataxonomic (16S rRNA gene) analysis

As reported by authors,8 the 16S rRNA gene V4 region-specific primer are 515F GTGCCAGCMGCCGCGGTAA and 806A GGACTACHVGG

GTWTCTAAT and Illumina TruSeqDNAPCR-Free Library Preparation Kit (Illumina, USA) was used to generate sequencing libraries. Raw fastq

files were merged and Operational taxonomic units (OTUs) were clustered using Uparse 7.1 (http://drive5.com/uparse) according to a se-

quences similarity R 97%, then annotated using the RDP classifier algorithm (http://sourceforge.net/projects/rdp-classifier) according to

the GreenGene version 13.5 database.
Machine learning based classification

The framework implemented is composed of three parts: (i) the classification using XGBoost classifier; (ii) the identification of themost impor-

tant features in the classification of each single patient by using the SHAP algorithm; (iii) the clustering of ASD subject by means of Kmeans

algorithm applied to first two principal components of SHAP values. In Figure 10 the schematic workflow of analysis has been shown.

EXtreme Gradient Boosting (XGBoost) is a supervised learning algorithm based on the ensemble concept: it exploits an aggregation of

weak knowledge models to obtain a more accurate prediction. Each new tree is trained on the errors of the previous one in a process called

boosting.

This type of ML relies on simple basic classifiers, such as decision trees, also called weak models. The peculiarity of boosting is to focus on

training examples that aremore difficult to classify. From the training dataset, a subset of examples is extractedwithout replacement to train a

weak classifier. A weak second classifier is trainedwith another subset of examples randomly drawnwithout remittance from the training data-

set, adding 50% of the previous misclassified examples. A weak third classifier is trained on all examples on which the first two classifiers

disagree. The final classification is achieved by combining the three weak learning models via majority voting.46

XGBoost classifier is a learning algorithm based on gradient boosting. It generates a strong classifier by iteratively updating parameters of

the former classifier to decrease the gradient of loss function.15,47,48
Evaluation metrics

The performance of machine learning algorithms depends on the samples used in the training phase. To resolve this dependence and obtain

statistically robust results, a 10-fold cross-validation was applied to partition the available dataset. Each of the partitions was used as a test set,

while the remaining nine were used as a training set.49 In order to optimize themachine learningmodel, hyperparameter tuning was conduct-

ed using random search with the RandomizedSearchCV function from scikit-learn.50 The following parameters were varied: ‘‘max depth’’ =

½3;5;None�, ‘‘colsample bytree’’ = ½0:3;0:5;0:7;0:9�, and ‘‘n estimators’’ ranged from 50 to 300 with steps of 50. To find the best model, this

hyperparameter optimization was performed using nested cross-validation to eliminate bias in the estimation of test error.51 Therefore, within

each training phase, an inner 3-fold cross-validation was conducted. The whole sequence was repeated 50 times, by dividing the dataset with

different partitions between the various iterations.

The metrics used to evaluate the performance of models were.

� Accuracy:

ACC =
TP+TN

TP+FP+TN+FN
(Equation 1)

� Sensitivity:

SENS =
TP

TP+FN
(Equation 2)

� Specificity:

SPEC =
TP+TN

TP+FP+TN+FN
(Equation 3)
14 iScience 27, 110709, September 20, 2024
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� Precision:

PREC =
TP

TP+FP
(Equation 4)

� AU-ROC: is the area under the Receiver OperatingCharacteristic curve, which plots the true positive rate against the false positive rate.
� AU-PRC: is the area under the Precision-Recall curve, which plots precision against recall (sensitivity).

The best model was chosen as the one scoring higher in moremetrics, with particular attention to the highest AU-PRC, which is more infor-

mative than AU-ROC in evaluating imbalanced data classification problems.52,53

SHapley Additive exPlanations (SHAP) analysis

Explainable Artificial Intelligence (XAI) refers to the development of AI systems in such a way that the outputs can be understood and ex-

plained by humans. AI models are often complex and difficult to interpret, therefore XAI focuses on creating algorithms that can articulate

the decision-making process, reasons and logic behind the results, offering clear and easy-to-understand explanations to users.

We used SHapley Additive exPlanations method, a XAI algorithm borrowed from game theory.54,55 The SHAP value of a feature is eval-

uated by measuring whether its inclusion or exclusion from the model affects the algorithm’s performance on the validation set:

FjðxÞ =
X

F4S�fjg

jFj!ðjSj � jFj � 1Þ!
jSj! ½fxðFW jÞ � fxðFÞ� (Equation 5)

where x is an instance, the sum is over all the subsets S of features which include the feature j, jFj!ðjSj � jFj � 1Þ!
jSj! is a weight parameter thatmultiplies

all of the permutations of S! by the potential permutations of the remaining class that doesn’t belong to S, while fxðFWjÞ and fxðFÞ denote
respectively the classification score obtained by including and non-including feature j.

Clustering SHAP values based

Principal Component Analysis (PCA) is a commonly used technique for dimensionality reduction in the context of data visualization and explo-

ration. PCAwas applied on SHAP values obtained from the classifier. The first two principal components were used to cluster ASD patients by

using k-means algorithm.56 K-means is an unsupervised learningmethod to group data points into clusters based on their similarity. The num-

ber of clusters has been identified through the Elbow method and the Silhoette score.57 The Elbow method helps to determine the appro-

priate value of clusters by plotting the variance explained (inertia) as a function of the number of clusters and looking for the ‘‘elbow’’ point in

the plot. The point where the variance explained begins to level off or form an ‘‘elbow’’ is considered a good estimate for the optimal number

of clusters. The optimization method for determining the number of clusters based on the Silhouette score relies on finding the partition with

the highest Silhouette Coefficient. The Silhouette Coefficient is computed by considering themean intra-cluster distance and themean near-

est-cluster distance for each sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

To ensure the robustness and reliability of our comparative analysis of machine learning models, we conducted a statistical significance test

on the performance metrics. The Mann-Whitney-Wilcoxon test was employed in a two-sided manner. We set the threshold for statistical sig-

nificance at P < 0:05.
iScience 27, 110709, September 20, 2024 15


	ISCI110709_proof_v27i9.pdf
	Personalized identification of autism-related bacteria in the gut microbiome using explainable artificial intelligence
	Introduction
	Results
	Autism subgroups

	Discussion
	Conclusion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Method details
	Metataxonomic (16S rRNA gene) analysis
	Machine learning based classification
	Evaluation metrics
	SHapley Additive exPlanations (SHAP) analysis
	Clustering SHAP values based

	Quantification and statistical analysis




