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Abstract

Wound healing is a complex process that is critical in restoring the skin's barrier func-

tion. This process can be interrupted by numerous diseases resulting in chronic

wounds that represent a major medical burden. Such wounds fail to follow the stages

of healing and are often complicated by a pro-inflammatory milieu attributed to

increased proteinases, hypoxia, and bacterial accumulation. The comprehensive treat-

ment of chronic wounds is still regarded as a significant unmet medical need due to

the complex symptoms caused by the metabolic disorder of the wound microenvi-

ronment. As a result, several advanced medical devices, such as wound dressings,

wearable wound monitors, negative pressure wound therapy devices, and surgical

sutures, have been developed to correct the chronic wound environment and achieve

skin tissue regeneration. Most medical devices encompass a wide range of products

containing natural (e.g., chitosan, keratin, casein, collagen, hyaluronic acid, alginate,

and silk fibroin) and synthetic (e.g., polyvinyl alcohol, polyethylene glycol, poly[lactic-

co-glycolic acid], polycaprolactone, polylactic acid) polymers, as well as bioactive mol-

ecules (e.g., chemical drugs, silver, growth factors, stem cells, and plant compounds).

This review addresses these medical devices with a focus on biomaterials and appli-

cations, aiming to deliver a critical theoretical reference for further research on

chronic wound healing.
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1 | INTRODUCTION

Wounding occurs when the epidermal layer of skin is ruptured and the

underlying dermis is thus exposed to the air. Depending on the depth of

the skin damage and the area of the skin affected, the tissues exposed

to the air range from blood vessels to bone. Thus, wounds are generally

classified into three categories. When only the epidermal skin surface is

injured, it is regarded as a superficial wound. When the injury involves

deeper dermal layers (e.g., blood vessels, sweat glands, and hair follicles),

it is known as a partial-thickness wound. In terms of a full-thickness

wound, this happens when the underlying subcutaneous fat or deeper

tissues become ruptured.1 Burns are common skin injuries that also pre-

sent significant challenges in restoring functionality and preventing scar-

ring. Burn injuries can be classified as first-, second-, and third-degree, in

accordance with superficial, partial-thickness, full-thickness wounds. For

fourth-degree burns, the nerve endings are ruptured and there is a loss

of feeling in the wound area, and the damage involves underlying

tissues, muscles, tendons, ligaments, and even bone.1

There are four distinct, yet overlapping phases for completing

the wound healing process, including hemostasis, inflammation, prolif-

eration, and remodeling (Figure 1). A variety of cell types, enzymes,

cytokines, proteins, and hormones participate in the tissue repair pro-

cesses.2 Briefly, after an injury is created, in the normal healing process,

hemostasis will be triggered to generate blood clots and blood vessels

constrict to restrict the blood flow, followed by the secretion of

proinflammatory cytokines and growth factors.3 These growth factors,

in turn, stimulate inflammation, facilitated by macrophages, neutrophils,

and lymphocytes that are recruited by epithelial cells. Angiogenesis is

then induced by growth factors, where reepithelization occurs due to

the proliferation of fibroblasts and keratinocytes. The fibroblasts, at a

later time point, will further differentiate into myofibroblasts leading to

the deposition of extracellular matrix (ECM).4

In order to pave the way for promoting wound healing, a compre-

hensive understanding of the healing process and the potential poly-

mers and bioactive compounds, along with existing medical devices

for wound management, are considered important requirements that

physicians and technologists must be aware of, to benefit from bioma-

terial assisted wound healing. The aim of this review is to provide an

updated overview of the potential of biomaterials and their applica-

tions in wound management and treatment and offer an organized

framework for categorizing natural and synthetic polymers, as well as

bioactive compounds, that will be useful in biomedical device

manufacturing for addressing chronic wound healing. We chose to

focus on both biomaterials and their applications because, with

increased studies on wound dressings, there is still a lack of reviews

updating the latest research findings. Particularly, sutures as the most

popular surgical devices, their potential for facilitating wound healing

is neglected. In our opinion, we need to be cognizant of wider fields

to be able to develop new strategies to tackle the challenges pres-

ented by chronic wounds.

2 | STUDY METHOD

Firstly, articles that address wound healing with a focus on biomate-

rials and biomedical devices were searched from the Web of Science,

Google Scholar database and related websites for the years 2010 to

2022. Secondly, all search results were exported to a spreadsheet for

organized review and the quality evaluation was performed by noting

the study type. The relevant articles were identified based on the

F IGURE 1 Schematic representation of the cutaneous wound healing. (A) Hemostasis. A wound causes blood clot formation.
(B) Inflammation. Recruitment of macrophages and neutrophils. (C) Proliferation. Fibroblast proliferation induces epithelial cell generation.
(D) Remodeling. Wound closure
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abstracts of the research. The full text of articles was obtained if they

matched the criteria of desire. Search terms used included a combina-

tion of the following: chronic wound, wound healing, wound manage-

ment, skin tissue engineering, biopolymer, phytomedicine, biomaterial

application, wound dressing, growth factor, stem cell, silver, curcumin,

honey, aloe vera, suture, nanofiber scaffold, hydrogel. During this pro-

cess, 2940 articles were discovered, 957 articles were selected, and

289 of them were cited in this study.

3 | WOUND HEALING IN NORMAL AND
CHRONIC WOUNDS

The initial repair of a wound is completed by the formation of a fibrin

blood clot to reinforce the wound area and a haemostatic plug is

formed to efficiently seal off the underlying tissues from any

extended exposure to the air.2 Serotonin to promote cell proliferation

and migration of keratinocytes and fibroblasts, and histamine to accel-

erate angiogenesis are released by mast cells at the injury site. Fur-

thermore, endothelial cells initiate the recruitment of neutrophils and

monocytes for the formation of macrophages at a later stage.2 Leuko-

cytes are also encouraged to the wound site due to complement acti-

vation. Bacteria are phagocytosed by macrophages for eliminating

microbes and removing dead cells.5 Besides bacteria, foreign bodies,

and endotoxins can also activate macrophages to release growth fac-

tors to contribute to the various cellular reactions.5 Angiogenesis is a

process initiated in the inflammation phase, that involves growing

new blood vessels from existing ones.6 Newly formed epithelial tissue

can completely cover the wound site within the first 48 h due to the

migration of basal cells from the edge of the wound.

After a few days, macrophages supersede the neutrophils to acti-

vate cytokines and produce growth factors. In the following week,

transforming growth factor-beta (TGF-β) stimulates fibroblast prolifer-

ation to infiltrate the wound clot, increasing the number of single col-

lagen fibers. At the initial stage, collagen fibers are soft gel-like

biomaterials that accumulate outside the cells. When the wound

becomes mature, collagen fibers are remodeled into a strong fiber

placed to cover the whole wound bed. At the same time, a certain

number of fibroblasts transform into myofibroblasts for the sake of

smooth muscle cell formation.7 Subsequently, the wound area starts

to contract with the help of myofibroblasts and is eventually closed

by secondary determination.7 The cytoplasmic actin filaments are the

major components of the myofibroblast, which is the main cause of

wound contraction. The wound remodeling phase is a continuous pro-

cedure that can progress throughout the lifetime of the patients.8

Based on the method of wound formation and the duration of

the wound healing process, there are typically two types of wounds,

including acute and chronic. Amongst healthy patients, an acute

wound can be healed completely within 2 to 3 weeks, followed by the

remodeling phase with minimal scarring.9 However, when a wound

becomes stuck in one of the phases for a period of 6 to 8 weeks, then

the wound is categorized as a chronic wound.8 In a chronic wound,

the site of damaged tissue is greater than the visible area. The tissues

beneath and around the wound site are also affected which can fur-

ther develop into an ulcer.8

The main causes of acute wounds are ascribed to mechanical inju-

ries (i.e., frictional contact between cutaneous and solid surfaces),

which includes penetrating injuries such as surgical wounds caused by

incisions. Other causes involve burns, electrical shock and chemical

injuries.10 Chronic wounds, on the other hand, are related to certain

diseases, such as diabetes, and do not follow a logical progression.11 A

chronic wound is defined as a wound that fails to heal promptly or a

set of healing phases, namely hemostasis, inflammation, proliferation,

and remodeling, as in Figure 1.6

In the early stages of wound repair, the lack of macrophages in the

inflammation or proliferation phase results in a reduction of re-

epithelialization and granulation tissue formation or hemorrhage.12 The

M1 subset of macrophages facilitates the formation of

pro-inflammatory mediators and conducts the phagocytic activity.

Whereas, the M2 subset of macrophages is associated with the produc-

tion of the ECM and the formation of anti-inflammatory mediators.13

The failure of the transition between M1 and M2 results in chronic

wounds (e.g., venous ulcers and diabetic wounds).14 Chronic wounds

frequently remain in the inflammation phase and the duration is depen-

dent upon factors such as bacterial load and the presence of necrotic

tissue in the wound site.11 Additionally, most chronic wounds never

heal, even the wounds that are able to heal may take several years.

Moreover, there is a high risk for the wound to reappear after healing,

unless the foundation issue is solved Ferreira et al., (2006) concluded

that an acute or chronic wound that takes a long time to heal should be

treated as a complex wound. This type of wound is characterized as

having an extensive loss of integument (i.e., skin, hair, and glands), the

presence of infection, tissue necrosis, and underlying pathology.15

For patients with diabetes, the wound healing process halts at the

inflammatory phase, which hinders the generation of cytokines, pro-

teins and growth factors that are essential for completing the wound

healing process.16 A chronic wound often results in the formation of

an ulcer that can be unhealing, and in the worst case, can lead to

amputation. The mechanisms that cause the pathogenesis of chronic

wound healing include the continued expression of inflammatory

cytokines, nonresponding macrophages and polymorphonuclear leu-

kocytes.16 Furthermore, the reactive oxygen species become

increased in the case of delayed wound healing, which stimulates pro-

apoptotic transcription and stimulates the executioner caspase-3 to

cause apoptosis that irretrievably eventually leads to cell death.2

Impaired wound healing is a serious medical problem that may lead

to increased health care expenses and poor quality of life for patients

that may result in repeated re-hospitalization.17 Type-2 diabetics, for

example, can cause chronic unhealing wounds and foot ulcers. Chronic

wounds are painful and take a long time to heal or fail to heal alto-

gether. They can also cause further complications, including prolonged

inflammation, and microbial infections. They may also inhibit angiogen-

esis and prevent wound closure.16 In the worst cases, amputation of

the affected limb or organ may be required when the available clinical

methods have failed to produce the desired results. Thus, studies on

wound dressings that have effective healing potential are essential.
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4 | WOUND INFECTION AND
WOUND PAIN

4.1 | Wound infection

The presence of micro-organisms (e.g., bacteria and fungi) can weaken

the natural immune system of the host and induce infection in the

injured areas. Streptococcus pyogenes, Staphylococcus aureus, Pseu-

domonas aeruginosa, and some Clostridium species are common bac-

terial sources that cause delayed wound healing. Other wound

infection factors include hypoxia, ischemia and immune deficiencies

(e.g., virus and chemotherapy).18

Additionally, neglected wound care can eventually lead to fatali-

ties from bacteraemia and septicaemia.10 In healthy individuals, micro-

organisms will multiply on the surface of a wound, but this does not

trigger the host immune response or show any clinical symptoms.19

Unfortunately, when the colonization of the wound invades the living

tissues of the host, a series of local and systematic responses are trig-

gered. This can consequently cause purulent discharge and symptom-

atic cellulitis, which further leads to soft tissue injury.20 It has been

reported that the formation of bacterial biofilms is responsible for the

delay of wound healing caused by the high microbial load on the

wound site.19 In terms of burn wounds, roughly 75% of this type of

wound are more predisposed to contamination, due to the presence

of micro-organisms already present in the hair follicles, sebaceous

glands and the presence of Pseudomonas aeruginosa and Staphylo-

coccus aureus.21 Chronic wounds are more prone to infection in com-

parison to acute wounds. This is due to the impaired migration of

leukocytes and weakened phagocytosis under the presence of high

microbial bioburden.16

4.2 | Wound pain

Pain management is crucial to the recovery of injured patients. Exces-

sive pain can hinder the healing process due to the anxiety-induced

accumulation of stress hormones, leading to prolonged physical and

mental burden and extended hospital stays.22 It is worth noting that

the expression of pain from the patient needs to be addressed individ-

ually since the pain process largely depends on each patient's percep-

tion, not what clinicians believe it should be. There are two types of

wound pain, including nociceptive pain and neuropathic pain. Noci-

ceptive pain is a natural physiological response when encountering

tissue damage. This type of pain generally lasts within a set period,

but when the healing speed slows down, then the inflammatory

response might extend. Under this circumstance, primary hyperalgesia

(at the wound site) and secondary hyperalgesia (in the surrounding tis-

sue) may experience intensified sensitivity.23 Neuropathic pain is gen-

erated by nerve damage, which can be caused by a primary lesion.

The development of neuropathic pain may be related to infection,

cancer or metabolic disorders. This can lead to chronic pain over a

long period.24 For the sake of patient comfort and daily task perfor-

mance, alleviation of pain is the priority for patients with chronic

wounds. Efficient wound management can significantly promote a

patient's quality of life.25 Skin transplants, for instance, can cause

extreme pain to the patient, due to the impact of the exposure of

nerve endings during the skin harvest. Therefore, pain management is

also necessary at the secondary wound site.10

Primary hyperalgesia is a heightened sensitivity caused by a

prolonged inflammation or repeated stimulus to the wound and sur-

rounding area, which may be treated by the combination of a non-

steroidal anti-inflammatory drugs (NSAIDs) combined with a mild

opioid in the hospital, to decrease local inflammation and modulate

pain at spinal cord level, respectively.24 Wound dressings provide two

basic functions. The first is to cover the wound, preventing infection.

The second is to alleviate wound pain, by reducing the bacterial load

and hence reducing the inflammatory reaction to the nervous system.

Oral administration, on the other hand, can take up to a couple of

days to have a significant impact on pain relief. Therefore, topical drug

delivery to the wound site is the top choice for pain alleviation. Ibu-

profen, in particular has been widely studied due to its excellent local

pain reduction effects.26 Arapoglou et al., (2011) designed a foam

dressing loaded with ibuprofen and compared its effect with local best

practices on various wound types.27 They reported that ibuprofen-

loaded foam dressings were associated with significantly higher pain

relief based on patient scores. Therefore, they believed that ibuprofen

should be applied in chronic and acute wounds for efficient pain

reduction, which also suggested that local pain relief by ibuprofen

could be a safer alternative to systemic pain treatment.27

5 | POLYMERIC MATERIALS

5.1 | Natural polymers

Natural polymers are generally biodegradable or bioabsorbable and bio-

compatible. Some also manifest antimicrobial or anti-inflammatory prop-

erties such as chitosan and keratin. Hence, natural proteins (e.g., keratin,

casein, collagen, and silk) and polysaccharides (e.g., chitosan, alginate,

and hyaluronic acid) have received increased interest in wound dressing

production, due to their similarity to macromolecules, which are recog-

nized by the human body, achieving ECM biomimicry.

5.1.1 | Chitosan

Chitosan is one of the most widely used ligands. It has been reported

to have a positive charge and can improve the absorption of metal

anion drugs.28 Owning to its cationic charge, chitosan has been applied

as a coating layer on negatively charged particle surfaces via electro-

static adsorption.29 Chitosan has also shown its potential for the modu-

lation of drug release behavior.30 The nanoparticles that are coated by

positively charged chitosan attract the negatively charged cell mem-

brane, which enhances the permeation of poorly water-soluble drugs.31

The functional versatility of chitosan makes it a popular natural cat-

ionic polymer in the production of hydrogels, membranes, and electrospun
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nanofibers for wound healing.17,32,33 Furthermore, chitosan dressings have

been selected to treat injured tissues due to their antibacterial proper-

ties.34 Chitosan/alginate hydrogels were produced and loaded with differ-

ent concentrations of hesperidin.35 These hydrogel products were

evaluated in the full-thickness dermal wound in a rodent model. The

results indicated that the chitosan/alginate hydrogels had a better wound

closure rate than the control group of gauze-treated wounds.35 In another

study, a nanofiber mat that contained chitosan, PVA and zinc oxide (ZnO)

demonstrated high antibacterial and antioxidant activities, suggesting its

potential for the faster healing of diabetic wounds.17

5.1.2 | Keratin

Keratin is one of the most abundant protein sources found in human

or animal parts, such as hair, wool, nails, and feathers. Keratins can be

divided into two categories, including epithelial keratins and tri-

chocyte keratins. Epithelial keratins are soft keratins, which contain

low sulfur (�1%) and cysteine (<3%). They are the main component in

the stratum corneum of the skin and play an important role in stabiliz-

ing the cells in epithelia. Trichocyte keratins, as hard keratins, have a

higher sulfur (�5%) and cysteine (4%–17%) percentage. They act as

structural scaffolds in the areas connecting to the epidermis.36 Keratin

materials have been widely applied in tissue regeneration ascribed to

their biocompatibility, biodegradability and structural support. These

properties make it possible to produce various wound dressings, such

as films, hydrogels and scaffolds, to facilitate the chronic wound

healing process.37

Keratin and HA-based PCL/PEO fibers can be produced via emul-

sion and coaxial electrospinning techniques. The results showed that

the incorporation of natural polymers promote cell viability and has

the potential for wound dressing applications.38 Keratin (5% w/v) and

chitosan (2% w/v)-based PVA nanofibrous scaffolds have been

reported to exhibit desirable tensile strength, swelling ratio, and

porosity. These properties were enhanced with the addition of keratin

and chitosan.39 The same research group also utilized the keratin/

chitosan (50:50 w/w) blend to produce surgical sutures with anti-

inflammatory properties. The scratch assay showed improved cell pro-

liferation and migration in the presence of the sutures, which indi-

cated the potential of the sutures to be used for facilitating wound

healing.40

5.1.3 | Casein

Casein is derived from cow milk makes up 80% of the protein in milk.

It has received increasing attention due to its biocompatible, biode-

gradable, self-assembling properties. More than half of casein (�55%)

contains polar amino acid groups, which benefits hydrogen bond for-

mation to produce films.41 However, this property also makes it

impossible to electrospun casein alone. Therefore, synthetic polymers

(e.g., PEG, PVA) have been added to facilitate the casein-

based electrospinning process.42,43 Moreover, cross-linking agents

(e.g., glutaraldehyde and silane) are required during the casein-based

product process, due to the low water stability and mechanical

strength of casein caused by its high hydrophilicity.41

Casein/PVA electrospun nanofibrous mats were successfully fab-

ricated to promote haemostatic activity via thrombin generation. The

addition of casein enhanced epithelial proliferation and restitution.42

Casein/cellulose/chitosan scaffolds have been developed to facilitate

wound healing. The presence of casein exposed nucleation sites to

bind blood clotting ions, which is essential for hemostasis.44 A study

on casein/alginate-based injectable hydrogel production was

reported. The hydrogels consist of casein, alginate, iron nanoparticles,

and bacterial cellulose. The swelling studies revealed a 4000% water

uptake of the hydrogels, which indicated its wound dressing potential.

Additionally, the porous structure of the hydrogel improved cell viabil-

ity, suggesting the use of this hydrogel product in wound

management.45

5.1.4 | Collagen

Collagen is a biodegradable natural tissue matrix, which provides ten-

sile strength for the skin. It is one of the most important components

involved in wound healing and tissue regeneration, which makes colla-

gen a popular choice in the terms of selecting biocompatible and non-

toxic materials.46 Moreover, collagen can facilitate the hemostasis

process and has antibacterial properties.46 Collagen has also been

reported to have the ability to enhance dermal and epidermal wound

repairs by stimulating granulation tissue formation and activating

angiogenesis and the deposition of collagen fibers.10

As the main component of the ECM and the most abundant pro-

tein in the human body, collagen is widely used to produce wound

healing biomedical devices. A collagen/chitosan gel was developed

and incorporated with a cell-penetrating peptide (CPP).47 The authors

reported that this collagen/chitosan/CPP gel could retard S. aureus

proliferation and showed good wound healing capacity. This result

was further confirmed by in vivo study in the mouse where the treat-

ment of collagen/chitosan/CPP gel was compared with a collagen/

chitosan gel and a chitosan gel. Amongst all the treatments, collagen/

chitosan gel contained CPP demonstrated the highest healing rate and

fastest healing speed.47 In another study, type I collagen was

electrospun with PLA and loaded with a drug compound (either triclo-

san or levofloxacin).48 This product demonstrated good antimicrobial

activities for both E. coli and S. aureus. In addition, an initial burst

release was observed due to the presence of the drug at the surface.

Furthermore, a controlled drug dissolution profile was achieved after

the burst release, which was attributed to the addition of collagen to

the fibers that helped shift drug release behavior.48 Zhou et al. (2017)

successfully electrospun bioactive glass and fish collagen to produce

nanofiber mats.49 The mats possessed improved tensile strength and

had a certain level of antibacterial activity. Furthermore, the collagen/

bioglass mats facilitated the secretion of type I collagen and vascular

endothelial growth factor in human dermal fibroblasts, which

indicated its potential for effectively inducing skin regeneration.49
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5.1.5 | Hyaluronic acid

Hyaluronic acid is a glycosaminoglycan that is one of the components

of connective tissues. It is the main integrant of ECM in the skin,

which also plays an important role in the tissue regeneration pro-

cess.50 Hyaluronic acid maintains structures to support the biological

function of organs and it has a high capacity to retain water on the

wound surface, which can prevent the injured sites from dryness and

promote healing speed.51 Hyaluronic acid can be easily incorporated

into foams or cream to achieve topical drug delivery. Some commer-

cial products contain Hyaluronic acid, including the commercial prod-

ucts Hyalofill® and Hyalomatrix® exhibited positive outcomes in

wound repair and pain management.52

One of the disadvantages of applying hyaluronic acid solutions in

the electrospinning process is their very high viscosity even at low

concentrations. Despite these limitations, El-Aassar et al. (2020) fabri-

cated Hyaluronic acid/polygalacturonic acid nanofibrous mats embed-

ded with silver nanoparticles,53 an in vivo study demonstrated that

maximum wound epithelization and collagen deposition was achieved

after 14 days, indicating its efficient use for the quick healing of

wound infections.53 In another study, Eskandarinia et al. (2020)

designed polyurethane/hyaluronic acid nanofibrous mats enriched

with three different concentrations of ethanolic extract of propolis

(EEP).54 The results showed that polyurethane/hyaluronic acid

nanofibrous mats with 1% EEP exhibited higher antibacterial activity

and higher biocompatibility, as well as an accelerated wound healing

process in the animal model in comparison with mats that contained

2% EEP, which promoted their use for further biomedical applica-

tions.54 Hyaluronic acid-based hydrogels are another focused research

topic. Dopamine-functionalized hyaluronic acid hydrogels incorpo-

rated with arginine derivatives were developed with improved antioxi-

dant activity.55 Enhanced tissue re-epithelialization and accelerated

wound closure were observed in a murine model, suggesting its

potential to be used for wound skin repair and regeneration in human

patients.55 The design of photo-responsive supramolecular hyaluronic

acid hydrogels was reported by Zhao et al. in 2020.56 This hydrogel

product displayed excellent biocompatibility and cell viability. Further-

more, a full-thickness skin defect model revealed superior wound

healing efficiency with controlled epidermal growth factor (EGF)

release properties, which indicated that it could be a promising wound

dressing for clinical treatment.56

5.1.6 | Alginate

Sodium alginate is a natural polysaccharide extracted from brown algae,

which has many biological properties that favor wound management.57

Sodium alginate is widely used in biomedical applications due to its bio-

compatibility, bio-absorbability, and ability to form gels. Its high-water

absorption property removes secretions from the injured sites and

hence, controls bacterial growth. It is generally utilized in a hydrogel

form for facilitating wound healing and tissue engineering.57 The com-

mon way to prepare hydrogel from alginate solution is to add an ionic

crosslinking agent. An “egg-box” shape forms between guluronic acid

and adjacent polymer chains due to the interactions between the mole-

cules.10 The molecular weight ratio of combined mannuronic and

guluronic, and the cross-link extensions have a significant impact on the

matrix formation. The amount of α-l-guluronic acid that residues in a

hydrogel determine the characteristics of the gels (i.e., rigid gels contain

high guluronic acid, whereas elastic gels contain low guluronic acid).58

The high acceptance of alginate in biomedical applications is

related to its positive clinical research results. For instance, a group of

patients with full-thickness pressure ulcers were randomized with algi-

nate wound dressing or dextranomer paste treatment for the wounds.

It was reported that patients who were treated with alginate wound

dressings had relatively better outcomes.10 Sodium alginate solutions

are commonly mixed with PVA to produce hydrogels or nanofibers. An

alginate/PVA hydrogel was designed and encapsulated with synthe-

sized green tea polyphenols,59 which were characterized and applied in

a diabetic rat model for regulating the immune response and enhancing

wound closure. The results demonstrated that this hydrogel product

promoted chronic wound healing by regulating the PI3K/AKT signaling

pathway.59 In another study, a sodium alginate/PVA hydrogel incorpo-

rated with PCL microspheres was introduced by Bahadoran et al.

(2020) for facilitating wound healing.60 In vitro results indicated that

the increased concentration of alginate was associated with higher

porosity and elasticity, but also related to decreased strength and elon-

gation at break. Moreover, the in vivo burn wound rat model showed

potential for achieving cell-induced tissue regeneration and burn

wound healing.60 An alginate/PVA-based nanofibrous membrane pro-

duced via the electrospinning method and incorporated with honey.61

The results showed that the increased honey content led to improved

antioxidant properties, and the alginate/PVA-based nanofibers did not

reveal any cytotoxicity. This study exhibited the biomedical potential of

honey loaded alginate/PVA membrane.61 However, an in vivo animal

study needs to be conducted to confirm its clinical safety.

5.1.7 | Silk fibroin

Silk fibroin derived from various insects has good biocompatibility, bio-

degradability, and mechanical properties.62 Silk fibroin has been widely

studied as a biomedical material for regeneration in a wide range of tis-

sues, such as skin, vascular, cartilage, bone, tendon, and ligament.63–67

One type of silk fibroin extracted from silkworm cocoons contains

amino acid residues. It has been used in a variety of forms

(e.g., hydrogels, films, fibers, and sponges) to enhance collagen synthe-

sis and re-epithelialisation, which in turn promotes wound healing.

A biopolymer dressing capable of temperature sensing and

wound healing was fabricated through electrospinning silk fibroin and

nanodiamond.72 Nanodiamonds are nanoparticles, which are non-

toxic and have a high specific surface area and tunable surface chem-

istry.68 According to the authors, the presence of the nanodiamond

improved the thermal stability of the silk fibroin-based membranes.

High biocompatibility and rapid wound closure rates were observed in

the animal study. Interestingly, this silk fibroin/nanodiamond dressing
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selectively exhibited antibacterial properties toward gram-negative

bacteria but showed no effect on gram-positive bacteria.69 Therefore,

its usefulness as a wound dressing is debatable as most gram-positive

bacteria are pathogenic. In another study, a multilayer membrane (silk

fibroin/chitosan/alginate) with controlled drug release properties was

reported by Pacheco et al. in 2020.70 Silk fibroin provided excellent

mechanical properties for this wound dressing product. It is worth

noting that in this study, the authors reported that the incorporation

of the drug into the membrane did not weaken its mechanical

strength indicating the high performance of the dressings.70

5.2 | Synthetic polymers

Numerous synthetic polymers are used in wound dressings. Amongst

the synthetic polymers, aliphatic polyesters, in particular, are well stud-

ied, including polyvinyl alcohol (PVA), polyethylene glycol (PEG), poly-

lactic acid (PLA), poly(lactic-co-glycolic acid) (PLGA), and

polycaprolactone (PCL).40,71–74 The main properties that these synthetic

polymers have in common are high biocompatibility and hydrophilicity,

which provides a moist environment and inhibits the accumulation of

excess exudates at the wound site, and these polymers generate non-

toxic products during the degradation process.10 In addition, the degra-

dation rate of synthetic polymers can be modulated by adjusting the

polymeric composition and the molecular weight. Another common

property is that synthetic polymeric materials are adhesive, which ren-

ders them with stable mechanical strength and allows them to reside in

the tissue for an extended time.75 The most important reason for them

to be chosen in wound care management is not only due to their ability

to maintain a moist environment, control the release of various bioactive

molecules, resemble skin tissue structures, but importantly these polyes-

ters have approval from the Food and Drug Administration (FDA).75

5.2.1 | Polyvinyl alcohol

PVA exhibits excellent biocompatibility, especially PVA at pharmaceu-

tical grade. PVA is a macromolecular organic substance that has no

side effects on the human body, it has been used in various biomedi-

cal applications, including artificial joints,76 contact lenses,77 cardio-

vascular devices,78 and wound dressing.61 Because of the linear

structure of PVA, it can be crosslinked by strategies such as irradiation

and chemical agents. Venkataprasanna et al. (2020) applied the chemi-

cal glutaraldehyde to crosslink the PVA-based solutions to increase

their mechanical strength and stability.73

In recent publications, the combination of PVA, chitosan and starch

has been a popular topic in the research of wound healing. In one of

the studies, PVA/chitosan/starch was electrospun to produce

nanofibrous mats,79 and it was reported that these mats had high cell

viability and antibacterial properties. Even though this investigation

lacked the in vivo studies necessary to confirm its biological safety, the

in vitro scratch assay proved its ability to accelerate wound healing.79

PVA/chitosan nanofibers that contained the silk protein sericin were

fabricated by the electrospinning technique.80 The low sericin content

of the PVA/chitosan nanofibers exhibited higher cell proliferation than

PVA/chitosan nanofiber alone. Moreover, the animal study further con-

firmed their wound repair capability.80 In another study, PVA/starch

was used to make hydrogel membranes.81 Three different essential oils

(clove, oregano, or tea tree oil) were incorporated into the hydrogel

membranes. According to the authors, PVA/Starch hydrogels produced

with 0.1 ml clove oil in 7% (w/v) starch solution exhibited better

antibacterial efficacy compared to the other essential oils, and it was

suggested for use as a wound dressing for burn wounds.81

5.2.2 | Polyethylene glycol

PEG is a water-soluble amphiphilic polymer. It has been approved for

use in human intravenous, oral and dermal applications by the FDA, due

to its nontoxicity.82 PEG incorporated with PLA modified the unwanted

drawbacks of PLA (e.g., brittleness and low hydrophilicity), to produce

PEG- and PLA-based alternating block and random block polyurethane

dressings for wound healing.83 An in vivo rat skin model showed that

the dressings demonstrated anti-inflammatory properties and had a bet-

ter healing effect than gauze alone.83 PEG/chitosan hydrogels loaded

with silver nanoparticles were reported to be able to accelerate wound

healing in diabetic patients.74 The antimicrobial and antioxidant proper-

ties, as well as the wound healing capacity, were shown in both in vitro

and the in vivo diabetic rabbit model,74 which indicated that it can be a

promising material for chronic diabetic wound healing.

5.2.3 | Polycaprolactone

PCL has good biocompatibility and biodegradability, as well as excellent

mechanical strength. It has been widely used in tissue engineering appli-

cations.84 PCL can be electrospun at low voltages to produce scaffolds

with good mechanical resistance.85 PCL/chitosan/curcumin nanofibers

fabricated via the electrospinning method were then electro-sprayed

with curcumin-loaded chitosan nanoparticles.86 The existence of PCL

improved the spinnability of the chitosan and the strength of the

electrospun nanofibers. PCL/chitosan/curcumin nanofibers showed

antibacterial, antioxidant, and cell proliferation efficiencies, which were

confirmed by an in vivo study, indicating that these nanofibers enhanced

the wound healing process.86 Ehterami et al. (2018) electrospun

PCL/collagen nanofibers that were then coated with insulin delivering

chitosan nanoparticles and tested on a rat model.87 Compared with ster-

ile gauze, PCL/collagen-based dressings provided nearly full wound clo-

sure within 14 days, which suggested its potential to be applied in

clinical practice for wound repair.

5.2.4 | Polylactic acid

PLA is an aliphatic polyester directly obtained by the condensation

polymerization of lactic acid monomers or the ring-opening
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polymerization of the cyclic lactide dimers.88 PLA is biocompatible,

biodegradable and has high versatility. It has been used in tissue

engineering, suture production and other biomedical applications.89

The limitations of PLA, such as its slow degradation rate and low

mechanical strength, can be regulated by blending it with other

polymers or additives to improve its biological and mechanical

properties.90

In one of the studies, PLA was blended with PCL and loaded with

herbal extracts,91 using the double-nozzle electrospinning method to

produce wound dressings. The optimum scaffold had an average fiber

diameter of 638 ± 69 nm and was effective against gram-positive and

gram-negative bacteria.91 However, the authors only conducted a

proliferation MTT assay to show that although the higher herbal

extract led to higher cell viability, there was no in vitro scratch assay

or in vivo animal study was done to investigate the effects of the

PLA/PCL/herbal extract nanofibers on the wound healing process.

Therefore, a further study that can prove its wound healing capacity

needs to be included.

In another study, nanofibers of PLA and Poly(γ-glutamic acid)

(γ-PGA) were fabricated with a core-shell structure via the coaxial

electrospinning method.92 The authors optimized the electrospinning

parameters and demonstrated the biocompatibility and non-

cytotoxicity of the nanofibers. Furthermore, the proliferation of der-

mal fibroblasts and keratinocytes improved, and re-epithelialization

occurred after 14 days of wound creation in the rat model, which indi-

cated the potential of the core-shell structured nanofiber for clinical

wound repair.

5.2.5 | Poly(lactic-co-glycolic acid)

PLGA is a biocompatible and biodegradable copolymer polymerized

from lactic acid and glycolic acid that has been approved for versatile

clinical applications. The ratio of the two monomers determines the

mechanical, physicochemical properties, and the degradation time of

PLGA.93 Porporato et al. (2012) utilized PLGA to promote the activity

of exogenous lactate to accelerate angiogenesis for wound healing. The

results showed that after 10 days of injury, the healing area achieved

with the addition of PLGA was 60% greater when compared with the

control.94 Another study of PLGA/gelatine at ratios of 9:1, 7:3, or 5:5

(v/v) was electrospun to fabricate scaffolds.95 The physical, chemical

and biological properties of the scaffolds were investigated by the

authors. They reported that the 7:3 (v/v) PLGA/gelatine ratio was the

most suitable candidate for chronic wound treatment due to high cell

proliferation and the lack of an inflammatory response.95 However,

from our point of view, their research was not robust enough to con-

clude the suitability of the PLGA/gelatine nanofiber scaffolds in the

application of chronic wound healing. Further studies such as scratch

assay and animal studies need to be conducted as well.

A novel study was conducted by Gao and his colleagues in

2020.96 They designed a bilayer PLGA/PVA dressing, which contained

silver nanoparticles in the PLGA electrospun film, and the stem cells

were seeded into the gelatine modified side of PVA hydrogel.

Interestingly, the addition of silver loaded PLGA films improved both

the mechanical strength and moisture content of PLGA/PVA dress-

ings. Moreover, the seeded stem cells were able to secrete bioactive

growth factors through the dressing to facilitate cell growth and

wound healing.96 This wound dressing has a great potential for skin

tissue engineering.

6 | BIOACTIVE MOLECULES

The application of bioactive molecules in wound dressing manufactur-

ing brings benefits in accelerating wound healing rate and inhibiting

wound infections.

6.1 | Chemical drugs

Drugs like NSAIDs are often prescribed to treat the pain that is gener-

ated from wounds like mechanical injuries or surgical wounds. Never-

theless, to limit systemic exposure to the drugs, they cannot be given

throughout the entire healing process. Therefore, a better way to

introduce anti-inflammatory drugs into a wound healing process is to

produce anti-inflammatory wound dressings or sutures, which enable

target drug release to achieve localized pain relief. The common strat-

egies include electrospinning, suture coating and hydrogel production

(the details of which are discussed in section 6).

Antibiotic drugs for topical delivery to the wound sites have

received increased attention mostly due to the small volumes of drugs

required by the local wound treatment compared to systemic adminis-

tration. Topical application provides high and sustained concentra-

tions of antibiotics to the wound site, which requires a low quantity of

drugs compared with systemic therapy.97 Combining antibiotics with

other methods such as adequate nutrition, proper dressing, and elimi-

nation of dead tissues can reduce the exogenous microbial infec-

tion.98 However, the unnecessary exposure of the resident microflora

to excessive antibiotics can lead to the formation of antibiotic-

resistant strains.99 Moreover, the antibiotic effect on pre-existing nor-

mal bacterial flora is difficult to control.100 Apart from the develop-

ment of resistance, the administration of topical antibiotics may

delay hypersensitivity reactions and cause superinfections.97 There-

fore, topical delivery systems need to be designed that can control

antibiotic release, this can be achieved by applying polymers to engi-

neer stimuli-responsive systems, able to trigger antibiotic release

under specific changes in physiological conditions (e.g., pH and

temperature).99

Even though the incorporation of chemical drugs into biomedical

devices can assist wound repair to some degree, this method is still

limited by the inefficient regulation of the initial burst drug release,

particularly in relation to the wound healing process. Moreover, anti-

biotic resistance has become more common within pathogens, and

this together with the decreased rate of new antibiotic production has

resulted in the search for alternative strategies. Non-antibiotic com-

ponents such as silver and plant products have received increased
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attention for controlling antimicrobial activities in the wound healing

process.101 In addition, combining growth factors and stem cells into

biomedical devices, on the other hand, could provide a more bioactive

strategy to facilitate wound healing.102,103

6.2 | Silver

Silver and its nanoparticles (AgNPs) have been reported as ideal candi-

dates for inhibiting pathogens due to their broad-spectrum antimicro-

bial characteristics. The main mechanism behind its antimicrobial

properties is due to the binding of thiol groups, which deactivates the

enzyme proteins in the cell membrane of bacteria. These proteins are

responsible for the transportation of ions and the production of mem-

brane energy.104 Silver has also been reported to involve catalytic oxi-

dation reactions. Silver catalyzes the oxygen in the cell and the

hydrogen from thiol groups forms disulphide bonds, which changes

the protein structure of the cell, leading to cell dysfunction.104

In the past, despite the antimicrobial properties of silver, its use

was limited due to the belief that the toxic ions might affect patient

health, even though silver is not known to cause cancer or have neu-

rological or reproductive effects. AgNPs with a higher area-to-volume

ratio have been developed to produce wound dressings, which have

higher efficacy of bacterial inhibition and are significantly less toxic to

humans.104 They have been proven to have the ability to inhibit infec-

tions on the wound site caused by both gram-positive and gram-

negative bacteria. Silver has also been found to be toxic against

nonbacterial targets such as fungi. Nanofiber dressing loaded with 1%

silver is used to treat fungi-contaminated burn wounds.105 However,

the results were not statistically significant, authors presumed that it

was due to the low concentration of silver loaded in the dressing com-

pared with commercial products in the market.

A research study aimed at developing silver-containing acti-

vated carbon fibers was compared with commercial silver dressings

to determine their dressing efficacies.106 The authors found that

the silver-containing activated carbon fibers showed antibacterial

properties and the concentration of silver had little effect on cell

viability. They concluded that their products could promote wound

healing in the early stage, as compared with commercial products.

Another study incorporated silver oxide with chitosan and PVP to

produce an antibacterial film.107 The researchers compared this

product with other reported chitosan-based dressings aimed

toward wound healing applications, they found that the silver

oxide-loaded chitosan/PVP dressings had good antibacterial activi-

ties and healing capacity. Moreover, the transparency of the films

enabled wound examination without removing the dressings, which

could eliminate patient discomfort.

6.3 | Growth factors

Growth factors (GFs) are essential for ECM formation and remodeling

in the wound healing process, and they also play a pivotal role in

promoting granulation tissue formation and regulating inflammatory

responses.6 GFs are considered ideal candidates for chronic wound

treatment. They are secreted by the ECM and have the ability to

transfer signals between cells and regulate proliferation, migration,

and differentiation of the cells. The lack of interaction amongst GFs,

ECM and cells generally lead to chronic wounds.108 The deficiency of

GFs, such as vascular endothelial growth factor (VEGF), basic fibro-

blast growth factor (bFGF), platelet-derived growth factor (PDGF),

EGF, and TGF-β, can result in chronic pressure ulcers.108 Additionally,

the generation of PDGF was observed to be very low in chronic der-

mal ulcers compared with acute wounds.6 This suggests that the defi-

ciency of growth factors during the wound healing process is

responsible for chronic wounds and that the incorporation of growth

factors into wound dressings might slow or prevent the progression

from acute to chronic wounds.

However, in nature, GFs have a short in vivo half-life, they

degrade rapidly under normal physiological conditions.109 When

applied to the wound surface, GFs have difficulties in absorbing

through the skin around the wound lesions, and they may also be

extruded before reaching the wound area, which limits GFs use in

chronic wound applications.6 Therefore, to extend the effectiveness

of GFs, a sustained delivery system, such as the incorporation of GFs

into scaffolds, is desired.109 GFs that are embedded inside scaffolds

are protected from wound proteases during the early phase of implan-

tation, but also delayed initial release of the GFs may be achieved.110

Additionally, microencapsulation and nanoencapsulation techniques

have been used to protect the GFs during manufacturing to achieve

long-term exposure for the treatment of chronic wounds. La and Yang

et al., (2015) incorporated platelet-derived growth factor-BB (PDGF-

BB) into a PLGA-based wound healing dressing. The results showed

that GFs had a prolonged release from the nanosphere form com-

pared to the free form, indicating that the nanoparticles might be ideal

to treat chronic wounds.111

The local application of GFs is important to achieve a therapeutic

effect on the wound site. However, continuous injection of GFs is dif-

ficult to apply in a clinical setting. Therefore, a topical delivery system,

such as gel, cream or ointment, renders direct administration of GFs

to the injured site could fulfill the requirements of clinical manage-

ment. Nevertheless, to date, there is only one gel product

(REGRANEX® Gel, becaplermin 0.01%) that has been approved by the

FDA for patients with diabetic foot ulcers.10 Even though the evi-

dence has shown the benefit of becaplermin to chronic wounds is

beneficial, the high cost and frequent dressing change requirement

limits its use.

Biopolymeric wound dressings have been successfully produced

with the incorporation of GFs into commonly utilized biomaterials

including gelatine,112,113 collagen,114,115 and chitosan.116,117

Electrospinning is a popular technique to produce nanofibers with

controlled-release GFs. GF-loaded electrospun fibers can be achieved

by incorporating GFs into the polymeric nanofibers118 or conjugating

them onto the surface.119 The difference in the GF loading strategies

determines a variation in GF release profiles. There was a novel

approach proposed by Kulkarni et al. in 2014.120 They utilized a layer-
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by-layer assembly method to encapsulate EGF on the surface of

poly(acrylic acid)-modified polyurethane nanofibers. This method suc-

cessfully prolonged EGF release, which was regulated by adjusting the

number of layers deposited onto the surface.

Wound healing involves many complex mechanisms, which some-

times require more than one GF delivery to provide sufficient support.

Studies have shown that a combination of different GFs can improve

delayed wound repair in diabetes compared with a single GF treat-

ment.121 Moreover, the spatio-temporal gradients can also have a con-

siderable impact on treatment efficacy. Lai et al. (2014) either

embedded bFGF, EGF, VEGF, and PDGF into collagen/hyaluronic acid-

based electrospun nanofibers or encapsulated them into gelatine

nanoparticles.122 Degradation lasted for a month simulating the tempo-

ral release of the normal wound healing process in the human body

environment. EGF and bFGF were released in the initial stage mimicking

the early phase of angiogenesis of wound repair. The sequent controlled

release of VEGF and PDGF imitated the new skin reconstruction phase

which was confirmed by an in vivo diabetic rat study.

Platelets are natural sources of multi-GFs and proteins, which

takes part in tissue regeneration. Additionally, platelet derivatives

have been reported to facilitate wound healing and accelerate tissue

repair.123 Platelet lysate (PL) is obtained from blood platelets after

freezing/thawing cycles. It has been reported that PL can activate var-

ious cell types during the wound healing process.123 In comparison

with platelet-rich plasma or platelet-rich fibrin, PL has the advantage

of limiting the variability of individuals. It has been used to produce

sponge-like dressings,124 scaffolds,125 bioactive gels,126,127 and eye

drops.128,129 Recently, a core-shell structure particle-based dressing

was designed with a calcium alginate shell and embedded in an algi-

nate matrix.130 PL and an antibiotic were loaded in the external matrix

as active components for the treatment of chronic skin ulcers. Based

on the in vitro and ex vivo studies, the dressings were found to have

excellent mechanical properties to handle stress and were able to

absorb a high amount of wound extrudate.130

6.4 | Stem cells

Due to complex pre-existing conditions such as diabetes and ische-

mia, chronic wounds often appear alongside complications of pro-

longed inflammation and impaired angiogenesis.131 The

conventional methods for facilitating wound healing such as auto-

graft, xenograft, and allograft have inherent drawbacks of second-

ary surgeries, the risk of pathogen transfer and limited availability.

Cell therapy has been introduced to overcome these difficulties.132

Stem cells (e.g., mesenchymal stem cells, endothelial progenitor

cells [EPC], and epithelial stem cells) have been utilized in wound

treatment and their potential discovered for enhancing angiogene-

sis and tissue regeneration.133–135 Even though the existing prob-

lems such as the high rate of cell death might decrease the

treatment efficiency, cells therapy is still a promising strategy, since

it integrates environmental signals and transforms them into bio-

factors in the wound sites.136

For instance, EPCs are bone marrow mononuclear progenitor

cells that secret growth factors and cytokines in the wound site to

facilitate vascularization and increase angiogenesis. However, previ-

ous research on in situ or intravenous injection failed to achieve the

target delivery.132 Hence, Wang and co-workers developed a bioac-

tive glass (BG) nanoparticle-based scaffold able to render high bio-

compatibility and prolong the viability of EPC for promoting wound

healing. BGs have received considerable attention on both hard and

soft tissue repair due to their unique biocompatibility.137 Studies have

reported that BG nanoparticles can release silicon (Si), Calcium (Ca),

and phosphorus (P) ions to provide increased cell response.138,139 It

can also improve angiogenesis of human umbilical vein endothelial

cells (HUVECs) by regulating growth factors such as VEGF and bFGF,

resulting in an improvement in wound healing.138

Evidence has shown the paracrine effect of stem cells on modu-

lating the level of cytokines and GFs around the wound site.132 Differ-

ent from other differentiated cells, stem cells are involved in both

acute and chronic wound healing processes, regulating the healing

response and synthesizing multiple GFs until the skin is reconstructed.

The topical delivery of GFs can be achieved by loading stem cells into

scaffolds, which provide robust mechanical strength to sustain stem

cell actions and enhance cell proliferation. Various stem cells and

techniques can be used for wound healing applications. Amongst

them, mesenchymal stem cells (MSCs) especially adipose-derived stem

cells (ADSCs) are probably the most studied stem cells in cutaneous

wound healing in the past 5 years.140–143 For further reading, Mazini

and co-workers have provided a detailed review of ADSCs in wound

healing management.144

Bone marrow-derived mesenchymal stem cells (BMSC) are an old

fashioned method for facilitating chronic wound healing that has been

well studied.145–147 Guo et al. (2018) recently reported on enhanced

diabetic wound healing using ADSC with similar results to BMSC,148

which was confirmed by conducting an in vivo study on full-thickness

wounds in diabetic mice. Moreover, cell migration and viability of

ADSC and BMSC within the biomimetic-collagen scaffolds were simi-

lar.148 The main challenge of utilizing MSCs in wound management

was to maintain their viability and adherence to the wound bed. In

situ-forming injectable hydrogel dressings have been developed to

secure a large number of cells at the wound infection site. In addi-

tion, the relatively easier “living cell” loading method makes hydrogels

a popular choice for implanting cells into complex tissue shapes.149

6.5 | Natural compounds

The development of alternative wound healing products has been a

popular topic in recent years. Natural sources, in particular have

received increased attention. Natural compounds, such as honey, aloe

vera, curcumin and essential oils, have been applied in wound man-

agement.150,151 Nevertheless, there is still a lack of standardization

methods for the evaluation of the composition of natural products,

which makes it difficult to estimate the efficacy of these compounds

in wound management.
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6.5.1 | Curcumin

Curcumin is a natural polyphenolic molecule extracted from the

Curcuma longa rhizome widely used in both normal and chronic

wound repair. It is a wound-healing agent and has anti-inflamma-

tory, anti-infection, and anti-oxidant effects.152 Curcumin can stim-

ulate granulation tissue proliferation and facilitate the

transformation of TGF-β1and proteins into ECM.153 It acts as an

antioxidant to scavenge free radicals since free radicals are consid-

ered the major cause of inflammation by activating the down-

regulation of the PI3K/AKT/NFκB pathway.154 Studies have shown

that the topical application of curcumin on wounds enhanced fibro-

blast proliferation and vascular density, which in turn promoted epi-

thelial regeneration.152

One of the major factors that cause chronic wounds involves oxi-

dative stress. Antioxidant therapy focuses on encapsulating antioxi-

dant agents into a wound dressing to eradicate reactive oxygen

species (ROS), to promote the healing rate of chronic wounds.155 Cur-

cumin has been reported to have the potential to decrease ROS and

increase healing speed,152 which can be attributed to the phenolic

hydroxyl groups and the diketone structure of curcumin (Figure 2). Its

antioxidant efficacy is ascribed to the nuclear factor erythroid

2-related factor (Nrf2) pathway, which activates the cytoprotective

signaling constituents.154

Additionally, curcumin has also been reported to hinder transcrip-

tion factor nuclear factor kappa-light-chain-enhancer of activated B

cells (NF-(κ) B), which modulates the genes involved in the inflamma-

tory response.152 Kinases, including AKT, PI3K, and IKK, regulate the

activity of NF-(κ) B, and curcumin has an impact on these path-

ways.152 Mohanty et al. (2012) designed an oleic acid-based polymeric

bandage loaded with curcumin that was placed on the dorsum of

injured rats. The addition of curcumin had a downregulation effect on

the expression of kinases in the PI3K/AKT/ NF-(κ)B pathway.156

Nguyen et al. (2013) designed curcumin-loaded PLA nanofibers to

function as wound-healing patches. The result showed that the addi-

tion of curcumin had a significant impact on the tensile stress of the

nanofibers (that increased up to 3.5 MPa), which indicated its suitabil-

ity as a wound dressing. In the in vivo study, the dorsal wounds on

the rats achieved 87% and 99% of wound closure rates on days 7 and

15, respectively.157

Ranjbar-Mohammadi et al. (2016) developed a curcumin-loaded

PCL/gum tragacanth nanofiber. The nanofibers were reported to be

85.14% and 99% antibacterial against extended-spectrum beta-

lactamase (ESBL) and methicillin-resistant Staphylococcus aureus

(MRSA), respectively, with a curcumin content of 3 wt% revealing its

potential for treating wounds infected with antibiotic-resistant

organisms.158

A curcumin-loaded mat produced by Zahiri et al. (2020) was

electrospun with PCL-gelatine. Sustained release of curcumin was

observed from the electrospun mats, and the in vivo study revealed

the significant wound closure achievement of curcumin-loaded

nanofiber mats on day 14 (82%), in comparison to the plain

nanofibrous mats (73.4%).159

6.5.2 | Honey

Honey is derived from nectar by industrious honeybees and recently

has been valued for its biomedical properties in treating diabetic

ulcers, burns, and various skin wounds.160 Instead of being treated as

an “alternative medicine” as previous considerations, honey has

become one of the main focuses in the terms of wound healing, since

the advent of antibiotic resistance to the majority of modern medica-

tions.161 Amongst the different honey types, Medihoney and Manuka

honey were studied and showed similar healing properties.162

Honey is known for its antimicrobial, anti-inflammatory and anti-

oxidant properties that accelerate wound healing rates. Many studies

have shown its use in prohibiting challenging wound infections with

its excellent antimicrobial activities.163 Honey, in nature, contains

major (macroelements) and minor (trace elements) ingredients that

can perform biomedical activities in various wound healing set-

tings.163 However, the concentrations of these ingredients vary

between different plant species where bees feed and are also

influenced by environmental pollution.164 The main ingredients are

sugar (glucose and fructose, 65%) and water (18%) as well as minimal

protein and lipid contents.164 The minerals and heavy metals that

honey contains have a significant influence on determining honey

qualities. For instance, pale honey only holds 0.04% mineral content,

however, it can reach 0.20% in darker honey products.164 Another

important component group of honey are polyphenols (e.g., catechin,

quercetin, and taxifolin), which are known for their antioxidant

properties.162

Honey has antimicrobial efficiency against more than 60 bacterial

species, including aerobic/anaerobic bacteria, gram-negative/gram-

positive bacteria, and some fungi.165 Honey plays an important role in

inhibiting biofilm formation, which can be ascribed to its osmotic

F IGURE 2 Functional group of curcumin structure in wound
management
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effect. The osmotic action is the result of the high sugar content in

honey, depleting water from the bacterial cells, leading to dehydration

and cell death.166 Unexpectedly, researchers found that diluting

honey in the water further increased its antimicrobial properties, they

identified that hydrogen peroxide was the key antimicrobial agent in

most honey.167 Moreover, freshly collected honey was reported to

have a high level of lysozyme (usually 5–10 mg/ml, occasionally

35–100 mg/ml), which is much higher than extractions from older

honey samples.168

Manuka honey is well known for its use in manufacturing wound

dressings. It is produced in New Zealand and Australia from the nectar

of the M�anuka tree, and it contains methylglyoxal which is a bioactive

molecule that can kill bacteria and reduce the infection rate in bioma-

terials.169 Notably, Manuka honey does not contain the hydrogen per-

oxide found in most other kinds of honey, but rather the

methylglyoxal provides the antibacterial effect. Medihoney® dressing

was designed for wound healing and used Manuka honey as an active

agent. It was the first honey-based dressing approved by FDA for clin-

ical use. It was accepted for its excellent wound healing for light to

moderate wounds such as diabetic foot ulcers, partial/full-thickness

pressure ulcers, and first/second partial-thickness burns.160 Moreover,

literature has reported that Manuka honey can reduce inflammation

and promote fibroblast migration, which provides the potential to

enhance the wound healing rate.162 Additionally, a study by

Watanabe et al. (2014) showed that Manuka honey retarded the

duplication of influenza virus and improved the effects of antiviral

drugs, indicating a potential for the incorporation of honey with an

antiviral drug in the future.170

Surgihoney® is another commercial wound dressing product

based on various honey sources. This highly standardized honey has a

precise antimicrobial activity level and can steadily deliver oxygen-

free radicals.171 Its antimicrobial activities own to hydrogen peroxide,

which helps the dressing to fight against bacteria at a very low

concentration.162

Even though honey is a natural product and it has high purity,

patients who are allergic to honey or bee venom still need to be aware

of using honey dressings. Moreover, patients with diabetes need their

blood sugar levels to be monitored to avoid putting them at risk of

hyperglycaemia.10

6.5.3 | Aloe vera

Aloe vera is a tropical herb that grows in a relatively hot and dry envi-

ronment.172 Aloe vera gel extracted from the mucilaginous part of the

leaf has been applied in various wound care for centuries. Aloe vera has

antioxidant, antibacterial and anti-inflammatory properties and it stimu-

lates FGF to promote collagen production and secretion.173 In addition,

Aloe vera contains vitamins A, B, C, E, amino acids, enzymes, polysac-

charides, and anthraquinones.173 The glycoprotein fraction isolated from

aloe vera was reported to be a bioactive component for wound

healing.174 Aloe vera gel was utilized on sutured incisions in the Wistar

rat to study its topical efficacy.175 It was reported that aloe vera gel had

notable wound-healing effects, which were confirmed by the observa-

tion of increased mean numbers of fibroblast proliferation and the mean

thickness of the regenerating epithelium after 4 days of surgery.175

A research group developed nanofibrous scaffolds with a combi-

nation of PCL/ aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin,

and PCL/aloe vera/silk fibroin/curcumin.176 These scaffolds success-

fully mimicked the natural environment of ECM. The total content of

aloe vera was 16.6% (w/w), and the scaffolds that contained aloe vera

had the best results in terms of porosity and mechanical properties,

which indicated their suitability to be used as wound dressings. Aloe

vera (25% w/w) was electrospun with silk fibroin and polylactic-co-

ε-caprolactone (PLLA) to produce dermal substitutes.177 The final

wound dressing product demonstrated both high wound healing activ-

ity and elastic strength, which was a combination of the unique prop-

erties of aloe vera and silk fibroin. Another study also used both aloe

vera and silk fibroin to produce nanofibers,178 and the aloe vera con-

tent was 10–20% w/w. In that study, vitamin E loaded starch

nanoparticles were fabricated and then incorporated into aloe vera/

silk fibroin/PVA nanofibers. The addition of aloe vera and vitamin E

was ascribed to the largely enhanced cell viability.178

Garcia-Orue et al. (2017) developed a PLGA nanofibrous mem-

brane that contained recombinant human epidermal growth factor

(rhEGF) and aloe vera extract.179 The authors reported that this was

the first study that used a high proportion of aloe vera (aloe vera/

PLGA/rhEGF at a ratio of 1:1:0.4). The addition of aloe vera promoted

the proliferation of fibroblasts, which in turn facilitated wound

healing.179 Abdel-Mohsen et al. (2020) proposed a novel wound

dressing that consisted of collagen, chitosan-glucan complex hollow

fibers and aloe vera. This wound dressing was fabricated using a

freeze-drying technique and it demonstrated excellent blood clotting

efficiency and wound healing characteristics, which suggests its appli-

cation in soft tissue engineering.180

6.5.4 | Other phytomedicines

Other plant products, such as green tea, essential oils and grapevine

are also used as bioactive molecules for facilitating wound

healing.181–183 Green tea contains high amounts of polyphenols,

accounting for nearly 30% of the dry weight of the green tea leaves,

which are potently antibacterial, anti-carcinogenic, and anti-

inflammatory components.182 There are also catechins within the

green tea extract, which inhibit the growth of gram-positive and

gram-negative bacteria causing damage to the cell wall.182 All those

features suggest that green tea may enhance the wound healing pro-

cess. An antibacterial microneedle consisting of green tea extract and

hyaluronic acid was designed to efficiently deliver green tea extract

for facilitating wound healing.184 In this system, researchers were able

to regulate the degradation rate of green tea by modulating hyaluronic

acid ratios. Additionally, this delivery system had a high loading capac-

ity, as a 70% green tea load achieved sustained release within 72 h.184

Essential oils are the largest group of secondary metabolites of

plants.185 They have been used for a variety of medical applications
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for centuries.186 Essential oils can be extracted by steam distillation or

cold pressing. Their use in cosmetic products and natural medicine

products has been increasing.187 Moreover, due to the anti-inflamma-

tory, antioxidant, and antibacterial characteristics of essentials oils,

they play an important role in dermatological treatment for chronic

wounds.188 García-Salinas et al. (2020) developed various PCL-based

electrospun patches and loaded them with essential oils thymol and

tyrosol to reduce inflammation during wound healing.181 They

showed that essential oil-loaded PCL patches reduced the size of

inflamed cells in immunofluorescence assays, which indicated the alle-

viation of the inflammatory response, and their potential use for

wound healing.

Tea tree oil is one of the most commonly studied essential oils. It

is steam-distilled from Melaleuca alternifolia, which is an Australian

native plant. The major component of tea tree oil, which is Terpinen-

4-ol, has excellent antimicrobial and anti-inflammatory properties,

however, the existence of 1,8-cineole is a known potential allergic

trigger in tea tree oil products.181 Zhang et al. (2017) developed PLA-

based electrospun nanofibers and encapsulated them with tea tree

and manuka essential oils.189 They observed that tea tree oil worked

as a plasticizer for PLA during the manufacturing procedure, which

improved the mechanical properties of the PLA-based electrospun

nanofibers.

7 | DEVICES FOR WOUND MANAGEMENT

7.1 | Wound dressings

Advanced wound dressings are designed to maintain the wound

microenvironment, facilitating re-epithelialization and preventing fur-

ther skin damage. It is crucial for wound dressings to be porous and

breathable, which allows the gaseous exchange to protect the tissues

from maceration and promote autolytic debridement. Moreover, the

dressings must be able to provide thermal insulation, against infec-

tions, and balance the moisture of the wound environment. Further-

more, advanced wound dressings should facilitate wound healing in a

way that promotes the natural healing process, including the enhance-

ment of angiogenesis in an ischemic wound, and the acceleration of

fibroblasts and keratinocytes migration rate.190

Wound dressings can be classified as biological dressings, conven-

tional dressings, biosynthetic dressings, and antimicrobial dressings.

Amongst them, biological dressings (e.g., cadaver allograft skin, xeno-

graft, and human amnion) and conventional dressings (e.g., Vaseline

gauze and silicone sheets) are only used temporarily and cannot be

utilized as a permanent skin replacement.10 Biosynthetic dressings

can mimic the natural skin function and replace the epidermis or der-

mis. For instance, Biobrane® is a biosynthetic skin dressing used on

superficial and partial-thickness wounds, and it has been proven to

significantly reduce the healing time of superficial and mid dermal

partial-thickness burns within 12 h.191 Antimicrobial dressings may

contain silver, cadexomer iodine, or honey to prevent wound infection

and inflammation. Especially the incorporation of silver compounds in

burn wound treatment was a successful case, which effectively

reduced the chances of burn-induced sepsis and possible death.22

7.1.1 | Hydrogels

Hydrogels are swellable dressings made from biocompatible and bio-

degradable materials such as polyvinylpyrrolidone (PVP) and methac-

rylate.192,193 Hydrogels contain 80%–90% water molecules and

provide a moist environment for the wound site through the release

of water molecules. Hydrogels are 3D networks formed by hydrophilic

water-soluble polymers that have a wide range of physicochemical

properties.194 The hydrophilic chains within the hydrogel structure

grant it the ability to absorb a large volume of water without changing

its gelatinous nature.193 Hydrogels are nontoxic and nonadherent, and

their jelly-like texture makes hydrogel dressings a common use in

wounds with unusual shapes and edges.195 Recent studies on hydro-

gel fabrication for wound healing have been summarized in Table 1.

Hydrogel wound dressings have been widely studied for their

wound healing potential in wounds with minimal exudates (Figure 3).

Hydrogels are not able to absorb exudates as hydrocolloids do. Thus,

they are not suitable for wound treatment that involves high exudate

production.196 One of the main drawbacks of hydrogels is their low

mechanical properties, which are correlated with the plasticising

effect of the water contained in the polymer network. Therefore, the

same structure feature that renders hydrogels with permeability and

other unique properties (e.g., improved transmission of moist vapor

and oxygen), however, at the same time, causes poor tear strength

and a tendency to deformation.196

Chen et al. (2018) proposed a benzaldehyde-terminated PEG and

dodecyl-modified chitosan hybrid hydrogel system, loading, and control-

ling the release of VEGF.197 This hybrid hydrogel was able to heal acute

wounds immediately and it also facilitated chronic wound healing on a

full-thickness skin model by enhancing angiogenesis, collagen deposi-

tion, macrophage polarization, and granulation tissue formation.197

Wang et al. (2019) developed an injectable polypeptide-based

hydrogel and loaded it with adipose-derived mesenchymal stem cells

exosomes to promote chronic wound healing and skin tissue regener-

ation.198 This hydrogel product significantly improved the prolifera-

tion and migration of HUVEC cells. An in vivo diabetic animal study

proved that this hydrogel product accelerated granulation tissue for-

mation and collagen remodeling, which eventually promoted chronic

wounds to re-epithelialize and achieve full skin regeneration.198

Annabi et al. (2017) reported on a sprayable hydrogel with broad-

spectrum antimicrobial activity to treat chronic wounds.199 This

hydrogel was engineered with gelatine methacryloyl and

methacryloyl-substituted recombinant human tropoelastin by visible-

light-induced crosslinking. The results showed that this hydrogel prod-

uct was comparatively superior to commercial tissue adhesive prod-

ucts and demonstrated minimal inflammatory response in a murine

animal model,199 which indicated its potential as an alternative suture

for promoting chronic wound healing and preventing subsequent

wound infections.
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7.1.2 | Nanofiber scaffolds

A scaffold is a structure that provides support and holds tissues

together. They can be naturally generated by the injured body, but

artificially engineered scaffolds can further promote the healing pro-

cess.212 To achieve the optimal activity, engineered scaffolds have to

mimic the biological properties of the natural ECM, to maintain basic

mechanical support and modulate cellular activity.212 Various cells

and growth factors may be incorporated into three-dimensional

(3D) scaffolds to enhance tissue regeneration. In cutaneous wound

healing, scaffolds stimulate proliferation, migration, remodeling, and

scar formation processes.196 Numerous synthetic and natural poly-

mers with biocompatible and biodegradable properties have been

applied to develop scaffolds for skin tissue regeneration. Recent stud-

ies on nanofiber fabrication for wound healing have been summarized

in Table 2.

Skin injury often is a complicated problem in a clinical setting.

Conventional methods including autograft and allograft cannot

achieve an ideal result. Electrospun nanofibers as an alternative for

skin tissue regeneration have received increased attention in the last

decade.213 This fabrication process is shown in Figure 4. Electrospun

nanofibers have porous hydrophilic surfaces. Its unique features assist

in oxygen diffusion, maintain a moist environment and absorb exu-

dates from the injured site.214 Electrospun fibers share a similar struc-

ture and physiochemical properties to natural ECM that obtains

sufficient mechanical structure support from nanofiber scaffolds while

rendering a dynamic 3D internal network environment for the cells to

settle.215 Cell signal transmission between the nucleus and the ECM

enables the attachment, proliferation, differentiation, and migration of

the cells, as well as regulating apoptosis, growth-factor release, and

intracellular signal activation.216

Many synthetic and natural polymers have been trialed for pro-

ducing biodegradable electrospun nanofibers. For example, collagen

scaffolds are the most biomimetic substitutes for natural skin, as it

promotes cell proliferation and enables cells to penetrate the ECM.217

Compared with composite polymeric scaffolds, scaffolds produced

from a single polymer cause a “fishnet effect” (i.e., high fiber density),

which reduces cellular penetration.218 In the comparison of natural

and synthetic polymers, natural polymeric scaffolds are known to

enhance cell adherence and growth, whereas synthetic polymers canT
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render robust mechanical structures for the scaffolds, hence the rea-

son for combining the two polymers.214

Nanofibrous mats electrospun by PLGA/silk fibroin and loaded

with zinc oxide nanoparticles demonstrated mild anti-oxidant activity

and showed activity against both gram-positive and gram-negative

bacteria. Furthermore, an in vivo study revealed its potential for

treating chronic wounds.71 Hajikhani et al. (2021) proposed a coaxial

PLA based electrospun nanofiber to treat infectious wounds.72 They

prepared a core solution with PLA/PEO and loaded it with cefazolin,

PVP and collagen as the shell solution. This scaffold achieved tunable

drug release and had sufficient antimicrobial properties. Moreover, a

further in vivo study supported its ability to accelerate wound healing

rates.72 In another study, different molecular weights and content of

PEG were added into PLA and electrospun into nanofibers, curcumin

as the model drug was encapsulated.219 The results showed that the

lower molecular weight and higher content of PEG intensified drug

release. Additionally, curcumin-loaded scaffolds were found suitable

as wound dressings.219

7.2 | Wearable wound monitors

Wearable wound monitors provide real-time information related to

the specific wound healing state, which can prevent time lag and

chronic wound formation. It is important for clinicians to make appro-

priate treatment decisions based on feedback from the monitors. Sen-

sors are the important components of wearable monitors. They trace

the biological or chemical analytes and convert them into signals, such

as optical and electrical signals, to deliver useful information to the cli-

nician.244 Many wearable sensors/systems have been developed by

incorporating conventional wound dressings with sensors based on

optical (e.g., fluorescence, colorimetry) and/or electrical

(e.g., potentiometry, amperometry) mechanisms, to detect and convert

these biomarkers for achieving real-time monitoring of wound sta-

tus.245 The wearable wound monitor technology related to tempera-

ture and pH detection has been growing rapidly and consequently has

improved wound diagnosis and treatment.

Temperature fluctuation is associated with wound infection and

inflammation, as abnormal temperature changes can affect a series of

chemical and enzymatic reactions during the wound healing process.

A sudden temperature increase in the acute wound area is a signal of

infection. It is caused by local vascular expansion, which promotes

oxygen and nutrients to be transported to the injured site. It was

reported that 2.2�C fluctuations in wound temperature may indicate

approaching wound deterioration.246

Normal and healthy skin pH is between 4 and 6. The slight acidity

can prevent bacterial proliferation. Whereas, in the injured wound

site, the pH is maintained at 7.4, which creates opportunities for bac-

teria to grow proliferate and may also trigger further wound infection.

The pH of chronic wounds is between 7 and 9, which is more alkaline.

It indicates that chronic wounds are more susceptible to bacterial col-

onization.247 Therefore, temperature and pH are important parame-

ters for assessing wound status, and their sensors have great potential

to be used as efficient wound diagnosing methods.

A pH-sensitive electrospun film was developed by incorporating

curcumin into the PCL matrix.248 Curcumin is a natural polyphenol

with yellow color and it exhibits keto-enol tautomerism. The keto

form and enol form are stable in an acidic and alkaline environment

respectively. Therefore, curcumin can show obvious chemical struc-

ture change with pH change. The results showed that the curcumin-

loaded fibrous mat changed color from yellow to red-brown in a pH

range of 6 to 9.248 This wound dressing has the advantage that the

F IGURE 4 The nanofiber fabrication process for wound dressing manufacturing
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color change can be easily detected without requiring medical train-

ing, however, it cannot quantify the wound pH value precisely. In

another study, omniphobic paper-based smart bandages were

designed to monitor the pH of chronic wounds and the formation of

pressure ulcers.249 Ag/AgCl electrodes were printed on the

omniphobic paper and a layer of Ag/polyaniline emeraldine base

(PANi-EB) mixture was used to separate the electrodes. Because

PANi-EB is sensitive to pH changes in nature, the measurement of the

wound extrudate could be conducted with a low voltage of 100 mV.

The results indicated that this device can be applied to qualify the pH

range of 5.5 to 8.5 in the wound site.249

A wearable flexible intelligent bandage was reported to be able

to detect not only temperature, pH, but also can electronically

release drugs to eliminate bacterial proliferation.250 It was designed

using a carbon-based working electrode and counter electrode, and

the reference electrode was Ag/AgCl. The temperatures were mea-

sured at a range of 25–45�C with a wireless patch-embedded ther-

mostat. The results showed that the temperature sensor had a

precise accuracy, suggesting the use of the temperature sensor in

the wound dressing to monitor wound healing status in real-time.250

A flexible electrochemical sensing bandage was developed to moni-

tor temperature, pH, uric acid, as well as Na+, K+, Ca2+ at the

wound site. Electrode substrates of Au, Ag, and Pt were selected,

using magnetron sputtering technology to prepare the sensor. The

results indicated that the sensor had a sensitivity of 0.16 Ω/�C in

the temperature between 25 and 45�C and a sensitivity of

47.33 mV/pH in the pH between 4 and 10.251 In another recent

study, a three-layer smart dressing was designed. The layers

included a biomimetic nanofiber membrane, an electronic system,

and a crosslinked hydrogel. In vivo rabbit study showed that the

temperature at the local wound site was slightly high in the first

3 to 4 days, which may be attributed to the wound inflammation.

During the remodeling phase, the wound temperature returned to a

normal and stable plateau.252

7.3 | Negative pressure wound therapy

Negative pressure wound therapy (NPWT), also known as vacuum-

assisted closure, has received much attention in wound care for both

open wounds and closed incisions.253 NPWT is a powerful design for

wounds that cannot undergo surgery. After facilitating wound cleanli-

ness and helping to increase vascularity, NPWT can speed up the sec-

ondary intention healing. The wound healing mechanism of NPWT

includes macro-deformation, micro-deformation, modulation of the

wound environment, and fluid removal.254 Macro-deformation is a

process that involves wound size-reduction, achieved from the cen-

tripetal forces of the dressing and increased pressure on wound bed

tissues Micro-deformation indicates that the wound tissue interacts

with dressings on a microscopic level. A porous foam dressing pro-

motes cellular differentiation and makes inflammatory control possi-

ble. Lastly, NPWT regulates the wound environment by withdrawing

fluid and maintaining moisture to reduce bacterial load.

An NPWT device is composed of a vacuum source, drainage tub-

ing, and dressing (Figure 5). The dressing can seal the wound securely

with the help of adhesive tape. In general, these devices range from

home units for simple wound care, to complex machines for more

severe acute wounds. They are also applied to complicated surgical

wounds and are reported to be able to reduce the volume of the

wound, which simplified the repair process.255 In comparison with the

conventional dressings that are usually changed 2 or 3 times each day,

NPWT devices only require to be changed every 2 to 3 days, which

can reduce the chances of cross-contamination and save costs. More-

over, they can modulate the moisture of the wound environment,

withdraw exudates, regulate blood flow, and apply pressure to facili-

tate wound closure.255 These devices are capable of offering crucial

factors that may lack in chronic wounds, and they were also reported

to be associated with infection reduction in the wound sites.254

In a recent clinical study, NPWT was utilized along with other sur-

gical treatments of debridement, maggot therapy, and silver foam

dressing to treat patients with diabetic foot ulcers. After 1 month of

hospitalization and five sessions of NPWT home treatment, the

patient's conditions improved significantly.256 It was suggested that

the aforementioned treatment combination should be used to prevent

the spread of the wound and control chronic infection.

One type of NPWT device was developed with the instillation of

different solutions, where a substance was added drop by drop from

saline to antibiotics, that would irrigate the wound sites. This rela-

tively novel variation applied the technology of negative pressure and

automated instillation of solutions with different volumes to saturate

the dressing. Each process takes 10 to 20 min, repeats every 1.5 to

2 h, and the whole treatment may last 2 to 10 days.253 NPWT instilla-

tion (NPWTi) allows the solution of desire to be instilled cyclically into

the wound covered by NPWT dressing. Whereas, NPWT continuous

irrigation (NPWTci) is not a cyclical process. It functions with continu-

ous irrigation of solution into the wound bed while applying negative

pressure suction at the same time.22 It was reported that NPWTi may

accelerate the rate of tissue granulation compared with the treatment

results of NPWT.257 Moreover, when antimicrobial solutions were uti-

lized, the NPWTi dressing exhibited reduced bacterial load compared

to normal standard dressings saturated with the equal antimicrobial

solution,22 which suggested the antimicrobial efficiency of NPWTi in

wound therapy.

F IGURE 5 Illustration of negative pressure wound therapy
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7.4 | Surgical sutures

A surgical suture is another important wound healing device that can

be manufactured in a way that can accelerate wound healing pro-

cesses. Sutures are biomedical devices made of natural or synthetic

polymers used for providing mechanical strength and holding tissues

together in a surgical procedure. Even though suturing has a very long

history applied in wound management, along with staples, tape and

adhesive, sutures are still the most widely used medical devices in

terms of surgery.258 Recent studies on suture fabrication for wound

healing have been summarized in Table 3.

According to the origin of the suture materials, sutures can be

categorized as natural or synthetic sutures. Based on the degradability

of sutures in the human body, sutures are again classified as absorb-

able and nonabsorbable sutures. The structures that sutures are com-

posed of providing different mechanical properties, the different

types of sutures include monofilament and multifilament (braided or

twisted). A complex literature review based on suture types and mate-

rials, as well as their manufacturing techniques, has been published by

Deng et al.259

Despite the variety of suture materials and forms available, the

main task of a suture is to provide adequate tensile strength to sup-

port wound healing until the tissue regains its strength. To fulfill this

purpose, sutures are implanted in direct contact with the wound,

which makes a suture an ideal device for local delivery of bioactive

molecules to further promote wound healing.259 It is particularly use-

ful as surgical site infections (SSIs) are still a common phenomenon,

which can cause prolonged pain in patients or lead to death in severe

cases.260 Sutures can also be a contamination source, which is particu-

larly common in braided sutures, due to the increased surface to vol-

ume ratio.259

Three dynamic phases that a wound healing process goes through

(i.e., inflammation, proliferation, and remodeling) require the participa-

tion of fibroblasts.261 At the late stage of inflammation and prolifera-

tion, fibrin clotting is inhibited by fibroblasts via the release of matrix

metalloproteinase (MMP), followed by ECM compound formation.11

After the ECM is fully restored, the newly formed tissue regains its

strength and function. Most research on the delivery of bioactive mol-

ecules via surgical sutures has been focused on coating tech-

niques.262,263 In previous studies, suture surfaces bound with MMP

inhibitor and coated with ECM compounds (e.g., collagen and laminin),

resulted in the successful restoration of ECM organization.264

However, one of the major drawbacks of the coating strategy is

that the bioactive molecules are almost fully exposed to the surround-

ing tissues, which causes a rapid bolus release in the initial stage. A

controlled release can be achieved by using a variety of carriers; how-

ever, the release profiles have been reported to still be within a rela-

tively short period.265 For instance, a study utilized fatty acid as the

carrier to achieve the sustained release of antiseptic via braided

sutures. The total release time only reached 100 h.265 Another disad-

vantage of the coating method that is worth mentioning is that the

number of bioactive molecules that can be successfully loaded on the
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suture surface is limited. Additionally, there is an added risk for the

coating to peel off during handling due to weak binding.103

For the sake of reducing or even eliminating bacterial attachment

and colonization on the suture surface, while avoiding potential coat-

ing drawbacks, researchers have incorporated antimicrobial molecules

(i.e., antibiotics, silver nanoparticles, antiseptic, and anti-inflammatory

drugs) to impart antimicrobial properties to the sutures (Figure 6),

especially for braided or twisted sutures. Deng et al. (2021) recently

developed a PEG/PCL/chitosan-keratin based suture loaded with

diclofenac potassium.40 The suture products demonstrated high cellu-

lar viability and achieved a better wound healing rate compared with

the sutures that did not contain the drug.

In terms of reducing tissue drag in suture applications, fibronectin

or synovial fluid has the potential to provide lubricating properties.266

Fibronectin is an abundant ECM compound found in anionic

proteoglycan-rich extracellular regions.267 In the later stage of the

wound healing process, globular cellular fibronectins released by fibro-

blasts form a 3D fibrillar structure to modulate the composition of the

ECM. It also regulates the deposition of ECM components

(e.g., collagen types I and III, fibrinogen, and laminin).268 Fibronectin

has been reported to be successfully incorporated into the suture sur-

faces by applying polystyrene sulfonate and UV/ozone irradiation.

This method renders negative charges on the suture surface to gener-

ate electrostatic interactions.269 Moreover, this strategy can be widely

applied in any type of suture with any structure or absorbability.

Clinical data indicated that suture materials left within the

wound are the main source of wound infection.270 Multifilament

sutures even further facilitate bacterial attachment and allow the

bacteria to penetrate the gaps between the threads, which further

ascribes to the hindered immunological response of the host. There-

fore, nonabsorbable monofilaments are preferred and should be

removed within the biologically accepted time. Unless the bacterio-

static substance is coated or embedded on/into the absorbable

sutures (e.g., Vicryl Plus is a commercial absorbable suture coated

with triclosan).270

Sutures have also been used to deliver GFs, stem cells, enzymes

and other bioactive molecules. Casado et al. (2014) coated different

absorbable/nonabsorbable sutures with mesenchymal stem cells.271

The stem cell coated sutures enhanced collagen deposition and facili-

tated injured tissue regeneration. Centeno-Cerdas et al. (2018) seeded

photosynthetic genetically modified microalgae into commercially

available sutures achieving controlled release of growth factors

(VEGF, PDGF-BB, or SDF-1α) at the wound site.272 This method has

the potential to impart bioactive properties to the commercially avail-

able sutures, to further enhance their wound healing results.

It is well known that suturing is particularly necessary when mechani-

cal stability is required for the wound. However, the friction that occurs

between the suture and the tissue during surgery can cause secondary

damage to soft tissues and lead to inflammation and infection at the sur-

gical site, which can prolong the wound healing process.259 To overcome

this, lubricating a braided silk suture with chitosan not only reduced tissue

drag, but the sliding speed of the sutures also improved.259 Thus, in the

terms of suture surface modification, the reduction of the dynamic coeffi-

cient of friction is one of the most important factors to consider, to mini-

mize scar formation and enhance wound healing.261

8 | CONCLUSIONS AND FUTURE
PERSPECTIVES

The main aim of this review was to highlight the various natural and

synthetic polymers, bioactive molecules and drugs, as well as biomedi-

cal devices in wound healing management. Many polymers can be

modified to mimic the skin in the form of scaffolds, which renders

suitable conditions and structures to different wound types. More-

over, the incorporation of growth factors, stem cells, silver, active

agents, and drugs can facilitate wound healing and further enhance

wound treatment. Many biomedical devices have been developed to

fulfill this purpose, such as nanofibrous scaffolds, hydrogels, wearable

wound monitors, negative pressure wound therapy devices, and surgi-

cal sutures.

Wound healing is a complex ordered physiological process, which

involves cell growth, re-epithelialization, deposition of collagen fibers,

and tissue regeneration. Therefore, selecting suitable polymers, bioac-

tive compounds and wound dressings that can enhance and facilitate

the wound healing process is crucial. Considering the different wound

exudate production rates and the various wound surface shapes, there

is no single wound dressing that can be effectively applied to all

wound types. Thus, the future challenge is to develop a smart wound

dressing that has antimicrobial, anti-inflammatory, and antioxidant

properties, most importantly, can positively affect almost all wound

types. On the other hand, the combination of polymers and bioactive

molecules has a significant effect on accelerating wound repair. The

use of natural products for wound healing has been widely explored,

but still only relatively few have been commercialized or used in clini-

cal practice. Therefore, it is important to conduct more preclinical

research on discovering the potential of natural bioactive molecules in

skin tissue regeneration. Future studies need to be performed to dis-

cover new natural bioactive products and their facilitation in the

wound healing process and their ability to act as alternatives to

modern-day antibiotics.

F IGURE 6 Bioactive molecule incorporated suture for wound
management
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