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Insulin resistance in prepubertal obese children correlates
with sex-dependent early onset metabolomic alterations
A Mastrangelo1,4, GÁ Martos-Moreno2,3,4, A García1, V Barrios2,3, FJ Rupérez1, JA Chowen2,3, C Barbas1 and J Argente2,3

BACKGROUND: Insulin resistance (IR) is usually the first metabolic alteration diagnosed in obese children and the key risk factor for
development of comorbidities. The factors determining whether or not IR develops as a result of excess body mass index (BMI) are
still not completely understood.
OBJECTIVES: This study aimed to elucidate the mechanisms underpinning the predisposition toward hyperinsulinemia-related
complications in obese children by using a metabolomic strategy that allows a profound interpretation of metabolic profiles potentially
affected by IR.
METHODS: Serum from 60 prepubertal obese children (30 girls/30 boys, 50% IR and 50% non-IR in each group, but with similar
BMIs) were analyzed by using liquid chromatography–mass spectrometry, gas chromatography–mass spectrometry and capillary
electrophoresis–mass spectrometry following an untargeted metabolomics approach. Validation was then performed on a group of
100 additional children with the same characteristics.
RESULTS: When obese children with and without IR were compared, 47 metabolites out of 818 compounds (Po0.05) obtained
after data pre-processing were found to be significantly different. Bile acids exhibit the greatest changes (that is, approximately
a 90% increase in IR). The majority of metabolites differing between groups were lysophospholipids (15) and amino acids (17),
indicating inflammation and central carbon metabolism as the most altered processes in impaired insulin signaling. Multivariate
analysis (OPLS-DA models) showed subtle differences between groups that were magnified when females were analyzed alone.
CONCLUSIONS: Inflammation and central carbon metabolism, together with the contribution of the gut microbiota, are the most
altered processes in obese children with impaired insulin signaling in a sex-specific fashion despite their prepubertal status.
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INTRODUCTION
The mechanisms underlying the metabolic derangements
observed in many, but not all, obese patients are still only
partially understood, with several authors suggesting the need to
differentiate between ‘healthy’ and ‘unhealthy’ obese subjects,
even at early ages.1 Tissue resistance to insulin’s actions (insulin
resistance (IR)) has been largely postulated as the initial
impairment underlying the onset of the metabolic comorbidities
in these patients. Moreover, IR has been suggested to be the
cornerstone for the pathophysiological interpretation of the
originally named X-syndrome.2

The assessment of IR is still a matter of debate, particularly in
the pediatric setting, as most of the indexes and proposed
diagnostic criteria are based on those developed in adults and
their application in children is far from being unanimously
accepted. The so considered ‘gold-standard’ technique for the
measurement of IR is the euglycemic-hyperinsulinemic clamp, but
its use is mainly restricted to investigational facilities and is
normally unavailable in the clinical setting. The usual clinic work-
up aims to estimate the presence of IR by using some of its
surrogate markers in both fasting and post-ingestion serum
samples, with the latter being a better estimation of IR.3

The importance of IR in the interpretation of obesity-associated
metabolic derangement is particularly relevant in children, as their

developmental characteristics (that is, they continue to grow
longitudinally with tissue expansion and plasticity, including
adipose tissue) determine substantial differences in their meta-
bolic adaptation to obesity.4 One of the most striking differences
with adult obesity is that in childhood obesity, impairment of
fasting glucose levels is usually absent and if present, it is a
delayed finding. Indeed, a rise in insulinemia, both fasting and
after glucose ingestion, can be identified as the very initial step of
carbohydrate metabolism impairment in obese children.5

On these bases, the study of the metabolic pathways potentially
related to insulin sensitivity and the presence or absence of IR in
obese children could help to understand its underlying patho-
physiological mechanisms. Metabolomic strategies appear to be a
valuable tool to achieve these objectives; indeed, metabolomics
allows the interpretation of complex metabolic interactions
occurring at a molecular level by providing a more thorough
readout of the phenotype at a specific moment.6,7 Several studies
using metabolomics have highlighted the presence of a metabolic
signature associated to obesity and IR, and report changes in
metabolic profiles affecting central carbon metabolism (CCM),
including glycolysis and the tricarboxylic acid cycle, amino acid
and lipid pathways.8,9 However, conversely to adults, few studies
have evaluated IR in obese children.
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In the present study, we devised a high throughput and data-
driven approach to investigate the mechanisms underpinning
obesity-associated hyperinsulinemia in children and to select
a subset of representative biomarkers. We then employed a
targeted strategy to test and validate the predictive capability of
these biomarkers in a larger independent cohort.

SUBJECTS AND METHODS
Subjects
First analysis: fingerprinting study. Sixty prepubertal (Tanner stage I) obese
(OB, BMI4+2 SDS according to Spanish standards,10 also4+2 SDS according
to the IOTF references for children) Caucasian children (30 girls/30 boys,
50% IR and 50% non-IR in each group) were studied. The anthropometric
and metabolic characteristics of the whole cohort, and the IR and non-IR
subgroups are displayed in Table 1.

Second analysis: validation study. One hundred prepubertal (Tanner stage I)
obese (OB, BMI4+2 SDS according to Spanish standards,10 also4+2 SDS
according to the IOTF references for children) Caucasian children (50 girls/
50 boys, 50% IR and 50% non-IR in each group) were studied. The
anthropometric and metabolic characteristics of the whole cohort and the IR
and non-IR subgroups are displayed in Table 1.

Methods
All patients consulted the Department of Endocrinology of the Hospital
Infantil Universitario Niño Jesús for being overweight. This is a monographic

pediatric hospital for national referral, and thus receives patients from
throughout Spain. They were studied to rule-out any underlying patho-
logical condition before enrollment in the study. BMI was recorded and
standardized. An oral glucose tolerance test (OGTT; 1.75 g of glucose/kg;
maximum 75 g) was performed after an overnight fast with blood
samples being obtained at 0, 30, 60 and 120 min for glucose and insulin
measurements. Fasting samples were used for HbA1c and lipid profile
analysis. Venous blood samples were collected between 08:00 and
09:00 hours after a 12-h overnight fast. After 30 min clotting at room
temperature, samples were then centrifuged at 4°C and the serum separated
and immediately frozen at 80°C until assayed, as previously reported.11

Patients were classified as IR if they met one or more of the following criteria
during the OGTT: fasting insulin415 μU ml−1; peak insulin4150 μUml−1 or
insulin475 μUml −1 120´ after glucose ingestion.12 The area under the curve
for glucose and insulin throughout the OGTT was calculated according to the
formula: 0.25× fasting value+0.5×30´value+0.75×60´value+0.5×120´value.13

HOMA index was calculated as follows: glucose (mg dl−1)× insulin (μU ml−1)/
405 and whole body insulin sensitivity index as: 10 000/√ fasting glucose×
fasting insulin×mean glucose in the OGTT×mean insulin in the OGTT.3

Untargeted and targeted metabolomics analyses
Fingerprinting study. Metabolite extraction and metabolic fingerprinting
were achieved by using a multiplatform-based untargeted metabolomics
approach that employs a combination of analytical techniques such as liquid
chromatography–mass spectrometry (LC–MS), capillary electrophoresis–mass
spectrometry (CE–MS) and gas chromatography–mass spectrometry (GC–MS)
from Agilent Technologies (Madrid, Spain) as described previously.14–16

Samples were prepared and coded such that they were analyzed in random

Table 1. Anthropometric and metabolic characteristics of the overall cohort and subgroups (IR and non-IR subjects) that were employed for the
fingerprinting (group1) and the validation (group 2) studies

Group 1 Overall cohort (n=60) IR (n= 30) Non-IR (n= 30) Significance

Males/females 30/30 15/15 15/15 NS
Age (years) 8.56± 1.70 8.77± 1.87 8.35± 1.72 NS
BMI-SDS 4.75± 1.40 4.99± 1.45 4.50± 1.33 NS
Fasting glucose (mg dl− 1) 91.88± 5.43 92.80± 5.51 90.97± 5.28 NS
Fasting insulin (μU ml− 1) 15.35± 10.95 21.78± 12.32 8.93± 2.57 Po0.001
HOMA index 3.49± 2.40 4,97± 2.62 2.01± 0.60 Po0.001
HbA1c (%) 5.40± 0.35 5.38± 0.42 5.40± 0.35 NS
AUC-glucose (mg dl− 1) 248.50± 33.28 262.50± 34.94 232.35± 22.68 Po0.001
AUC-insulin (μU ml− 1) 220.05± 145.67 329.61± 117.18 98.31± 33.88 Po0.001
WBISI 1.11± 0.65 0.60± 0.18 1.70± 0.47 Po0.001
Uric acid 4.85± 1.15 4.96± 1.34 4.74± 0.92 NS
Total cholesterol (mg dl− 1) 163.45± 33.52 162.83± 36.03 164.07± 31.41 NS
LDL cholesterol (mg dl− 1) 99.46± 29.49 98.08± 30.35 100.85± 29.05 NS
HDL cholesterol (mg dl− 1) 47.06± 12.48 43.24± 11.01 50.87± 12.88 Po0.05
VLDL cholesterol (mg dl− 1) 17.17± 12.00 21,61± 14.71 12.72± 5.96 Po0.01
Triglycerides (mg dl− 1) 86.09± 60.49 109.28± 74.56 63.67± 29.89 Po0.01

Group 2 Overall cohort (n= 100) IR (n=50) Non-IR (n= 50) Significance

Males/females 50/50 25/25 25/25 NS
Age (years) 7.83± 2.70 9.09± 2.06 5.25± 1.99 Po0.001
BMI-SDS 5.17± 2.19 5.10± 2.39 5.25± 1.99 NS
Fasting glucose (mg dl− 1) 92.66± 7.36 95.82± 7.82 89.50± 5.29 Po0.001
Fasting insulin (μU ml− 1) 14.59± 6.96 20.04± 5.23 9.13± 3.13 Po0.001
HOMA index 3.38± 1.72 4.74± 1.32 2.02± 0.72 Po0.001
HbA1c (%) 5.40± 0.39 5.52± 0.43 5.29± 0.31 Po0.01
AUC-glucose (mg dl− 1) 256.42± 40.61 271.74± 43.02 238.20± 28.75 Po0.001
AUC-insulin (μU ml− 1) 203.47± 113.84 282.61± 92.72 106.74± 34.50 Po0.001
WBISI 3.38± 1.95 1.94± 0.49 5.09± 1.62 Po0.001
Uric acid 4.46± 0.85 4.66± 0.79 4.26± 0.87 Po0.05
Total cholesterol (mg dl− 1) 159.47± 30.54 162.53± 31.60 156.41± 29.46 NS
LDL cholesterol (mg dl− 1) 96.36± 25.44 98.32± 27.09 94.39± 23.78 NS
HDL cholesterol (mg dl− 1) 47.44± 12.86 45.59± 11.79 49.30± 13.71 NS
VLDL cholesterol (mg dl− 1) 15.54± 8.51 18.60± 8.69 12.48± 7.19 Po0.001
Triglycerides (mg dl− 1) 77.71± 42.56 93.02± 43.47 62.41± 35.97 Po0.001

Abbreviations: AUC, area under the curve; BMI, body mass index; HDL, high-density lipoprotein; HOMA, homoeostasis model assessment; IR, insulin resistance;
LDL, low-density lipoprotein; NS, not significant; VLDL, very-low-density lipoprotein; WBISI, whole body insulin sensitivity index.
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order with the analyst being unaware of the experimental group to avoid any
bias. Data quality was assured by using quality control (QC) samples as
reported.17 See Supplementary Materials and Methods for further details.

LC–MS and CE–MS data pre-processing. Data were pre-processed using
MassHunter Qualitative Analysis (MH Qual B.06.00, Agilent Technologies) and
Mass Profiler Professional (MPP B.02.00, Agilent Technologies) software as
previously reported.14,15 The resulting data matrix was then filtered through
the Mass Profiler Professional software by retaining the features present
in 100% of QC samples with a coefficient of variation (relative s.d., RSD)
below 30%, and the features present in 100% of the samples of at least one
of the groups under study. Finally, the CE data were normalized respect with
to the IS (methionine sulphone). See Supplementary Experimental Procedure
for further details.

Data pre-processing and compound identification GC–MS analysis. Data
were pre-processed as previously reported.16 In brief, Automated Mass
Spectrometry Deconvolution and Identification System (AMDIS version 2.71,
http://chemdata.nist.gov/mass-spc/amdis/downloads/) were employed to
deconvolute and to simultaneously identify the eluted compounds. Metabo-
lites were identified by comparing their RT, RI and the mass fragmentation
patterns with those available in an in-house library comprehensive of both the
NIST mass spectral database (version 2008) and Fiehn RTL library (version
2008). Then, MPP software was used to align the data from all samples.
The resulting data matrix was then filtered through the MPP software
by retaining the features present in 100% of QC samples with a coefficient of
variation (CV or relative s.d.) below 40%, and the features present in 100% of
the samples of at least one of the groups under study. Finally, data were
normalized with respect to the IS (methyl stearate).

Compound identification LC–MS and CE–MS analyses. To putatively identify
only the statistically significant compounds, their accurate mass was
searched against public databases, that is, METLIN (http://metlin.scripps.
edu), KEGG (http://genome.jp/kegg), LIPIDMAPS (http://lipidmaps.org) and
HMDB (http://hmdb.ca). Afterwards, the identification was confirmed by
means of standards (CE–MS data) and through the interpretation of the
MS/MS spectra acquired in a subsequent LC/MS/MS analysis carried out
using the same chromatographic conditions outlined previously. In addition,
to increase the reliability of metabolite identification, the match score
between the experimental isotopic pattern distribution and the compound
formula was computed by MH Qual software.

Validation study. Metabolite quantification was performed by a targeted
metabolomics approach by using LC–MS and GC–MS from Agilent
technologies as described.18 See Supplementary Materials and Methods
and Supplementary Table 1 for further details.

Statistical analysis
Fingerprinting study. Statistical analysis was carried out by univariate (UVA,
MATLAB R2015 software (Mathworks, Inc., Natick, USA)) and multivariate
analyses (MVA, SIMCA P+ 12.0.1 software (Umetrics, Umea, Sweden)). For the
UVA, parametric (unpaired t-test) or non-parametric (Mann−Whitney U test)
tests with a Benjamini–Hochberg False Discovery Rate post hoc correction
(q =0.05) were applied. For the MVA, data processing strategies (that is,
normalization, scaling among others) were employed to improve the
overall quality of data as reported,19 and finally log-transformed and Pareto
scaled (CE–MS and LC–MS) or ultraviolet scaled (GC–MS) data were used to
create multivariate models. Afterwards, unsupervised (principal components
analysis) and supervised (orthogonal partial least squares discriminant
analysis, OPLS-DA) analyses were performed to check trends, outliers and to
select the variables responsible for the separation showed by the models.
Then, the models were statistically validated by the cross-validation tool,
using the leave-1/3-out approach to exclude model overfitting. In addition,
boys and girls were considered separately to evaluate the contribution
of the sex variable. In this case, both UVA and MVA were performed by
following the same procedure above outlined. Finally, the percentage of
change for the relevant variables resulting from both UVA and MVA was
calculated as follows: ((average value in the tested group-average value
in reference group)/ average value in reference group) × 100. In the case
of non-normally distributed data, the median instead of the mean was
employed.

Validation study. Parametric (unpaired t-test) or non-parametric
(Mann−Whitney U test) tests with a Benjamini–Hochberg post hoc
correction (q= 0.05) were performed in MATLAB.

RESULTS
Fingerprinting study
Metabolic fingerprinting yielded the detection of 72 279 potential
compounds in serum (LC: 67 617 CE: 4 582 GC: 80). Data filtration
was applied by reducing the matrix to 818 compounds (ESI+: 257,
ESI-: 315, CE: 196, GC: 50). Then, multivariate and UVA statistical
analyses were applied to investigate the comparison between obese
children with and without IR. Principal components analysis assured

Figure 1. Multivariate analysis results (unsupervised, principal
components analysis (PCA), and supervised, OPLS-DA, models).
(a) PCA plot generated from all samples (◊) and QC samples (♦).
LC–MS ESI+ data (R2(cum)= 0.48, Q2

(cum)= 0.23). (b) OPLS-DA plot
generated from the comparison between obese children with IR
(■) and without IR (□). LC–MS ESI+ data (R2(cum)= 0.51, Q2

(cum)= 0.32).
(c) OPLS-DA plot generated from the comparison between obese
children with IR (▲) and without IR (Δ). Only female samples are
included to generate the model. LC–MS ESI+ data (R2(cum)= 0.99,
Q2
(cum)= 0.45). R2= coefficient for variance explained; Q2= coeffi-

cient for variance predicted.
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data quality by plotting a clear QC sample clustering (Figure 1a,
Supplementary Figure 1). The supervised analyses by OPLS-DA
elucidated the discrimination between obese children with IR
(group 2) and without IR (group 1). Remarkably, the separation
was magnified when only females were considered indicating
prepubertal sex differences (Figures 1b and c, Supplementary
Figures 2 and 3). Subsequently, the OPLS-DA models were validated
and the samples were correctly predicted for 86% in LC (ESI +/-), 83%
in GC, 85% in CE. Afterwards, the compounds responsible for
the separation found by the models were selected according to
the S-plot and the Jack-knife confidence interval (Po0.05).
In addition, P-values were computed for the comparison between
groups (1 vs 2) in the whole cohort (n=60) and then in males
(n=30) and females (n=30). Table 2 includes the 47 identified
compounds that showed statistically significant between-group
differences after adjustment for multiple testing (that is, Po0.05
and q=0.05). In contrast, 38 out of the 85 compounds statistically
significant after adjustment for multiple testing (that is, P o0.05 and
q=0.05) remained unidentified. Among the identified compounds,
there were 15 amino acids and derivatives, 17 phospholipids (mainly
lyso-forms), 3 organic acids, 2 bile acids, 5 fatty acyls, 2 carnitines and
3 other compounds. Bile acids (BAs) and some lysophospholipids
(LPs) exhibited the most prominent changes. In contrast, the majority
of the metabolites, in particular the amino acids and derivatives,
showed subtle difference with a percentage of change between
the groups of ~ 30%. Finally, we observed the same tendency of
variation in all comparisons (overall, females and males). Further
details are included in Supplementary Table 2.
Among the compounds showing statistically significant differences

between groups in this preliminary study, the 16 most representative
metabolites were selected for quantification and verification in a
larger independent cohort (IR=50 and non-IR=50). These metabo-
lites included: glycodeoxycholate, taurodeoxycholate, acetylcarnitine
(C02-carnitine), 2-methylbutyroylcarnitine (C05-carnitine), pyruvate,
3-hydroxybutyrate, isoleucine, leucine, valine, alanine, phenylalanine,
proline, tryptophan, tyrosine, pyroglutamate and piperidine. In
addition, the 11 acylcarnitines and 6 amino acids present in the
Internal Standard mix (MassChrom Internal Standard Labelled) were
included in the validation study.

Validation study
After quantification of the metabolites, the P-value was computed
for comparison between obese children with IR and without IR
(1 vs 2) by considering all samples (n= 100) and males (n= 50) and
females (n= 50) separately. In Table 3, only the metabolites that
showed significant differences between IR/no-IR after adjustment
for multiple testing (that is, Po0.05 and q= 0.05) are listed.
When the overall cohort is considered, all compounds except C05
and C02-carnitines were confirmed. These differences between

Table 2. Metabolites identified in the fingerprinting study, which were
statistically significant for the comparison between prepubertal obese
children with and without IR in M, F and A cohort

Metabolite Cohort Change (%)

Taurodeoxycholate A +53a

M +138
Glycodeoxycholate A +76a

LysoPE(16:0) A +59a

F +54a

LysoPC(14:0) A +58a

F +59
LysoPC(18:3) A +36a

LysoPC(22:6) F − 24
LysoPE(18:0) sn-1 A +27a

LysoPE(18:0) sn-2 A +28a

LysoPE(18:1) A +32
LysoPE(18:2) sn-1 A +32a

LysoPE(18:2) sn-2 A +26a

LysoPE(20:3) A +32a

M +59
LysoPI(16:0) sn-1 M +40
LysoPI(16:0) sn-2 M +37
LysoPI(18:2) M +22
LysoPS(18:0) F − 36
LysoPS(19:0) A +23
LysoPS(20:4) A +34a

F +32
2-Methylbutyroylcarnitine A +25

F +28
Acetylcarnitine A − 20

F − 24
Nitro-octadecenoate F − 37
Docosahexaenoate F − 33
Docosapentanoate A − 26

F − 31
Cer(36:3) F − 32
Biliverdin A − 10
Pregnenolone sulphate F − 33
Threitol A +24

M +37
Piperidine A +18a

M +19
F +19a

Pyruvate A +46
F +57a

Lactate A +21a

F +26a

3-Hydroxybutyrate A − 50a

M − 48
Alanine A +19a

F +22a

Proline A +19
M +22

Valine A +25 a

M +21
F +20a

Isoleucine A +20
F +35a

Leucine A +13
F +24

2-Ketoisocaproate A +17
Tryptophan A +14

M +12
F +10a

Phenylalanine A +9a

Tyrosine A +20
F +21a

Arginine A +22
F +32

Aspartate A +16
Glutamate/ pyroglutamate F +19a

Table 2. (Continued )

Metabolite Cohort Change (%)

Ornithine A +12
Hypoxanthine A +18

F +28

Abbreviations: A, overall cohort; CE–MS, capillary electrophoresis–mass
spectrometry; Cer, ceramide; F, females; GC–MS, gas chromatography–MS;
IR, insulin resistance; LC–MS, liquid chromatography–MS; M, males; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylino-
sitol; PS, phosphatidylserine. aSignificant in both MVA and UVA. The
percentage change refers to obese children with IR compared with
children without IR. All metabolites are statistically significant after
adjustment for multiple testing (Po0.05); metabolites highlighted in bold
are common in more than one analytical technique between LC–MS, GC–
MS and CE–MS.
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groups were more evident in females when the sexes were
analyzed separately. Concerning acylcarnitines three, that is, free
carnitine (C00), propionylcarnitine (C03) and butyrylcarnitine
(C04) were found to be increased significantly in IR for the whole
cohort and females, whereas in males only C03-carnitine was
increased significantly. Notably, among all compounds only alanine
and C03-carnitine were common in all comparisons. Finally, we
observed a tendency to increase for the majority of the metabolites,
except 3-hydroxybutyrate, free carnitine and pyroglutamate, in the
subjects with IR compared with those without IR.

DISCUSSION
In this study, we have applied a comprehensive untargeted
metabolic fingerprinting protocol to gain a deeper understanding
of the metabolic pathways potentially associated with alterations
in insulin signaling in prepubertal obese children by comparing
those with and without IR (1 vs 2). As depicted in Figure 2, the
findings of this study can be pooled into three major observations:
(1) CCM is one of the metabolic pathways that is most influenced
by disturbances in insulin signaling; (2) inflammatory events are
enhanced in the presence of IR; and (3) microbiota influence the
host metabolism, as pointed out by the marked changes in BAs.

Central carbon metabolism
As expected, CCM, which includes glycolysis, tricarboxylic acid and
acylcarnitine metabolism was unveiled as the most altered process
in obese children with IR. Indeed, the majority of metabolites
statistically differing between groups belong to one or several

pathways involved in CCM. Moreover, even though the percentage
of change between the insulin resistant and non-insulin resistant
state is relatively small, we observed an overall increase in amino
acids such as alanine, proline and aromatic amino acids (ArAAs;
that is, phenylalanine, tyrosine and tryptophan) and branched chain
amino acids (BCAA; that is, leucine, isoleucine and valine) in IR.
The relationship between increased amino acids and IR has been
previously reported, highlighting higher proteolysis and lower
amino acid catabolism induced by hyperinsulinemia; indeed, some
amino acids have been suggested as both markers and effectors
of IR.20,21 Among these, the increased levels of BCAAs and related
metabolites (ArAA, glutamate, and C3 and C5 acylcarnitines) have
consistently emerged in recent years as biomarker of obesity and IR.
In 2009, Newgard et al. suggested this cluster to be the metabolic
signature of obese subjects and associated their increase with
the onset of IR in mice ingesting a high-fat diet.8 This theory has
been corroborated by subsequent studies in lean subjects with
or without IR and in obese subjects with IR after bariatric surgery or
dietary intervention.22,23 These studies highlighted a discriminant
capability for BCAA and related metabolites, in case of obesity and
IR, and a further predictive capability for the onset of complications
such as cardiovascular disease and T2DM (up to 12 years in
advance) and for the effectiveness of treatment.24,25

Although the involvement of the BCAAs and related metabolites in
IR is clear, the mechanisms underlying the onset of IR is still a matter
of debate. Two major hypotheses have emerged that propose two
pathways associated to IR: mammalian target of rapamycin complex
1 signaling and derangement of BCAA metabolism.26 The first
hypothesis postulates that permanent activation of the mammalian
target of rapamycin complex 1/serine kinases pathway mediated by

Table 3. Metabolites quantified and confirmed in the validation study for the comparison between prepubertal obese children with and without IR
in M, F and A and their concentrations in serum

Metabolite Cohort Obese without IR Obese with IR P-value Change (%)

Taurodeoxycholate (μg ml− 1) A 0.29 (0.14–0.48)a 0.54 (0.20–0.99)a 0.049 +86
Glycodeoxycholate (μg ml− 1) A 6.83 (3.39–11.60)a 10.86 (4.53–20.41)a 0.016 +59

F 4.84 (3.42–8.45)a 10.79 (4.51–16.39)a 0.021 +123
Piperidine (μg ml− 1 A 0.0723± 0.0026 0.0854 ± 0.003 0.021 +18

F 0.0649± 0.0026 0.0839 ± 0.0048 0.009 +29
Valine (μM) A 125.9± 4.4 145.5 ± 4.7 0.009 +16

F 117.8± 5.3 151.6 ± 7.6 0.0095 +29
Isoleucine (μg ml− 1) A 165 (122–189)a 188 (161–207)a 0.025 +14

F 135 (119–185)a 189 (166–205)a 0.019 +40
Leucine (μM) A 83.7± 2.5 95.3± 2.9 0.016 +14

F 78.6± 3.2 95.2± 2.9 0.016 +21
Phenylalanine (μM) A 77.8± 2.0 85.7± 2.4 0.037 +10

F 75.4± 2.3 85± 2.3 0.049 +13
Tryptophan (μg ml− 1) A 369± 13 418± 14 0.028 +13

F 338± 15 400± 18 0.022 +18
Tyrosine (μM) A 68 (60–93)a 90 (69–108)a 0.016 +31

F 68.0± 3.6 86.3± 6.5 0.046 +27
Pyroglutamate (μg ml− 1) A 63 (47–82)a 56 (51–66)a 0.037 − 10
Alanine (μM) A 265 (224–317)a 336 (285–400)a 0.00024 +27

F 262± 10 331± 14 0.00030 +27
M 280 (239–333)a 354 (284–409)a 0.016 +27

Proline (μM) A 185 (165–211)a 216 (189–271)a 0.021 +17
F 184 (158–194)a 209 (183–260)a 0.022 +14

C03-carnitine (μM) A 0.383± 0.016 0.492± 0.024 0.0067 +22
F 0.368± 0.020 0.493± 0.035 0.016 +25
M 0.398± 0.025 0.492± 0.034 0.050 +19

C04-carnitine (μM) A 0.17 (0.13–0.21)a 0.19 (0.16–0.29)a 0.016 +12
F 0.14 (0.12–0.19)a 0.20 (0.16–0.33)a 0.016 +43

Free-carnitine (μM) A 0.030 (0.026–0.035)a 0.027(0.022–0.032)a 0.022 − 10
3-Hydroxybutyrate (mM) A 0.036 (0.021–0.034)a 0.022(0.019–0.027)a 0.028 −39
Pyruvate (mM) A 0.23 (0.19–0.27)a 0.25 (0.21–0.34)a 0.049 +10

Abbreviations: A, overall cohort; F, females; IR, insulin resistance; M, males. aNon-normal distributed data. Data as mean and s.e.m. in non-normal distributed
variable data as median and interquartile range; the change refers to obese children with IR compared with children without IR; P-values after adjustment for
multiple testing.
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BCAA inactivates insulin receptor substrate-1 and insulin receptor
substrate-2, and stimulates pancreatic beta cells to enhance insulin
secretion resulting in hyperinsulinemia, beta cell exhaustion and thus
risk to develop T2DM. However, the sole activation of this pathway
might not be sufficient to cause IR and the subsequent complications,
but rather a contributing factor in conjunction with inflammation and
hyperinsulinemia. In contrast, the second model identifies the toxic
metabolites derived from disrupted BCAA metabolism as the cause
of IR. Indeed, it has been reported that increased BCAAs (coming
from the diet, low catabolic rate in adipose tissue and insulin-induced
proteolysis, among others) promotes their catabolism in liver and
skeletal muscle and that their by-products (that is, ketoisocaproic
acid, short-chain acylcarnitines and their intermediates) affect
glucose and fatty acid oxidation by yielding incompletely oxidized
substrates that are involved in mitochondrial stress and impaired
insulin signaling.9

Consistent with this model, we found that in addition to
the elevation in BCAA, IR obese children had increased levels of
ketoisocaproic acid, C3 and C4 acylcarnitines and decreased free
carnitine. Moreover, we observed an increased level of ArAAs,
which are precursor of serotonin (from tryptophan) and catecho-
lamines (from phenylalanine and tyrosine) in the brain.27 They
compete with the BCAA for transport into mammalian cells;
therefore, their elevation in serum may indicate a disruption in
their transportation into the brain due to an excess of BCAA.
We also observed elevated alanine levels in association with IR

in every comparison set studied. Alanine is synthesized in skeletal

muscle from pyruvate and other amino acids (mainly BCAAs) via
the alanine-glucose cycle. In the liver it is then converted back to
pyruvate, which is an intermediate for both the tricarboxylic acid
cycle and gluconeogenesis.28 Furthermore, we found an increase
in pyruvate and a decrease in 3-hydroxybutyrate, consistent with
enhanced glycolysis and reduced ketone body production in the
presence of hyperinsulinemia. Hence, our study provides evidence
of altered CCM in young children with IR and obesity mainly
associated to increased levels of BCAA and related metabolites,
which is consistent with the models proposed for adolescents and
adults.

Inflammatory processes
Chronic low-grade inflammation has been proposed as a possible
link between obesity and IR; their interplay has been extensively
investigated unveiling an interchangeable cause-effect relationship.
Indeed, it has been reported that obesity and IR trigger inflamma-
tion by enhancing the release of free fatty acids and cytokines
from adipose tissue and macrophages.29 In the opposite direction,
inflammation alters the expression of insulin-related genes leading
to impaired insulin signaling.30 Consistent with the literature, we
found high levels of LPs characterizing the insulin resistant state.
LPs can be generated from glycerophospholipids by the action
of phospholipase A2 and reactive oxygen species, and both have
been associated with increased inflammatory status.31,32 Among the
LP related compounds, the subgroup of lysophosphocholine is of

Figure 2. Overview of the changes observed in the metabolic profile of obese children with and without IR. Inflammation and CCM, together
with the activity/contribution of the gut microbiota, were found to be altered in obesity-associated hyperinsulinemia. Metabolites that
showed significant differences (Po 0.05) between IR and no-IR obese children are depicted in square box. Arrow up: increase; arrow down:
decrease relative to control when the whole cohort is investigated. Male (♂) and female (♀) symbols indicate the metabolites that differ
significantly between groups, when boys and girls are considered separately. FAO, fatty acid oxidation; LysoPL, Lysophospholipids.
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particular interest, due to both its pro-inflammatory effect and its
contribution to insulin signaling impairment.33,34

In addition to the increase in pro-inflammatory metabolites,
we observed a parallel decrease in metabolites such as bilirubin,
nitro-octadecenoate, docosahexaenoate and docosapentanoate,
all of which have anti-inflammatory properties. Bilirubin exhibits
antioxidant activity and inhibits lipid and protein peroxida-
tion;35 whereas nitro-octadecenoate acts as an endogenous
anti-inflammatory mediator by interacting with macrophages
both by down-regulating lipoprotein-associated phospholi-
pase A2 expression36 and by inhibiting cytokine release after
lipopolysaccharide-stimuli.37 Docosahexaenoate and docosapen-
tanoate, polyunsaturated fatty acids of the omega-3 series, reduce
inflammation-related mediators38 and can also influence the IR
state. Indeed, it was recently reported that IR is decreased in obese
children and adolescents by dietary supplementation with omega-
3-polyunsaturated fatty acids.39,40 Our results highlight that the
unbalanced proportion of pro-inflammatory vs anti-inflammatory
effectors characterizing the obese children is exacerbated in the
presence of IR driven hyperinsulinemia.

Microbiota influence
Glycodeoxycholate and taurodeoxycholate are greatly increased in
the obese subjects with IR when compared with their non-insulin
resistant counterparts. These compounds presented the most
marked changes, unveiling the influence of the gut microbiota on
the host metabolism. Indeed, their presence in plasma is mediated
by the action of the microbiota that transforms cholate, conjugated
with glycine or taurine, into secondary BAs that are reabsorbed
from the distal ileum through the enterohepatic circulation. These
secondary BAs then act as signaling molecules through activation of
the Farsenoid X receptor and the G-protein coupled receptor TGR5
in peripheral organs (that is, liver and adipose tissue), which regulate
the lipid and glucose homeostasis of the host.41 In addition to BAs,
piperidine, the by-product of amino acid degradation mediated by
the microflora, is also increased in the insulin resistant group.
Together these changes in metabolites indicate involvement of the
gut microbiota and suggest that it contributes to the development
of obesity and its complications. Indeed, compelling evidence has
linked the gut microbiota to obesity and obesity-associated
inflammation, and IR both in animals and in humans.42 In addition
to the aforementioned effect of secondary BAs, the microbiome
increases the energy harvest from the diet by generating short-
chain fatty acids from undigested starch and modulates energy
storage through angiopoietin-like protein4, which is related to the
uptake of triglycerides.43 Furthermore, the microbiome can trigger
inflammation and subsequent impairment of insulin signaling via
a metabolic endotoxemia due to increased production of the
endotoxin (lipopolysaccharide) present on the cell wall of Gram-
negative bacteria. Indeed, the gut microbiota, which is altered by
obesity, modulates intestinal permeability and increases the
passage of lipopolysaccharide into the circulation, which in turn
stimulates the pro-inflammatory signaling cascade.42,44

Obese children are reported to have altered microbiota compared
with their lean counterparts45 and the initial composition of the
microbiota may have predictive capability for the effects of dietary
intervention46 and for the onset of obesity in overweight children.47

Our findings suggest a possible alteration in the microflora in obese
children, and they provide additional information regarding the
insulin resistant state that seems to be characterized by a magnified
contribution of the microbiome on the host metabolome when
compared with the non-IR obese state.
Thus, the involvement of the three processes underscored by

the present study highlights the multifactorial nature of the
interaction between obesity and IR, suggesting that several
pathways are altered early on and interact at multiple levels
in the development of IR. These pathways and relative metabolites

might be a valuable tool in preventing disease progression.
Recent studies have described metabolic signatures of human
diseases, including diabetes, that occur in response to alterations
in the metabolism of amino acids, gut microbiota by-products and
lipids8,48–51 similar to what occurred at a lesser extent in obese
children with IR. This suggests their possible use as a hallmark for
the early onset of complications. Current recommendations on
early detection of T2DM in children emphasize the difficulties in
distinguishing T2DM from T1DM in early stages, particularly in
some patients, given the high prevalence of obesity and
the possibility of ketoacidosis at the onset of T2DM. Analysis
of the metabolites shown by the present study to be, altered in
cases of obesity with IR, could be implemented in clinical practice
to identify high-risk individuals earlier to delay or prevent disease
onset and additionally to allow personalized preventive and
therapeutic strategies.
Our study highlights the effect of sex on the IR-mediated

alterations; indeed, the significance of these alterations was
intensified when females were investigated separately. Girls with
IR showed an overall increased concentration of acylcarnitines and
amino acids (mainly BCAA) in serum. Previous studies have
reported a higher incidence of IR in girls before puberty52,53 due to
differences of sex-linked genes that may explain this intrinsic
difference. These findings suggest a female susceptibility toward
IR-mediated alterations that is consistent with our results on
the metabolic profile of obese girls with IR. In boys the observed
changes associated with IR were less intense than in girls.
This finding is in contrast to previous studies showing an
intensification of the IR-mediated alterations in males. However,
the previous studies were performed in adolescents54 and
adults,55–57 where a change in insulin sensitivity was reported
according to sex during and after puberty.58 Thus, they might
be not representative of what occurs in prepubertal children.
A further strength of this study is the use of the multiplatform

metabolomics strategy, by combining both untargeted (finger-
printing) and targeted (validation) approaches, to investigate the
effects of IR in a specific population of obese children matched for
sex, age and BMI-SDS naïve to drugs and before puberty, thus
avoiding sex steroid influences. In addition, the severity of obesity
in the studied patients (mean BMI-SDS above +4.5 SDS in all
subgroups) enhances the relationship between the observations
and the condition of adiposity excess. Therefore, the use of
a multiplatform approach, which magnifies the metabolite cover-
age by enabling the detection of the main classes of metabolites,
provided a more comprehensive overview of the pathways altered
as detected by the fingerprinting approach and confirmed in
the validation study. However some limitations merit considera-
tion. The sample size was relatively small; although it allowed
the detection of validated changes in the whole cohort and in the
female subgroup, it might not be sufficient to appreciate
differences in the male subgroup for which future studies in
a bigger cohort are needed. Moreover, serum was employed in
the present study instead of tissue samples due to its easy
sampling compared with the invasive modality of tissue collection.
Serum provides integrated information regarding processes that
are simultaneously occurring in the whole organism as it interacts
with all tissues. However, it does not reflect the direct metabolic
modifications and upstream regulations in response to external/
internal stimuli or life-style modifications (that is, diet and physical
activity) that can affect obesity and IR.59,60 Indeed, it would be of
great interest to correlate these results with information regarding
nutritional status and habits, physical activity and weight evolution,
as well as pre- and peri-natal information including breastfeeding
and maternal health. In addition, the use of surrogate measures of IR
instead of the gold-standard euglycemic-hyperinsulinemic clamp to
discriminate between IR and non-IR patients might be considered
a limitation. However, the combined use of fasting and post-OGTT
parameters can overcome this limitation, as reinforced by the
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striking differences in HOMA and insulin-AUC between IR and
non-IR subgroups both in groups 1 and 2. Further information on
the metabolic/metabolomic status of the patients could eventually
be obtained in a future study of the metabolomic profile after
high dose oral glucose intake. Moreover, the parallel study of gut
microbiota in stool samples could help to explain some of the
observed changes reported here.
In conclusion, our study provides new insights into the

metabolic profile that characterizes two conditions (obesity and
IR) highly associated but not unequivocally correlated to the onset
of the disease, by shedding light on the possible pathophysiolo-
gical alterations that might be hallmarks of the predisposing
factors toward complications.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
AM is receiving a PhD grant from the Spanish Ministry of Economy and
Competitiveness AP-2012-1385. Authors want to express their gratitude to the financial
support received from the Spanish Ministry of Economy and Competitiveness MINECO
CTQ2014-55279-R, and by Fondos de Investigación Sanitaria and fondos FEDER
(Grants PI100747 and PI1302195 to JA), Ministerio de Ciencia e Innovación (Grants
BFU2011–27492 and BFU2014-51836-C2-2-R to JAC), Centro de Investigación Biomédica
en Red Fisiopatología de Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III
(JA) and Fundación Endocrinología y Nutrición.

REFERENCES
1 Bluher S, Schwarz P. Metabolically healthy obesity from childhood to adulthood-

does weight status alone matter? Metabolism 2014; 63: 1084–1092.
2 Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease.

Diabetes 1988; 37: 1595–1607.
3 Borai A, Livingstone C, Ferns GA. The biochemical assessment of insulin

resistance. Ann Clin Biochem 2007; 44: 324–342.
4 Martos-Moreno GA, Barrios V, Chowen JA, Argente J. Adipokines in childhood

obesity. Vitam Horm 2013; 91: 107–142.
5 Martos-Moreno GA, Barrios V, Martinez G, Hawkins F, Argente J. Effect of

weight loss on high-molecular weight adiponectin in obese children. Obesity
(Silver Spring) United States 2010; 18: 2288–2294.

6 Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic
responses of living systems to pathophysiological stimuli via multivariate statistical
analysis of biological NMR spectroscopic data. Xenobiotica 1999; 29: 1181–1189.

7 Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling
to understand metabolic networks. Comp Funct Genomics 2001; 2: 155–168.

8 Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF et al. A branched-
chain amino acid-related metabolic signature that differentiates obese and lean
humans and contributes to insulin resistance. Cell Metab United States 2009; 9, p
311–326.

9 Newgard CB. Interplay between lipids and branched-chain amino acids in
development of insulin resistance. Cell Metab 2012; 15: 606–614.

10 Hernández M, Castellet J, Narvaiza J, Rincón J, Ruiz I, Sánchez E et al. Curvas
y Tablas De Crecimiento. Editorial Garsi: Madrid, 1988.

11 Martos-Moreno GA, Kratzsch J, Korner A, Barrios V, Hawkins F, Kiess W et al.
Serum visfatin and vaspin levels in prepubertal children: effect of obesity and
weight loss after behavior modifications on their secretion and relationship with
glucose metabolism. Int J Obes (Lond) 2011; 35: 1355–1362.

12 Eyzaguirre F, Mericq V. Insulin resistance markers in children. Horm Res 2009; 71:
65–74.

13 Haffner SM, Stern MP, Hazuda HP, Pugh JA, Patterson JK. Hyperinsulinemia in
a population at high risk for non-insulin-dependent diabetes mellitus. N Engl J
Med 1986; 315: 220–224.

14 Ciborowski M, Lipska A, Godzien J, Ferrarini A, Korsak J, Radziwon P et al. Com-
bination of LC-MS- and GC-MS-based metabolomics to study the effect of ozo-
nated autohemotherapy on human blood. J Proteome Res 2012; 11: 6231–6241.

15 Naz S, Garcia A, Rusak M, Barbas C. Method development and validation for rat
serum fingerprinting with CE-MS: application to ventilator-induced-lung-
injury study. Anal Bioanal Chem 2013; 405: 4849–4858.

16 Mastrangelo A, Ferrarini A, Rey-Stolle F, García A, Barbas C. From sample treat-
ment to biomarker discovery: a tutorial for untargeted metabolomics based on
GC-(EI)-Q-MS. Anal Chim Acta 2015; 900: 21–35.

17 Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental
design and QC samples in large-scale and MS-driven untargeted metabolomic
studies of humans. Bioanalysis 2012; 4: 2249–2264.

18 Naz S, Calderon AA, Garcia A, Gallafrio J, Mestre RT, Gonzalez EG et al. Unveiling
differences between patients with acute coronary syndrome with and without
ST elevation through fingerprinting with CE-MS and HILIC-MS targeted
analysis. Electrophoresis 2015; e-pub ahead of print 14 July 2015; doi:10.1002/
elps.201500169.

19 Godzien J, Ciborowski M, Angulo S, Barbas C. From numbers to a biological sense:
how the strategy chosen for metabolomics data treatment may affect final results.
A practical example based on urine fingerprints obtained by LC-MS. Electro-
phoresis 2013; 34: 2812–2826.

20 Felig P, Marliss E, Cahill GF Jr. Plasma amino acid levels and insulin secretion in
obesity. N Engl J Med 1969; 281: 811–816.

21 Adams SH. Emerging perspectives on essential amino acid metabolism in obesity
and the insulin-resistant state. Adv Nutr 2011; 2: 445–456.

22 Laferrere B, Reilly D, Arias S, Swerdlow N, Gorroochurn P, Bawa B et al. Differential
metabolic impact of gastric bypass surgery versus dietary intervention in obese
diabetic subjects despite identical weight loss. Sci Transl Med 2011; 3: 80re2.

23 Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD et al. Branched-
chain amino acid levels are associated with improvement in insulin resistance
with weight loss. Diabetologia 2012; 55: 321–330.

24 Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E et al.
Metabolite profiles and the risk of developing diabetes. Nat Med 2011; 17:
448–453.

25 Sears DD, Hsiao G, Hsiao A, Yu JG, Courtney CH, Ofrecio JM et al. Mechanisms of
human insulin resistance and thiazolidinedione-mediated insulin sensitization.
Proc Natl Acad Sci USA 2009; 106: 18745–18750.

26 Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and
insulin resistance. Nat Rev Endocrinol 2014; 10: 723–736.

27 Fernstrom JD. Branched-chain amino acids and brain function. J Nutr 2005; 135:
1539S–1546S.

28 Felig P. The glucose-alanine cycle. Metabolism 1973; 22: 179–207.
29 Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between

insulin resistance and endothelial dysfunction: molecular and pathophysiological
mechanisms. Circulation 2006; 113: 1888–1904.

30 Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking
obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9:
367–377.

31 Triggiani M, Granata F, Frattini A, Marone G. Activation of human inflammatory
cells by secreted phospholipases A2. Biochim Biophys Acta 2006; 1761:
1289–1300.

32 Fuchs B, Schiller J. Lysophospholipids: their generation, physiological role and
detection. Are they important disease markers? . Mini Rev Med Chem 2009; 9:
368–378.

33 Han MS, Lim YM, Quan W, Kim JR, Chung KW, Kang M et al. Lysopho-
sphatidylcholine as an effector of fatty acid-induced insulin resistance. J Lipid Res
2011; 52: 1234–1246.

34 Wallace M, Morris C, O'Grada CM, Ryan M, Dillon ET, Coleman E et al. Relationship
between the lipidome, inflammatory markers and insulin resistance. Mol Biosyst
2014; 10: 1586–1595.

35 Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH. Bilirubin and
glutathione have complementary antioxidant and cytoprotective roles. Proc Natl
Acad Sci USA 2009; 106: 5171–5176.

36 Wang G, Ji Y, Li Z, Han X, Guo N, Song Q et al. Nitro-oleic acid downregulates
lipoprotein-associated phospholipase A2 expression via the p42/p44 MAPK and
NFkappaB pathways. Sci Rep 2014; 4: 4905.

37 Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T, Baker PR et al. Nitrated fatty acids:
endogenous anti-inflammatory signaling mediators. J Biol Chem 2006; 281:
35686–35698.

38 White PJ, Marette A. Is omega-3 key to unlocking inflammation in obesity? Dia-
betologia 2006; 49: 1999–2001.

39 Haugaard SB, Madsbad S, Hoy CE, Vaag A. Dietary intervention increases n-3 long-
chain polyunsaturated fatty acids in skeletal muscle membrane phospholipids of
obese subjects. Implications for insulin sensitivity. Clin Endocrinol (Oxf) 2006; 64:
169–178.

40 Juarez-Lopez C, Klunder-Klunder M, Madrigal-Azcarate A, Flores-Huerta S. Omega-
3 polyunsaturated fatty acids reduce insulin resistance and triglycerides in obese
children and adolescents. Pediatr Diabetes 2013; 14: 377–383.

41 Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid
receptors in metabolic regulation. Physiol Rev 2009; 89: 147–191.

42 Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al.
Changes in gut microbiota control metabolic endotoxemia-induced inflammation
in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57:
1470–1481.

Insulin resistance in prepubertal obese children
A Mastrangelo et al

1501

© 2016 Macmillan Publishers Limited, part of Springer Nature. International Journal of Obesity (2016) 1494 – 1502

http://dx.doi.org/10.1002/elps.201500169
http://dx.doi.org/10.1002/elps.201500169


43 Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al. The gut microbiota
as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2004;
101: 15718–15723.

44 Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D et al. Metabolic endo-
toxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761–1772.

45 Bervoets L, Van Hoorenbeeck K, Kortleven I, Van Noten C, Hens N, Vael C et al.
Differences in gut microbiota composition between obese and lean children: a
cross-sectional study. Gut Pathog 2013; 5: 10.

46 Santacruz A, Marcos A, Warnberg J, Marti A, Martin-Matillas M, Campoy C et al.
Interplay between weight loss and gut microbiota composition in overweight
adolescents. Obesity (Silver Spring) 2009; 17: 1906–1915.

47 Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal
microbiota composition in children may predict overweight. Am J Clin Nutr 2008; 87:
534–538.

48 Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, Joost HG et al. Identification
of serum metabolites associated with risk of type 2 diabetes using a targeted
metabolomic approach. Diabetes 2013; 62: 639–648.

49 Du F, Virtue A, Wang H, Yang XF. Metabolomic analyses for atherosclerosis, dia-
betes, and obesity. Biomark Res 2013; 1: 17.

50 Drogan D, Dunn WB, Lin W, Buijsse B, Schulze MB, Langenberg C et al. Untargeted
metabolic profiling identifies altered serum metabolites of type 2 diabetes
mellitus in a prospective, nested case control study. Clin Chem 2015; 61:
487–497.

51 Wewalka M, Patti ME, Barbato C, Houten SM, Goldfine AB. Fasting serum taurine-
conjugated bile acids are elevated in type 2 diabetes and do not change with
intensification of insulin. J Clin Endocrinol Metab 2014; 99: 1442–1451.

52 Murphy MJ, Metcalf BS, Voss LD, Jeffery AN, Kirkby J, Mallam KM et al. Girls at five
are intrinsically more insulin resistant than boys: the Programming
Hypotheses Revisited--The EarlyBird Study (EarlyBird 6). Pediatrics 2004; 113:
82–86.

53 Shields BM, Knight B, Hopper H, Hill A, Powell RJ, Hattersley AT et al. Measurement
of cord insulin and insulin-related peptides suggests that girls are more insulin
resistant than boys at birth. Diabetes Care 2007; 30: 2661–2666.

54 Newbern D, Gumus Balikcioglu P, Balikcioglu M, Bain J, Muehlbauer M, Stevens R
et al. Sex differences in biomarkers associated with insulin resistance in obese
adolescents: metabolomic profiling and principal components analysis. J Clin
Endocrinol Metab 2014; 99: 4730–4739.

55 Patel MJ, Batch BC, Svetkey LP, Bain JR, Turer CB, Haynes C et al. Race and sex
differences in small-molecule metabolites and metabolic hormones in overweight
and obese adults. OMICS 2013; 17: 627–635.

56 Stancakova A, Civelek M, Saleem NK, Soininen P, Kangas AJ, Cederberg H et al.
Hyperglycemia and a common variant of GCKR are associated with the levels of
eight amino acids in 9,369 Finnish men. Diabetes 2012; 61: 1895–1902.

57 Tillin T, Hughes AD, Wang Q, Wurtz P, Ala-Korpela M, Sattar N et al. Diabetes risk
and amino acid profiles: cross-sectional and prospective analyses of ethnicity,
amino acids and diabetes in a South Asian and European cohort from the SABRE
(Southall And Brent REvisited) Study. Diabetologia 2015; 58: 968–979.

58 Moran A, Jacobs Jr DR, Steinberger J, Steffen LM, Pankow JS, Hong CP et al.
Changes in insulin resistance and cardiovascular risk during adolescence:
establishment of differential risk in males and females. Circulation 2008; 117:
2361–2368.

59 Naz S, Moreira dos Santos DC, Garcia A, Barbas C. Analytical protocols based on
LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues.
Bioanalysis 2014; 6: 1657–1677.

60 Want EJ, Masson P, Michopoulos F, Wilson ID, Theodoridis G, Plumb RS et al.
Global metabolic profiling of animal and human tissues via UPLC-MS. Nat Protoc
2013; 8: 17–32.

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International License. The images or

other third party material in this article are included in the article’s Creative Commons
license, unless indicatedotherwise in the credit line; if thematerial is not included under
the Creative Commons license, users will need to obtain permission from the license
holder to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Information accompanies this paper on International Journal of Obesity website (http://www.nature.com/ijo)

Insulin resistance in prepubertal obese children
A Mastrangelo et al

1502

International Journal of Obesity (2016) 1494 – 1502 © 2016 Macmillan Publishers Limited, part of Springer Nature.

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations
	Introduction
	Subjects and methods
	Subjects
	First analysis: fingerprinting study
	Second analysis: validation study

	Methods
	Untargeted and targeted metabolomics analyses
	Fingerprinting study


	Table 1 Anthropometric and metabolic characteristics of the overall cohort and subgroups (IR and non-IR subjects) that were employed for the fingerprinting (group1) and the validation (group 2) studies
	Outline placeholder
	LC&#x02013;MS and CE&#x02013;MS data pre-processing
	Data pre-processing and compound identification GC&#x02013;MS analysis
	Compound identification LC&#x02013;MS and CE&#x02013;MS analyses
	Validation study

	Statistical analysis
	Fingerprinting study
	Validation study


	Results
	Fingerprinting study

	Figure 1 Multivariate analysis results (unsupervised, principal components analysis (PCA), and supervised, OPLS-DA, models).
	Validation study

	Table 2 Metabolites identified in the fingerprinting study, which were statistically significant for the comparison between prepubertal obese children with and without IR in M, F and A cohort
	Discussion
	Central carbon metabolism

	Table 3 Metabolites quantified and confirmed in the validation study for the comparison between prepubertal obese children with and without IR in M, F and A and their concentrations in serum
	Inflammatory processes

	Figure 2 Overview of the changes observed in the metabolic profile of obese children with and without IR.
	Microbiota influence

	AM is receiving a PhD grant from the Spanish Ministry of Economy and Competitiveness AP�-�2012-1385. Authors want to express their gratitude to the financial support received from the Spanish Ministry of Economy and Competitiveness MINECO CTQ2014-55279-R,
	AM is receiving a PhD grant from the Spanish Ministry of Economy and Competitiveness AP�-�2012-1385. Authors want to express their gratitude to the financial support received from the Spanish Ministry of Economy and Competitiveness MINECO CTQ2014-55279-R,
	ACKNOWLEDGEMENTS
	REFERENCES




