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Introduction: The responses of cystic fibrosis (CF) airway epithelial cells (AEC) to

rhinovirus (RV) infection are likely to contribute to early pathobiology of lung disease

with increased neutrophilic inflammation and lower apoptosis reported. Necrosis of AEC

resulting in airway inflammation driven by IL-1 signaling is a characteristic finding in CF

detectable in airways of young children. Being the most common early-life infection,

RV-induced epithelial necrosis may contribute to early neutrophilic inflammation in CF via

IL-1 signaling. As little is known about IL-1 and biology of CF lung disease, this study

assessed cellular and pro-inflammatory responses of CF and non-CF AEC following

RV infection, with the hypothesis that RV infection drives epithelial necrosis and IL-1

driven inflammation.

Methods: Primary AEC obtained from children with (n = 6) and without CF (n = 6) were

infected with RV (MOI 3) for 24 h and viable, necrotic and apoptotic events quantified via

flow cytometry using a seven-step gating strategy (% total events). IL-1α, IL-1β, IL-1Ra,

IL-8, CXCL10, CCL5, IFN-β, IL-28A, IL-28B, and IL-29 were also measured in cell culture

supernatants (pg/mL).

Results: RV infection reduced viable events in non-CF AEC (p < 0.05), increased

necrotic events in non-CF and CF AEC (p < 0.05) and increased apoptotic events in

non-CF AEC (p< 0.05). Infection induced IL-1α and IL-1β production in both phenotypes

(p < 0.05) but only correlated with necrosis (IL-1α: r = 0.80; IL-1β: r = 0.77; p < 0.0001)

in CF AEC. RV infection also increased IL-1Ra in non-CF and CF AEC (p< 0.05), although

significantly more in non-CF AEC (p< 0.05). Finally, infection stimulated IL-8 production in

non-CF andCF AEC (p< 0.05) and correlatedwith IL-1α (r= 0.63 & r= 0.74 respectively;

p < 0.0001).
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Conclusions: This study found RV infection drives necrotic cell death in CF AEC.

Furthermore, RV induced IL-1 strongly correlated with necrotic cell death in these cells.

As IL-1R signaling drives airway neutrophilia and mucin production, these observations

suggest RV infection early in life may exacerbate inflammation and mucin accumulation

driving early CF lung disease. Since IL-1R can be targeted therapeutically with IL-1Ra,

these data suggest a new anti-inflammatory therapeutic approach targeting downstream

effects of IL-1R signaling to mitigate viral-induced, muco-inflammatory triggers of early

lung disease.
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INTRODUCTION

Cystic Fibrosis (CF) lung disease is progressive, evolves within
the first months of life, and is characterized by mucus obstruction
and inflammation observable on CT even in the absence
of clinical symptoms and often in the absence of detectable
respiratory infection (1, 2). Neutrophilic inflammation is a
key risk factor for airway disease resulting in bronchiectasis
and loss of lung function (3). However, the link between
mucus obstruction and airway inflammation has not yet been
clearly identified.

Recent evidence from the Australian Respiratory Early
Surveillance Team for CF (AREST CF) implicates mucin
accumulation as the initial trigger of neutrophilic inflammation
in the CF airway (4), and suggests respiratory viral infection
may trigger the muco-inflammatory phenotype observed in
CF since the heterogeneity of early CF lung disease mirrors
the heterogeneity of childhood viral infection (5, 6). Human
rhinovirus (RV) appears to be able to manipulate host responses
switching from apoptotic to necrotic cell death in airway
epithelial cells (AEC) (7, 8). Studies investigating non-bacterial
inflammation in the CF airway microenvironment have linked
interleukin (IL)-1R signaling driven by IL-1α released from
necrotic AEC to neutrophilic inflammation (9, 10). As RV is
the most common early life viral infection observed in children
with CF (11) and IL-1R signaling has already been detected
in the airways of young children with mild disease (12), we
hypothesize that resultant neutrophilic inflammation may be
driven via this signaling pathway triggered by RV-induced
AEC necrosis. However, this proposed mechanism has yet to
be investigated.

Given our previous observations of defective responses to RV
(8) and IL-1 driven inflammatory responses to necrosis in the
pediatric CF airway (12), this study aimed to investigate the direct
relationship between RV infection, the type of induced cell death,
and IL-1R-driven inflammation in vitro using primary AEC from
infants and young children with CF. We obtained primary AEC
from young children with and without CF and assessed viable,
necrotic and apoptotic events following RV infection utilizing
flow cytometry. Using experimental supernatants; IL-1α, IL-1β,
IL-1Ra, sIL-1R2, IL-8, CXCL10, CCL5, IFN-β, IL-28A, IL-28B,
and IL-29 were measured and subsequently correlated to viable,
necrotic and apoptotic responses.

MATERIALS AND METHODS

Please also refer to the Supplementary Data for full details.

Study Population and Establishment of
Primary Cell Culture
This study was approved by the relevant institutional Human
Ethics Committees with written consent obtained from parents
or guardians. This study included samples from six clinically
stable infants and children with CF (mean age 2.9 ± 1.8 years
old; Table 1) participating in the AREST CF early surveillance
program (2), and samples from six children without CF (mean
age 3.8 ± 1.9 years old; Table 1) recruited upon admission
to hospital for elective non-respiratory related surgery. Cystic
fibrosis transmembrane conductance regulator (CFTR) genotype
was determined as part of newborn screening (Table 1). Current
bacterial infection in CF samples was determined as part of
standard clinical practice using gold-standard microbiological
screening, with previous infection the presence of a bacterial
infection at any previous visit. Prior wheeze was determined
by parent-reported wheeze in the three-months prior to
recruitment. Children without CF had no respiratory symptoms
observed at time of recruitment. Samples were attained by
brushing of the tracheal mucosa of children with a single-
sheathed nylon bronchial cytology brush as previously described
(8, 13). After collection, primary AEC cultures were established
as previously described (14).

TABLE 1 | Demographics of the study population.

Non-CF CF

Number of subjects 6 6

Age (mean ± standard deviation) 3.52 ± 1.6 years 3.16 ± 0.98 years

Sex (% Male) 66.6% 50%

Prior wheeze status (% Wheeze) 50% 0%

Genotype (% Phe.508del homozygous) N/A 83.3%

Current bacterial infection N/A 50%

Previous bacterial infection N/A 33.3%

Neutrophil elastase presence N/A 33.3%
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Human RV Infection
Human rhinovirus 1b (RV1b) was propagated as previously
described (15). To simulate an acute RV infection in vitro,
primary AEC were infected with ∼2.95 × 105 TCID50/mL. To
ensure responses were due to actively replicating virus, controls
were exposed to an UV-inactivated RV1b at the same TCID50 as
previously described (16). After 24- and 48-h cells were collected
for analysis via flow cytometry and supernatant collected for
cytokine measurement. As the peak concentration of RV viral
load following infection is observed 24 h post-infection (17, 18),
this timepoint was chosen for analysis. Viral load was assessed via
qPCR as previously described (19). Infection with RV1b induced
typical viral cytokine production from both non-CF and CF AEC
(Table S1). Data from 48 h of RV1b infection is presented in the
Supplementary Data.

Flow Cytometry
A flow cytometry methodology to measure cell death and
disassembly was adapted for use with AEC (20). Briefly,
primary cells were detached from culture surfaces via gentle
trypsinization, combined with cells obtained from supernatant
following centrifugation, and resuspended at a concentration of
106 cells/mL in annexin binding buffer (ThermoFisher Scientific,
Scoresby, VIC, Australia). Tubes containing 100 µL of cell
suspension were stained for 15min with 100 µL of Annexin
V/AlexaFluor488 (ThermoFisher Scientific, Scoresby, VIC,
Australia) (1:40 v/v) and TO-PRO-3 (10µM final concentration)
(ThermoFisher Scientific, Scoresby, VIC, Australia) in annexin
binding buffer and flow cytometry performed via a FACSCanto
II flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA).
A total of 20,000 events were recorded during acquisition for
each sample. Analysis was performed using FlowJo software
v10.4 (FlowJo LLC, Ashland, OR, USA) using a seven-step
gating strategy to separate events into viable, necrotic, A5+
apoptotic, A5- apoptotic, apoptotic bodies and cellular debris as
previously described (20) (Figure S1). Cutoffs used for positive
forward scatter (FSC) and side scatter (SSC) were 50 k. Events
were grouped into “viable”, “necrotic”, and “apoptotic” for
further analysis. Data are presented as percentage of total events
(% total).

Cytokine Measurement
Interleukin (IL)-1α, IL-1β, and interferon- beta (IFN-β) protein
production was determined using commercially available
AlphaLISA kits (Perkin Elmer, Waltham, MA, USA) in cell-free
culture supernatant. Similarly, IL-8 (BD Biosciences, San Diego,
CA, USA), IL-1 receptor antagonist (IL-1Ra), soluble IL-1
receptor 2 (sIL-1R2), C-X-C motif chemokine 10 (CXCL10),
Chemokine (C-C motif) ligand 5 (CCL5), IL-28A, IL-28B,
and IL-29 protein production (R&D Systems, Minneapolis,
MN, USA) were all determined using commercially available
ELISA kits performed according to manufacturer’s instructions.
Samples below the detection range were arbitrarily reported as
half the lower limit and included in the analysis with all other
samples as previously described (21).

Statistical Analysis
Data were analyzed using GraphPad Prism v7.04 (GraphPad
Software, La Jolla, CA, USA). Data were natural log transformed
where appropriate. Comparisons between paired data were
performed using Wilcoxon matched pairs signed rank test and
Friedman’s test with Dunn’s multiple comparisons test presented
as mean ± standard deviation. Comparisons between unpaired
data were performed using Mann-Whitney tests presented as
mean± standard deviation. Associations between flow cytometry
events and cytokines measured were assessed using Spearman’s
rank-order correlations. A two tailed P value < 0.05 was
considered statistically significant.

RESULTS

Demographic data for the study populations are summarized in
Table 1. Sex and age were similar between cohorts, with most
children with CF homozygous for the p.Phe508del mutation.
Infection with RV1b resulted in increased rhinovirus load
measured via qPCR compared to UV-inactivated RV1b (31.3 ±

29.8 copy #/ng RNA vs. 2.37× 107 ± 1.46× 107 copy #/ng RNA;
p < 0.05), increased typical pro-inflammatory viral cytokines
CXCL10 and CCL5 (Figure S2), and type I and III interferon
responses (Figures S3, S4).

Rhinovirus Infection Increases Necrosis
but Not Apoptosis in CF AEC
To determine the cellular response to rhinovirus infection, we
measured viable, necrotic, and apoptotic events in non-CF (n =

6) and CF (n = 6) AEC (Figure 1). Infection with RV1b resulted
in reduced viable events in non-CF AEC (57.6 ± 9.8% vs. 35.4
± 9.8%; p < 0.05) and CF AEC (65.1 ± 17.5% vs. 49.8 ± 19.4%;
p < 0.05) (Figure 1A), and significantly elevated necrotic events
in non-CF AEC (8.7 ± 2.3% vs. 12.6 ± 4.9%; p < 0.05) and
CF AEC (8.5 ± 1.8% vs. 11.8 ± 3.5%; p < 0.05) (Figure 1B).
RV1b infection significantly increased apoptotic events in non-
CF AEC (28.8 ± 8.5% vs. 36.9 ± 6.1%; p < 0.05), however, this
was not observed for CF AEC (23.5 ± 16.6% vs. 26.2 ± 11.9%)
(Figure 1C). Similarly, infection with RV1b for 48 h decreased
viable events, increased necrotic events, and increased apoptotic
events in both non-CF and CF AEC (Figure S5).

IL-1α and IL-1β Are Increased in
Supernatant and Correlate With Cell Death
Following Rhinovirus Infection
We next investigated the role of IL-1 signaling in the
inflammatory response following rhinovirus-induced cell death
in vitro by measuring IL-1α and IL-1β protein following RV1b
infection and correlated these with viable, necrotic, and apoptotic
events in non-CF and CF AEC (Figure 2). Infection with RV1b
increased IL-1α in non-CF (61.6 ± 31.7 pg/mL vs. 511 ±

252 pg/mL; p < 0.05) and CF AEC supernatant compared
to controls (46.2 ± 32.7 pg/mL vs. 236 ± 93.1 pg/mL; p <

0.05) (Figure 2A). IL-1α was higher in supernatant from non-
CF AEC when compared to CF AEC (p < 0.05). Similarly,
IL-1β protein was significantly elevated post infection in both

Frontiers in Immunology | www.frontiersin.org 3 April 2020 | Volume 11 | Article 596

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Montgomery et al. Rhinovirus Associated Necrosis Drives Interleukin-1

FIGURE 1 | Rhinovirus infection of non-CF and CF AEC decreases viable

events, increases necrotic events, and increases apoptotic events in non-CF

AEC only. Non-CF (n = 6) and CF (n = 6) AEC infected with RV1b for 24 h

were assessed for changes in viable (A), necrotic (B), and apoptotic (C)

events measured via flow cytometry. Infection with RV1b for 24 h resulted in

(A) decreased viable events in non-CF and CF AEC compared to controls, (B)

increased necrotic events in non-CF and CF AEC compared to controls, and

(C) increased apoptotic events in non-CF AEC compared to controls. *p <

0.05.

non-CF (4.4 ± 2.3 pg/mL vs. 20.9 ± 9.9 pg/mL; p < 0.05)
and CF AEC (3.9 ± 3.6 pg/mL vs. 24.2 ± 18.7 pg/mL; p <

0.05) (Figure 2B) supernatant when compared to controls. Upon
analysis, IL-1α was found to be negatively correlated with viable
events measured in non-CF AEC only (r = −0.63, p < 0.0001),
positively correlated with necrotic events measured in CF AEC
(r = 0.80, p < 0.0001), as well as apoptotic events measured in
non-CF (r = 0.47, p = 0.0011) (Figures 3A–C). Similarly, IL-1β
was negatively correlated with viable events measured in non-
CF (r = −0.47, p = 0.0029), strongly positively correlated with
necrotic events measured in CF AEC (r = 0.77, p < 0.0001). A
weak correlation was also observed between IL-1β and apoptotic
events measured in non-CF AEC only (r = 0.37, p < 0.05)
(Figures 3D–F). Infection with RV1b for 48 h produced similar
responses, with increased IL-1α and IL-1β following infection
(Figure S6) significantly associated with necrotic events only in
CF AEC, but with apoptotic events in non-CF and CF AEC
(Figure S7).

IL-1Ra Is Increased in Supernatant
Following Rhinovirus Infection
Since we observed differential responses in IL-1 signaling, we
next assessed IL-1R regulatory protein expression, namely IL-1Ra
and sIL-1R2, by non-CF and CF AEC following infection with
RV1b (Figure 4). Rhinovirus infection resulted in increased IL-
1Ra production from non-CF (1368.2 ± 205.6 pg/mL vs. 8149.0
± 3013.1 pg/mL; p < 0.05) and CF AEC (1930.4 ± 870.4 pg/mL
vs. 5334.1 ± 1425.4 pg/mL; p < 0.05) compared to control,
with significantly higher IL-1Ra observed in non-CF AEC after
infection compared to CF AEC (p < 0.05) (Figure 4A). There
was no difference in sIL-1R2 protein production between non-
CF or CF AEC, however, sIL-1R2 was significantly induced after
infection in CF AEC when compared to non-CF AEC (16.5± 2.1
pg/mL vs. 49.8 ± 38.1 pg/mL; p < 0.05) (Figure 4B). Similarly,
infection with RV1b for 48 h increased IL-1Ra but not sIL-1R2
production in both non-CF and CF AEC (Figure S8).

IL-8 Is Increased in Supernatant and
Associated With IL-1α and Necrotic Events
Following Rhinovirus Infection
Wenext measured inflammation downstream of IL-1R activation
by measuring levels of the main neutrophil chemoattractant,
IL-8, by non-CF and CF AEC following RV1b infection. Viral
infection resulted in a significant increase in IL-8 protein by
both non-CF (4890.5 ± 2426.7 pg/mL vs. 15656.4 ± 4102.1
pg/mL; p < 0.05) and CF AEC (3915.3 ± 1262.1 pg/mL vs.
8762.8± 3919.0 pg/mL; p < 0.01) compared to relevant controls
(Figure 4C), with significantly higher IL-8 produced by non-
CF AEC compared to CF AEC (p < 0.05). After infection for
48 h, IL-8 was significantly increased in non-CF and CF AEC
(Figure S9A).When analyzed for associations with IL-1 signaling
and cell death, IL-8 was positively correlated with necrotic events
in non-CF and CF AEC (r = 0.35, p < 0.05 and r = 0.60, p =

0.0001 respectively) (Figure 4D), and IL-1α in non-CF and CF
AEC (r = 0.63 & r = 0.74 respectively; p < 0.0001) (Figure 4E).
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FIGURE 2 | IL-1α and IL-1β is increased in supernatant from non-CF and CF AEC following rhinovirus infection. Supernatant from non-CF (n = 6) and CF (n = 6) AEC

infected with RV1b at for 24 h was assessed for levels of IL-1α and IL-1β protein. Infection with RV1b for 24 h resulted in (A) increased IL-1α from non-CF and CF AEC

compared to control, with higher levels in non-CF supernatant compared to CF supernatant post-infection, and (B) increased IL-1β from non-CF and CF AEC

compared to controls. *p < 0.05.

FIGURE 3 | IL-1α and IL-1β in supernatant are associated with necrotic events in CF AEC but not non-CF AEC following 24 h of rhinovirus infection. IL-1α and IL-1β

protein in supernatant from non-CF (n = 44) and CF (n = 32) AEC following RV1b infection for 24 h were assessed for correlations with the corresponding changes in

viable, necrotic and apoptotic events measured via flow cytometry. IL-1α protein in supernatant was (A) significantly correlated with decreased viable events in non-CF

AEC but not CF AEC, (B) significantly correlated with increased necrotic events in CF AEC but not non-CF AEC, and (C) significantly correlated with increased

apoptotic events in non-CF AEC but not CF AEC. Similarly, IL-1β protein in supernatant was (D) significantly correlated with decreased viable events in non-CF AEC

but not CF AEC, (E) significantly correlated with increased necrotic events in CF AEC but not non-CF AEC, and (F) significantly correlated with increased apoptotic

events in non-CF AEC but not CF AEC.

Similar responses were observed following 48 h of infection, with
significant associations between IL-8 and IL-1α and necrotic
events in non-CF and CF AEC (Figures S9B,C).

DISCUSSION

Our previous work demonstrated a defective response of CF
AEC to RV infection (8), and an inflammatory response to
epithelial necrosis in CF driven by IL-1R signaling (9) that is
already detectable in the airways of infants and children with
CF in the absence of bacterial infection (12). In the current
study, we add to these earlier findings by conducting a series of
in vitro experiments on AEC from children with and without
CF focusing on the response of the epithelium to RV infection.
Utilizing flow cytometry we observed increased necrosis in CF
AEC associated with IL-1R signaling, but increased apoptosis
in non-CF AEC associated with IL-1R signaling. When we
assessed the IL-1 receptor antagonist IL-1Ra, we found that
RV induced IL-Ra production in both phenotypes however this

was significantly higher in non-CF AEC. This corresponded
with increased IL-8 following RV infection that was significantly
higher in non-CF AEC. Furthermore, production of IL-8
was associated with IL-1α and epithelial necrosis in non-CF
and CF AEC.

This study provides several novel insights into the
mechanisms surrounding pro-inflammatory responses and
cell death following RV infection in the CF airway. Our
data shows RV infection directly increases necrotic events in
both non-CF and CF AEC supporting previous data where
rhinovirus protease 3C increased necrosis in nasal AEC
(7). The lack of apoptosis in CF AEC supports previous
work in our laboratory where dampened apoptosis was
observed following RV infection (8). This study supports data
suggesting RV infection drives lytic cell death (7), potentially
responsible for the increased viral load observed in CF
(8, 22).

Delayed apoptosis was also observed in CF AEC following
RV infection in this study. Defective apoptotic responses have
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FIGURE 4 | Rhinovirus infection increases IL-1Ra and IL-8 signaling in supernatant from non-CF and CF AEC. Supernatant from non-CF (n = 6) and CF (n = 6) AEC

infected with RV1b for 24 h was assessed for levels of IL-1Ra, sIL-1R2, IL-8 protein, and correlations between IL-8 and IL-1α protein or necrotic events measured via

flow cytometry. Infection with RV1b for 24 h resulted in (A) increased IL-1Ra from non-CF and CF AEC compared to control, with significantly higher IL-1Ra in

supernatant from non-CF AEC compared to CF AEC, (B) no change in sIL-1R2 from non-CF and CF AEC compared to control, but significantly higher sIL-1R2 after

infection in supernatant from CF AEC compared to non-CF AEC, and (C) increased IL-8 in supernatant from non-CF and CF AEC compared to control, with

significantly higher IL-8 in supernatant from non-CF AEC compared to CF AEC which (D) significantly correlated with IL-1α levels in supernatant from non-CF and CF

AEC and (E) significantly correlated with increased necrotic events in both non-CF and CF AEC. *p < 0.05.

been observed in AEC and neutrophils in CF (8, 23, 24), we
hypothesize reported accumulation of apoptotic cells in the CF
airway may be suggestive evidence of defective efferocytosis (25,
26). Cleavage of the phosphatidylserine receptor by neutrophil
elastase specifically disrupts phagocytosis of apoptotic cells (26,
27) and as free neutrophil elastase is increased in the CF airway
(28, 29), it may explain the reduced apoptotic response and
defective efferocytosis observed in the CF airway. Additionally,
as suggested by the data in this study, a delayed apoptotic
response following RV infection of AEC may also contribute
to the defective apoptosis and increased viral load observed in
CF (8, 22). The study by Vandivier et al. also found evidence
of secondary necrosis following delayed apoptosis, potentially
further exacerbating inflammation in the airway via release of
DAMPs such as IL-1 signaling (26). As phagocytosis of apoptotic
cells can induce anti-inflammatory cytokine production (30, 31),
impaired clearance of apoptotic cells may have an additive effect
on airway inflammation via reduced anti-inflammatory capacity.

Neutrophilic inflammation is a key risk factor for airway
disease resulting in bronchiectasis and loss of lung function
(3) which is observed in the absence of detectable bacterial
infection (1, 2, 10). It is therefore important to elucidate triggers
of early inflammation prior to bacterial colonization of the
CF airway. As IL-1R signaling has been investigated as a key

pathway driving neutrophilic and eosinophilic inflammation
in the airway (9, 12, 32, 33), we next investigated IL-1α and
IL-1β signaling following RV infection of AEC. As IL-1α is
constitutively active, it can be released directly from necrotic
cells in the airway epithelium (9) or actively secreted following
activation of the NLRP3 inflammasome and caspase-1 (34, 35)
which is required for IL-1β cleavage and release. Activation
of the NLRP3 inflammasome has been reported following RV
infection resulting from calcium flux resulting from RV ion
channel protein 2B activity (36), potassium efflux from lytic
cell death such as necrosis or pyroptosis (37), and dysregulated
sodium transport due to ENaC upregulation (38). It has also
been observed in other inflammatory respiratory diseases with
RV associated exacerbations as a hallmark of disease like asthma
or COPD, where viral-induced cell death likely contributes to
morbidity (36, 39, 40). In this study, we found increased IL-
1α and IL-1β alongside increased necrotic cell death suggesting
NLRP3 activation could potentially exacerbate the inflammatory
cascade following RV infection. This finding supports previously
reported data that both IL-1α and IL-1β are released from AEC
following RV infection and implicated active secretion via NLRP3
activation (41, 42). Additionally, IL-1α and IL-1β in supernatants
of airway mucopurulent secretions have been shown to regulate
both MUC5B and MUC5AC through IL-1R (43–45). Release of
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FIGURE 5 | The role of rhinovirus infection in the IL-1 inflammatory response

in the CF airway. Mucus obstruction in the CF airway leads to hypoxia of the

airway epithelium and epithelial necrosis. Additionally, rhinovirus infection

induced necrosis of AEC resulting in release of IL-1α from necrotic cells.

Binding of IL-1α to IL-1R recruits MyD88 to the IL-1R:IL-1RAcP complex.

Activation of MyD88 leads to IRAK1 activation, which activates the NLRP3

inflammasome leading to CASP1 activation and IL-1β secretion. Additionally,

IRAK1 activates NF-κβ, which induces IL-8 release leading to neutrophilic

airway inflammation. Both IL-1α and IL-1β induce mucin secretion, which

leads to further mucus obstruction creating a positive feedback loop capable

of exacerbating CF airway disease. IL-1R activation can be blocked by IL-1Ra

to inhibit signaling downstream of IL-1R. IL-1α, interleukin-1 alpha; IL-1β,

interleukin-1 beta; IL-1R1, interleukin-1 receptor 1; IL-1Ra, interleukin-1

receptor antagonist IL-1RAcP, interleukin-1 receptor accessory protein; IL-8,

interleukin-8; IRAK, interleukin-1 receptor-activated protein kinase; MyD88,

myeloid differentiation primary response gene 88; NFκB, nuclear factor kappa

beta; NLRP3, nod-like receptor protein 3.

IL-1α is primarily through AEC while IL-1β in the CF lung is
mainly released from macrophages and interstitial mononuclear
cells (46, 47), potentially explaining the differences between IL-
1α and IL-1β levels observed in this study when compared to
levels reported in other studies in ex-vivo samples (43). This data
suggests IL-1α and IL-1β observed following RV-A infection may
exacerbate mucus hyperconcentration and obstruction evident in
the CF airway (4, 43).

Furthermore, we found IL-1α and IL-1β significantly
correlated with necrotic events in CF AEC only, while IL-1α
and IL-1β correlated with apoptotic events in non-CF AEC
only. Studies utilizing the β-ENaC murine model of CF-like
lung disease have observed the presence of mucus obstruction
and airway neutrophilia in germ-free conditions (48, 49), with
“sterile” inflammation in the CF airway triggered by IL-1α
released from necrotic AEC (9, 50). IL-1α is measurable in the
airways of young children with CF with mild lung disease and
associated with structural lung disease measured via CT in the
absence of detectable bacterial infection, suggesting a role for IL-
1α in the inflammatory cascade in the CF airway environment
in the absence of detectable bacterial infection (12). The current
study observed levels of IL-1α higher than measured in BALf in
young children with CF, suggesting clinically relevant amounts of
IL-1α are released from AEC following RV infection. There was
higher IL-1α detected in non-CF AEC compared to CF AEC in
response to RV infection suggesting IL-1α release from CF AEC
occurs predominantly via necrotic cell death post-infection, and
release from non-CF AEC via apoptotic cell death. Additionally,
IL-1α is associated with viability of non-CF AEC, suggesting
overall cell death had a greater effect on IL-1α release in non-
CF AEC. Apoptotic cell death is considered immunologically
silent due to efficient phagocytosis (51), however, in an in
vitro monoculture there is a lack of clearance which results in
secondary necrosis and cellular breakdown (52). While epithelial
cells can self-phagocytize to reduce inflammatory consequences
(53, 54), clearance of apoptotic cells relies on professional
phagocytes like macrophages (55) and failure leads to release of
immunostimulatory danger associated molecular patterns such
as IL-1α (56). Secondary necrosis of AEC in vitromay potentially
explain the differences in IL-1α detected between phenotypes,
likely due to the observed and reported lack of apoptosis
in CF AEC following RV infection (8). Defective apoptosis
due to cleavage of apoptotic signaling receptors by neutrophil
elastase and manipulation of phagocytic ability by Pseudomonas
aeruginosa in monocytes has been reported in CF (26, 57). As IL-
1α is increased in the CF airway during bacterial infection (12),
we hypothesize defective apoptotic signaling and efferocytosis
may play a role in IL-1R-activated neutrophilic inflammation
in the CF airway before and after bacterial colonization of the
CF airway.

Several recent studies have shown the potential for anti-
inflammatory therapy by blocking of IL-1R via genetic deletion of
the receptor or pharmacological inhibition via IL-1Ra to inhibit
IL-8 expression and neutrophilic inflammation (9, 43). Deletion
of IL-1R and IL-1Ra treatment in the βENaC-transgenic mouse
significantly reduced IL-1β, neutrophils present in the airway and
levels of keratinocyte chemoattractant—a murine IL-8 ortholog
(9). This finding was also observed in primary AEC grown at
air-liquid interface after stimulation with supernatants of airway
mucopurulent secretions, with IL-1Ra treatment reducing IL-8
mRNA (43). The present study found increased IL-1Ra following
RV infection in both non-CF and CF AEC, although IL-1Ra
was higher in non-CF AEC when compared to CF AEC. This
did not correspond with a reduction in IL-8 signaling likely as
a result of the amount measured being dramatically lower than
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the therapeutic concentrations used in other studies (9, 43). RV
infection increased IL-8 in both non-CF and CF AEC, however
it was significantly higher in non-CF AEC post-infection. This
contrasts with previous data by Sutanto et al. which demonstrated
significantly higher IL-8 from CF AEC post-RV infection (8).
However, differences in the viral titer used for infection and
shorter timepoint may have contributed toward the differences
in the observed findings.

There are number of unique strengths to the current study.
Firstly, primary AEC from pediatric patients were used for
experiments in this study, as most immortalized cell lines that
are commonly used in CF research are derived from adult donors
and may not accurately recapitulate phenotypic differences
observed following RV infection in primary AEC isolated from
the pediatric airway (8). Secondly, primary cell cultures were
passaged before use in this study to distance in vitro cultures from
the inflammatory environment from which they were isolated
to minimize any pro-inflammatory influences from the in vivo
airway milieu (58). While using freshly isolated AEC for in
vitro studies may more accurately recapitulate the environment
in the CF airway, it could obfuscate mild and virus-specific
inflammatory responses. Finally, the use of a more robust flow
cytometry methodology that captures events related to apoptotic
cell disassembly to analyze cell death allows us to have greater
confidence in data generated (20), as conventional methodologies
utilizing propidium iodide staining are suggested to have a false
positive rate of up to 40% (59).

For this study, we used a submerged monolayer culture
model that doesn’t fully represent the physiological features of
a differentiated respiratory epithelium (60). However, as the
basal cells are epithelial progenitors, they are likely to represent
intrinsic properties of the respiratory epithelium. Additionally,
since viral replication and pro-inflammatory responses are
elevated in air-liquid interface compared to monolayer culture
(61) subtle phenotypic and mechanistic differences might
be more easily identified in an air-liquid interface system.
Rhinovirus species affect viral replication and inflammatory
responses differently (17, 62), thus the implications of the
findings from this study are limited to RV-A infections. However,
RV-A has been reported as the most common strain present in
adults with CF and associated with more severe clinical outcomes
(63). We used a laboratory strain of RV-A (RV1b) that has been
reported to induce cytotoxicity more readily than community-
derived strains (8, 64, 65) and therefore future work will focus
on corroborating the findings of this study using community RV
strains of various serotype in order to determine if all RV induce
inflammation via IL-1 signaling (66).

In summary, we have demonstrated that RV-A infection
of non-CF and CF AEC drives necrotic cell death specifically
associated with IL-1α and IL-1β in CF AEC. Viral infection
also drove increased IL-8 release associated with necrotic cell
death, implicating necrotic cell death following RV infection
as a trigger of IL-1R-mediated neutrophilic inflammation in
the CF airway. Collectively, these results suggest a role for RV

infection as a trigger of IL-1R-driven neutrophilic inflammation
in the early life CF airway (Figure 5). Mucin accumulation and
hyperconcentration has been identified as the earliest trigger of
cystic fibrosis lung disease (4), and linked to IL-1 signaling in
vitro (43) creating a positive feedback cycle capable of inducing
neutrophilic inflammation in the absence of bacterial infection.
Previous studies have highlighted the potential translation of IL-
1Ra as a novel anti-inflammatory therapy in CF (9, 12, 67, 68),
with the aim to prevent further mucus obstruction and viral-
induced, muco-inflammatory triggers of early lung disease in
young CF children.
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