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Multidrug resistance (MDR) means that tumour cells become unresponsive
during or after the course of treatment to one or more of chemotherapeutic
drugs. Chemotherapeutic resistance critically limits the treatment outcomes
and remains a key challenge for clinicians. The alternation in intracellular
drug concentration through the modulation of its transport across the plasma
membrane is the major cause for MDR and is adopted by various mediators,
includingATP-requiring enzymes (ATPases). Among theseATPases, ABC trans-
porters have been extensively studied, and found to be highly implicated in
tumorigenesis and MDR. The present review sheds light on the documented
effects of retinoids on ABC enzymes to understand their mechanism in combat-
ing cancer cell resistance. This would open the gate to test the mechanism and
applicability of different new synthetic retinoids in literature and market
as modulators of ATP-dependent efflux pumping activity, and promote their
applicability in diminishing anti-cancer drug resistance.
1. Introduction
Multidrug resistance (MDR) occurs when cancer cells become progressively
unresponsive to anti-cancer drugs independently of their structures and/or mech-
anisms of action [1]. MDR might arise due to alteration in drug target molecules,
interrupted access to target cells, genetic responses, enhancedDNA repair mechan-
isms, counteracting growth factors, metabolic effects or altered transport of the
chemotherapeutic agent across the plasma membrane [1–4]. The latter mechanism
is mediated by a wide range of ATP-requiring enzymes (ATPases). ATPase family
members are indispensable enzymes for both normal and cancer cells [5]. They
are widely distributed within cells and differ considerably in structures and bio-
logical activities. They share the ability to hydrolyse the phosphate γ–β bond of
ATP to release free energy that is harnessed subsequently by the enzyme to perform
its biological functions [6]. ATPase superfamily comprises ATP-binding cassette
(ABC) transporters, P-type ATPases, V-type ATPases, kinesins, helicases, heat-
shock proteins as well as ATPases associated with different cellular activities
(AAA-ATPases) [5,7]. Of special interest, ABC transport systems that have been
extensively studied as mediators of MDR in various types of cancer [8].

Although ABC transport systems are constitutively expressed in normal and
cancer cells, their expression is also modulated by external factors, like retinoids.
In the last few decades, it has become increasingly evident that retinoids, alone
or in combinations, are promising anti-cancer compounds with considerable
potency [9]. Significant correlation has been described between retinoids and
ATPase transporters in cancer [10–12]. Besides the deregulation of ATPase gene
expression after treatment with retinoids, ATRA and its analogues were found
to be substrates for the MDR transporters and thus exposed to variations in
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Figure 1. The chemical structures of multidrug resistance (MDR)-combating retinoids (natural and synthetic).
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their intracellular concentration leading to pharmacokinetic
disturbances and variable anti-cancer response [13,14].
Figure 1 and table 1 summarizes the chemical structures and
possible activity of retinoids by either re-sensitizing multiple
MDR cell lines to chemotherapy or inducing direct growth
inhibition of these MDR cells. Interestingly, the concentrations
of retinoids needed for the demise of 50% of cultured
cells growth (IC50) were found to be at, or slightly lower
than, the micromolar scale [9,66,73,74]. Given this potency,
more deep insights into the interplay between retinoids and
MDR-conferring ATPases are still needed.
2. The interplay between ABC transporters
and MDR

Among the currently known ABC genes in the human
genome, perturbations in the expression levels of some of
these transporters are implicated in various human diseases,
including cancer [30]. Furthermore, ABC transporters are
highly associated with MDR [31–35]. Members of the
ABCB, ABCC and ABCG subfamilies are major determinants
for the emergence of MDR [36], Most importantly, P-gp,
BCRP and multidrug resistance-associated protein-1 (MRP-1
or ABCC-1) are the best characterized [31–35]. The induction
of the expression of these ATP-requiring proteins leads to
significant changes in the signalling of many ions and
molecules promoting tumorigenesis, including metal ions,
vitamins and carbohydrates [5,37,38]. More profoundly,
these efflux transporters pump a wide range of structurally
diverse anti-cancer compounds outside the cell, reducing
their bioavailability and therapeutic potential [1,39]. The
overexpression of P-gp, BCRP and/or MRP-1 confers signifi-
cant resistance to various neutral and cationic hydrophobic
chemotherapeutic compounds [40–42]. These observations
highlight the intimate link between disturbances in ABC
transporters and conferred drug resistance, leading sub-
sequently to increased tumour burden and reduced
treatment outcomes.

As expected, inhibition of the pumping activity of the
ABC transporter enzymes often leads to an increased cellular
concentration of the cytotoxic drugs, and thus greater anti-
cancer activity and reduced MDR [43]. Despite their structural
differences, P-gp and BCRP share several common ligands
that are transported across cellmembrane [44–46]. These translo-
cated ligands are collectively called allocrites [47]. Although
they are functionally similar, P-gp and BCRP share only about
20% protein sequence identity in the NBDs with no significant
sequence identity in the TMDs [48–51]. Nevertheless,
both share various anti-cancer allocrites giving rise to MDR.
The structural insights into the interactions between ABC
transporters and their ligands show clearly that the hydrophobic
nature of allocrites, including the retinoic acid and its analogues
(or retinoids), is one of the major determinants of their ability to
communicate with the transporters [48,52–58]. Finding chemo-
sensitizers that are both effective and safe and could help
rescue the emerging resistance to standard chemotherapeutic
compounds in cancer is still needed.
3. Natural retinoids induce alternations
in ABC transporters on different levels
including expression, activity and
binding interaction

The data available in the literature showed some examples of
natural retinoids that proved their ability to modulate ABC
transporters in cancer types on different levels and reverse
MDR. For instance, retinol caused significant reduction in



Table 1. The chemo-sensitizing effect of natural and synthetic retinoids on MDR cell lines.

retinoid class
resistant
cancer cell line cancer origin

resistance to
chemotherapeutic
agent(s) IC50 (µM) Ref.

ATRA retinoic acid

receptor (RAR)

Pan-agonist

MDA-MB-231 breast paclitaxel (PTX) and

5-fluorouracil (5-FU)

34.1b,c [15,16]

LoVo/MDR colon doxorubicin (Dox) NAd [17]

HEN-16-2/CDDP cervical cisplatin (CDDP) NAd [18]

L1210/VCR mouse lymphocytic

leukaemia

vincristine (VCR) NAd [19,20]

mS-0.5 melanoma colchicine NAd [21]

J82-NVB bladder navelbine NAd [22]

HL60/DNR acute promyelocytic

leukaemia (APL)

daunorubicin NAd [23]

retinol — SW620 colorectal etoposide NAd [24]

isoxazole retinoid

15b

RAR pan-agonist HL60R APL ATRA 1.4b,c [25]

K562 leukaemia ATRA 2.3b,c [25]

HUT78 T-cell lymphoma ATRA 0.8b,c [25]

fenretinide or

4-HPR

RAR-β selective

agonist

Bel-7402 HCC Dox and VCR 13.1a [26,27]

MDA-MB-231 breast PTX and 5-FU 6.5b,c [28]

CHLA-119 neuroblastoma ABT-737 (small-molecule

BH3- mimetic) alone

NAd [29]

ABPN (or CBG41) RAR pan-agonist MDA-MB-231 breast PTX and 5-FU 3.3b,c [28]

ATPR RAR pan-agonist MDA-MB-231 breast PTX and 5-FU 18.1b,c [15]
aIC50 (concentration of the compound caused 50% reduction in comparison to untreated cells) was calculated after 72 h of treatment.
bIC50 was calculated after 48 h of treatment.
cIC50 was calculated after 24 h of treatment.
dNA = not available.
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P-gp expression in colorectal carcinoma cells (CRC) leading to
enhanced anti-tumor efficacy of etoposide [24,59]. In leukaemia,
cell line L1210, ATRA caused transcriptional repression of P-gp
enhancing the activity of verapamil substrate [19]. Interestingly,
the latter effect was not attributed to the direct binding of RAR
merely to the ABCB1 promoter; instead, it appears to be
mediated by RXRα sequestration after RAR-RXRα heterodimer
formation [19]. As a result, fewer RXRα may be available to
mediate the binding of ABCB1-activating progesterone-X-recep-
tor (PXR) to ABCB1 promoter. These results suggest that
retinoic acid and related isomers attenuate the ABC transporter
through modulation of mRNA expression levels.

On the level of ATPase activity, Spodoptera frugiperda (Sf9)
membrane preparations expressing P-gp and BCRP was used
to investigate the effects of some natural retinoids with vera-
pamil and quercetin as their substrates respectively [10,11].
The study showed retinol and 13-cis-RA could significantly
inhibit both the basal and the substrate-stimulated ATPase
activity while ATRA, 9-cis-RA, retinyl-propionate and reti-
nyl-palmitate did not have these effects. [11]. The ATPase
inhibitory effect of retinoids observed in these experiments
might be rooted in the hypothesis of retinoid-induced allo-
steric inhibition in activity of the transporters, related either
to the competitive inhibition caused by direct interaction of
retinoids with the substrate-binding site (s), or the membrane
structural changes induced by retinoids.
On the level of binding interaction, studies revealed the
interaction of ATPases with retinoic acid analogues to be
stereospecific [11,53,60]. For example, 13-cis-RA inhibited
both P-gp and BCRP transporters, while its stereoisomers
ATRA and 9-cis-RA did not influence the enzymatic activity.
Beside the stereo-selective binding of retinoids to P-gp and
BCRP that occurs primarily at the level of the drug binding
sites (allosteric sites) of the transporters, there is another
level of binding at the plasma membrane itself from where
the substrates and modulators probably interact with the
drug binding site(s) [52]. The latter observation was confirmed
by Fluorescence anisotropy assay using fluorescent membrane
probe 1,6-diphenyl-1,3,5-hexatriene (DPH). Retinyl-acetate,
13-cis-RA, and retinol selectively increase the membrane vis-
cosity and packing density in the depth of the membrane
while, ATRA and 9-cis-RA did not have similar effects [11].

Calculating the kinetic parameters (Km and Vmax) of the
substrate-stimulated ATPase activity with or without reti-
noids showed retinol with higher Km and lower Vmax

values of both transporters, suggesting mixed-type inhibition
of P-gp and BCRP. Although 13-cis-RA showed mixed-type
transporter inhibition of BCRP too, it caused a reduction of
Vmax with no significant increment of Km value in the case
of P-gp, emphasizing the non-competitive mode of inhibition
of P-gp [11]. All these observations imply that natural reti-
noids with different stereoisomers have distinct modes of
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interaction and binding affinity with MDR-related ATPases,
and suggest that minute differences in their structure might
substantially influence the ATPase enzymatic activity.
 lsocietypublishing.org/journal/rsob
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4. The MDR-reversing activity of synthetic
retinoids

The main obstacles of using formulations delivering natural
retinoids into the systemic circulation are in vitro photo-
instability [61–66] and in vivo enzymatic catabolism [67–70].
Therefore, there was urgent need for development of synthe-
tic retinoic acid analogues, which mimic the biological
actions and physico-chemical characteristics of natural ones,
and to reverse MDR induced by cancer cells [9,71–76].
A heterocycle-containing retinoid called isoxazole retinoid
15b (figure 1) was synthesized and used to reverse the MDR
activity of an acute promyelocytic leukaemia ATRA-resistant
cell line called HL60R (table 1) [25]. This synthetic retinoid
15b rendered the cells more prone to the growth-inhibitory
activity of ATRA and reactivated the cellular apoptosis path-
way. Fenretinide [28], ABPN [28] and ATPR [15] (figure 1)
are further examples of synthetic retinoids that were able to
sensitize multi-drug resistant triple-negative breast cancer to
paclitaxel and 5-fluorouracil. Nevertheless, these promising in
vitro results need to be confirmed in vivo using chemo-resistant
cancer animal models exposed to standard chemotherapeutics
plus synthetic retinoids.

Despite this MDR-reversing activity in various cancers,
an early report showed the cross-resistance to CD437 (a syn-
thetic RARγ-selective agonist; figure 1) in paclitaxel-resistant
human ovarian cancer cells which are overexpressing P-gp
[77]. Others claimed that N-(4-hydroxyphenyl) retinamide
(4HPR, aka fenretinide; figure 1) could potentiate the cytotox-
icity of cisplatin in ovarian [78], breast [79] and lung [80]
cancers. The underlying cause of this chemo-sensitization
can be explained in light of the dose perspective point of
view. Active doses from natural retinoids in blood are few in
nanomolar range (1–20 nanomolar) [81] compared to the
stable synthetic retinoids that can be taken through either
parenteral or oral administration with relatively sufficient
high local retinoid concentrations in the blood. The available
doses of synthetic retinoids were able to subsequently block
P-gp and BCRP expressed at the surface of resistant cancer
cells [82–85].
5. Concluding remarks
Understandingof cancer resistancehas evolvedover thepast few
decades, and cancer resistance is suggested to be related to loss of
retinoid-ABC transporter signalling. Also, emerging evidence
sheds light on the development of MDR and the roles played
by ATPases in chemotherapy resistance. Unfortunately, current
chemotherapy regimens lead to limited efficacy and
an upsurge in the number of cells with high levels of expression
of ABC transporters. Various chemical compounds have been
identified and tested to modulate or inhibit the transport func-
tion of ABC transporters, including P-gp and BCRP, and thus
chemo-sensitize multidrug-resistant cancer cells. Nevertheless,
ABC-modulatory compounds showing great potential on the
bench frequently failed toprove efficiency in the clinic. Therefore,
this presents a formidable challenge to medicinal chemists and
structural biologists in defining P-gp and BCRP substrates with
new structural diversity to modulate P-gp- and BCRP-mediated
drug transport including retinoids. This requires precise knowl-
edge of their structural domains and the exact mechanisms of
interactions. Given that modulation of the ABC transporters
might influence the pharmacokinetics of other co-administered
chemotherapeutic drugs, more care should be taken upon the
combination of retinoids with other anti-cancer drugs to avoid
drug–drug interactions occurring at the level of the membrane
transporters, P-gp and BCRP.

Considering the anti-cancer potency of synthetic retinoids,
future research should focus on unravelling the impact of these
compounds on the expression and activity of efflux pumps and
other drug transporters. This could pave theway for recruiting
synthetic retinoids as chemosensitizers that specifically target
MDR-promoting transporters and could help in fighting the
battle against chemoresistance.
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