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Abstract

Collective behaviour in living systems is observed across many scales, from bacteria to

insects, to fish shoals. Zebrafish have emerged as a model system amenable to laboratory

study. Here we report a three-dimensional study of the collective dynamics of fifty zebrafish.

We observed the emergence of collective behaviour changing between ordered to rando-

mised, upon adaptation to new environmental conditions. We quantify the spatial and tempo-

ral correlation functions of the fish and identify two length scales, the persistence length and

the nearest neighbour distance, that capture the essence of the behavioural changes. The

ratio of the two length scales correlates robustly with the polarisation of collective motion that

we explain with a reductionist model of self–propelled particles with alignment interactions.

Author summary

Groups of animals can display complex collective motion, which emerges from physical

and social interactions amongst the individuals. A quantitative analysis of emergent col-

lective behaviour in animals is often challenging, as it requires describing the movement

of many individual animals. With an innovative 3D tracking system, we comprehensively

characterized the motion of large groups of zebrafish (Danio rerio), a freshwater fish com-

monly used as a vertebrate model organism. We find that the different collective behav-

iours are captured by two physical scales: the length of persistent motion in a given

direction and the typical nearest neighbour distance. Their ratio allows us to interpret the

experimental results, in the light of a statistical mechanics model for swarming with per-

sistent motion and local neighbourhood alignment.

Introduction

In living systems aggregation occurs at different scales, ranging from bacteria (microns) to

insects (centimetres) to fish shoals (tens of kilometres) and with emerging complex patterns
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[1–3]. These manifestations of collective behaviour originate from the interactions among the

individual agents and between the agents and the environment [4]. Such interactions are often

modelled by a combination of deterministic and stochastic contributions, capturing the indi-

vidual’s variability observed in nature and unknown or uncontrollable variables. The emer-

gence of collective behaviour has been shown to be advantageous for communities [5–7], and

the identification of universal patterns across scales and species reveals the physics behind

these phenomena [8, 9]. Understanding the relationship between the collective behaviour and

animal interactions has potential technological applications, for example to reverse engineer

algorithms for the design of intelligent swarming systems [10]. Successful examples include

the global optimisation algorithm for the travelling salesman problem inspired by the behav-

iour of ants, and implementation of the Boids flocking model in schooling of robotic fish

[11, 12].

In a reductionist approach, collective behaviour can be modelled with interacting agents

representing individuals in living systems. For example, groups of animals may be treated as if

they were self-propelled particles with different interacting rules [13, 14]. Examples of using

simple agent–based models applied to complex behaviour include describing the curvature of

the fish trajectories as a Ornstein–Uhlenbeck process [15], modelling the ordered movement

of bird flocks by an Ising spin model [2, 16], mapping of midge swarms onto particulate sys-

tems to explain the scale-free velocity correlations [13, 17, 18] and swarming in active colloids

[19, 20]. One of the simplest approaches is the Vicsek model [21], in which the agents only

interact via velocity alignment. Despite its simplicity, a dynamical phase transition from

ordered flocking to randomised swarming can be identified, providing a basis to describe col-

lective motion in biological systems [22, 23].

The study of collective behaviour in living systems typically has focused on two-dimen-

sional cases for reason of simplicity, making the quantitative characterisation of three-

dimensional systems such as flocks of birds or shoal of fish rare. To bridge this gap, zebrafish

(Danio rerio) present a wealth of possibilities [24]: zebrafish manifest shoaling behaviour, i.e.

they form groups and aggregates, both in nature and in the laboratory; also, it is easy to con-

strain the fish in controlled environments for long–time observations. Typically, the response

of fish to different perturbations, such as food and illumination, can be pursued [24–26]. Fur-

thermore, genetic modification has been very extensively developed for zebrafish, giving them

altered cognitive or physical conditions, and yielding different collective behaviour [27, 28].

However, tracking zebrafish in three dimensions (3D) has proven difficult [29]. To the best

of our knowledge, previous studies on the 3D locomotion of zebrafish focussed either on the

development of the methodology [30, 31], or were limited to very small group sizes (N� 5)

[29, 32, 33], while ideally one would like to study the 3D behaviour of a statistically significant

number of individuals, representative of a typical community. In the field, zebrafish swim in

3D with group sizes ranging from tens to thousands [34].

Here we report on the collective behaviour of a large group (N = 50) of wild-type zebrafish,

captured by a custom 3D tracking system. The observed fish shoals present different behav-

iours, showing different levels of local density and velocity synchronisation. We identify two

well-separated time scales (re-orientation time and state-changing time) and two important

length scales (persistence length and nearest neighbour distance) for the zebrafish movement.

The time scales indicate the fish group change their collective state gradually and continuously.

The spatial scales change significantly as collective behaviour evolves over time, with strong

correlations between spatial correlations and shoaling. Finally, we reveal a simple and univer-

sal relationship between the global velocity alignment of the shoals (the polarisation) and the

the ratio between the two length scales (the reduced persistence length). We rationalise this

finding through the simulation of simple agent-based models, in which an extra inertia term is
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added to the Vicsek model. Our findings illustrate complex behaviour in zebrafish shoaling,

with couplings between spatial and orientational correlations that could only be revealed

through a full three-dimensional analysis.

Materials and methods

Ethics statement

The experiments were approved by the local ethics committee (University of Bristol Animal

Welfare and Ethical Review Body, AWERB) and given a UIN (university ethical approval

identifier).

Zebrafish husbandry

Wildtype zebrafish were kept in aquarium tanks with a fish density of about 5 fish / L. The fish

were fed with commercial flake fish food (Tetra Min). The temperature of the water was main-

tained at 25˚C and the pH� 7. They were fed three times a day and experience natural day to

night circles, with a natural environment where the bottom of the tank is covered with soil,

water plant, and decorations as standard conditions [35]. Our young group (Y) were adults

between 4–6 months post-fertilisation, while our old group (O) were aged between 1–1.5 year.

The standard body lengths of these fish were are available in section II in S1 Text. All the fish

were bred at the fish facility of the University of Bristol.

Apparatus

The movement of the zebrafish were filmed in a separate bowl-shaped tank, which is immersed

in a larger water tank of 1.4 m diameter. The radius r increasing with the height z following

z = 0.734r2. The 3D geometry of the tank is measured experimentally by drawing markers on the

surface of the tank, and 3D re-construct the positions of the markers. Outside the tank but inside

the outer tank, heaters and filters were used to maintain the temperature and quality of the

water. The videos of zebrafish were recorded with three synchronised cameras (Basler acA2040

um), pointing towards the tank. Detailed information is available in subsection I.A in S1 Text.

Measurement and analysis

Fifty zebrafish were randomly collected from their living tank, moved to a temporary con-

tainer, then transferred to the film tank. The filming started about 10 minutes after fish were

transferred. The individual fish in each 2D images were located by our custom script and we

calculated the 3D positions of each fish following conventional computer vision method [36,

37]. The 3D positions of the fish were linked into trajectories [38, 39]. Such linking process

yielded the positions and velocities of different fish in different frames. We segmented the

experimental data into different sections of 120 seconds, and treat each section as a steady

state, where the time averaged behavioural quantities were calculated. More details on the

tracking are available in subsections I.B-I.D in S1 Text, and more descriptions on the analysis

are in section III in S1 Text.

Results

Experimental observation

We tracked the movement of zebrafish from multiple angles using three synchronised cam-

eras. We collected data for fish groups with different ages, with young fish (labelled as Y1–Y4)

and old fish (labelled as O1–O4). Fig 1A schematically illustrates the overall setup of the
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experiment, where the cameras were mounted above the water to observe the fish in a white

tank in the shape of a parabolic dish, enabling 3D tracking [2, 40–42]. With this apparatus, we

extract the 3D positions of the centre of each fish at different time points, with the frequency

of 15 Hz. We then link these positions into 3D trajectories. Fig 1B presents typical 3D trajecto-

ries from 50 young zebrafish during a period of 10 seconds, where the fish group changed its

moving direction at the wall of the tank. The zebrafish always formed a single coherent group,

without splitting into separate subgroups during our observations. Supplementary videos (S1,

S2 and S3 Videos) are examples of the their movements. Fig 1C shows the cumulative spatial

distribution of the zebrafish in the tank, during a one-hour observation. It is clear from this fig-

ure that the fish tend to swim near the central and bottom part of the tank. The propensity of

zebrafish to swim near the wall was our motivation to use a bowl-shaped fish tank shown in

Fig 1C, so that there are no corners for the fish to aggregate in, compared to a square-shaped

container like conventional aquaria.

Evolving collective behaviour

The 3D tracking yields the positions of the fish, whose discrete time derivative gives the veloci-

ties. From these two quantities, we calculate three global descriptors to characterise the behav-

iour of the fish: the average speed, the polarisation, and the nearest neighbour distance. The

average speed is defined as v0 = 1/N∑|vi| where i runs over all the tracked individuals. The

polarisation F characterises the alignment of the velocities. It is defined as the modulus of the

average orientation, written as [13], F = 1/N|∑(vi/|vi|)| where i runs over all the individuals.

Large polarisation (F* 1) signifies synchronised and ordered movement, while low polarisa-

tion indicates decorrelated, random movement. The nearest neighbour distance between the

fish centres is defined according to the Euclidean metric, and we focus on is arithmetic mean

lnn. These quantities were selected, because v0 and F describe the dynamic of the fish, and lnn

captures structural information on the group of fish.

We start from the analysis of temporal correlations of these three scalar quantities. Notably,

all three exhibit two distinct time scales. Fig 2A shows the auto–correlation functions (ACF) of

v0,F and lnn averaged over the group of 50 young fish, calculated from a one hour observation.

The ACFs present two decays and one intermediate plateau. We identify the first decay (*1s)

corresponding to the reorientation time of the zebrafish. This can be shown through the analy-

sis of the autocorrelation of the orientations Fig 2B, which are characterised by an exponential

decay with relaxation time hτi close to *1s. This value is compatible with the previously

reported turning rate timescale (*0.7s) [43].

The plateau and subsequent decay of the ACF of the scalar quantities v0,F and lnn, with the

time scale of *120 seconds, represent complete decorrelation from the initial state, indicating

that the shoal properties change significantly on this much longer timescale. Therefore, we

employ time-windows of 120 seconds to average the time evolution of of v0, F and lnn, to char-

acterise the states of the fish groups with moving averages hv0i(t), hFi(t) and hlnni(t).

To characterise the degree of spatial correlation of the fish, we calculate their radial distribu-

tion function (RDF), see Fig 2C, which quantifies the amount of pair (fish-fish) correlations

and it is commonly employed in the characterisation of disordered systems ranging from gas

to liquids, from plasma to planetary nebulae [44]. Details on the RDF can be found in subsec-

tion III.C in S1 Text. All the RDFs exhibit one peak at a short separation, indicating the most

likely short-distance separation between fish. The peak height is a measure of the cohesion of

the fish group. Inspired by liquid state theory [44], we take the negative logarithm of the peak

height to characterise what we call as the “effective attraction” among the fish, noted as h�i.

While lnn quantifies a characteristic lengthscale in the macroscopic collective state, � quantifies
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the fish propensity to remain neighbours. In Fig 2D we see that hlnni and h�i are strongly cor-

related, confirming that lnn is also a measure of the cohesion of the collective states. We term

hv0i, hFi, hτi, hlnni, and h�i “behavioural quantities”, and the brackets indicate the moving

average. These variables are summarised in Table 1.

Fig 2D illustrates the time-evolution of all the behavioural quantities, calculated from

the movement of 50 young fish (group Y1) ten minutes after they were extracted from a hus-

bandry aquarium and introduced into the observation tank. Over time, the behavioural

quantities drift, indicating that a steady state cannot be defined over the timescale of 1 hour.

This result is generic, as the separated time scales and changing states were obtained from

repeated experiments on the fish group (Y2–Y4), and also from different groups of older zeb-

rafish (O1–O4).

Shoaling state described by two length scales

To describe the space of possible collective macroscopic states we employ two dimensioned

lengths, the nearest neighbour distance hlnni defined above and a second scale characterising

the typical distance that a single fish covers without reorientation, the persistence length hlpi.
This is defined as the product of the speed and the orientational relaxation time hlpi = hv0ihτi.

The resulting hlpi and hlnni diagram is illustrated in Fig 3A. As we move across the diagram,

the degree of alignment of the fish motion—the polarisation—also changes, indicating that

changes in the local density (as measured by hlnni) and in the pattern and velocity of motion

(as measured by hlpi) are reflected in the polarisation of the shoals. For high hlpi and low hlnni,

the movements of the fish are cohesive and ordered (S1 Video). For the fish states with a low

Fig 1. Experimental setup and overall spatial distributions. A: Schematic illustration of the experimental setup.

Zebrafish were transferred into a bowl-shaped tank and three cameras were mounted above the air-water interface to

record the trajectories of the fish. B: 3D trajectories obtained from the synchronised videos of different cameras. These

trajectories belong to 50 young zebrafish (group Y1) in 10 seconds. C: The spatial distribution of 50 young fish (Y1)

during a one-hour observation. Brighter colour indicates higher density. The top panel shows the result in XY plane,

obtained from a max-projection of the full 3D distribution. The bottom panel shows a max-projection in the XZ plane.

The outline of the tank and water-air interface, obtained from 3D measurement, are labelled.

https://doi.org/10.1371/journal.pcbi.1009394.g001
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hlnni and low hlpi, the movements are cohesive but disordered (S3 Video). For fish states with

high hlnni and low hlpi, the fish are spatially separated with disordered movements (S2 Video).

Separated and ordered states are never observed. We also note that there is a systematic differ-

ence between young (Y) and old (O) fish groups, with the former characterised by longer per-

sistence lengths, shorter neighbour distances and larger polarisations, while the latter are

clustered in a narrower range of persistence lengths with more disorder.

Fig 2. The behavioural quantities of 50 young zebrafish (group Y1). A: The auto–correlation function of the polarisation and average

speed of the fish group. B: The auto–correlation function of the orientations of fish. C: Sequence of radial distribution functions with

increasing time: at early times (top curves) the fish are clustered together so that the peak is large; at later times (bottom curves) the local

density decreases and so does the peak height. D: The time evolution of the averaged behavioural quantities for 50 young fish. Each point

corresponds to the average value in 2 minutes. The error bars illustrate the standard error values.

https://doi.org/10.1371/journal.pcbi.1009394.g002

Table 1. A summary of the variables used to describe the fish behaviour.

Symbol Name Unit Comment

v0 Speed mm/s Average over different fish

lnn Nearest Neighbour Distance mm Average over different fish

F Polarisation 1 Larger = ordered movement

h�i Average operator Time average over 120 s

hτi Relaxation time s The relaxation of fish orientation

h�i Effective Attraction 1 Smaller = more cohesive

hlpi Persistence Length mm Defined as hv0ihτi
κ Reduced Persistence Length 1 Defined as hlpi / hlnni

https://doi.org/10.1371/journal.pcbi.1009394.t001

PLOS COMPUTATIONAL BIOLOGY Dominating lengthscales of zebrafish collective behaviour

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009394 January 13, 2022 6 / 14

https://doi.org/10.1371/journal.pcbi.1009394.g002
https://doi.org/10.1371/journal.pcbi.1009394.t001
https://doi.org/10.1371/journal.pcbi.1009394


The simplest model to capture the relationship between polarisation and the two lengths-

cales is a multilinear regression. This yields hFi = 0.039 hlpi − 0.05 hlnni + 0.147, with a good-

ness of fit value R2 = 0.73. This strong simplification suggests that most of the fish macroscopic

states reside on a planar manifold in the F–lnn–lp space, illustrated in Fig 3B. The value of hFi

increases with the increase of hlpi, and the decrease of hlnni. Such relationship is reminiscent of

results from the agent-based Vicsek model, where the polarisation of self–propelled particles is

determined by the density (� l� 1
nn ) and orientational noise (� l� 1

p ) [21, 45]. In addition, the

relationship between the polarisation and the local density suggests a metric based interaction

Fig 3. The states of Zebrafish characterised by two length scales. A: The states of the fish represented by the nearest neighbour distance and the

persistence length. The brightness of the markers corresponds to the value of the polarisation. Each scatter–point corresponds to a time-average of 2

minutes. Different shapes indicate different fish groups from different experiments. B: A multilinear regression model fitting the relationship

between the polarisation and the two length scales, indicating the polarisation increase with the increase of persistence length, and the decrease of

the nearest neighbour distance. The model is rendered as a 2D plane, whose darkness indicates the value of polarisation.

https://doi.org/10.1371/journal.pcbi.1009394.g003

Fig 4. Single–parameter description of the Zebrafish system. A: The average polarisation hFi as a function of the reduced persistence length κ, where most data points

collapse, and agree with the simulation result of the inertial Vicsek model. The dashed line and grayscale zone represent the expected average value and standard

deviation of hFi for the uniform random sampling of vectors on the unit sphere. B: The velocity correlation function of the fish and the model in the low κ states,

highlighted in A with a × symbol. C: The velocity correlation function of the fish and the model in the high κ states, highlighted in A with a + symbol.

https://doi.org/10.1371/journal.pcbi.1009394.g004

PLOS COMPUTATIONAL BIOLOGY Dominating lengthscales of zebrafish collective behaviour

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009394 January 13, 2022 7 / 14

https://doi.org/10.1371/journal.pcbi.1009394.g003
https://doi.org/10.1371/journal.pcbi.1009394.g004
https://doi.org/10.1371/journal.pcbi.1009394


rule, rather than the topological one [46]. In other words, the fish tend to align with nearby

neighbours, rather than a fixed number of neighbours. For instance, if the fish always align

with their closest neighbours regardless of the distance, then the polarisation of the system will

not be affected by lnn. A similar relationship between polarisation and density was also found

for jackdaw flocks while responding to predators [47].

Interestingly, the ratio between the persistence length and the nearest neighbour distance

exhibits a simple and robust correlation with the polarisation. Here we introduce the reduced
persistence length κ = hlpi/hlnni. The value of κ exhibits a consistent relationship with the polari-

sation for all the fish groups, as shown in Fig 4A. All the experimental data points collapse onto

a single curve, especially for the younger fish groups (Y1–Y4) which have a much wider

dynamic range than the older groups. Notably, the young fish always transform from ordered

states with high κ value to disordered states with low κ value, possibly because they adapt to the

observation tank. Other possible ways to collapse the data is discussed in section VII in S1 Text.

To understand this relationship, we consider the fish motion as a sequence of persistent

paths interrupted by reorientations. In a simplified picture, the new swimming direction at a

reorientation event is determined by an effective local alignment interaction that depends on

the neighbourhood, and notably on the nearest neighbour distance lnn. The fish states with

larger value of κ correspond to situations where each individual fish interacts with more neigh-

bours on average, between successive reorientations. The increased neighbour number leads

to a more ordered collective behaviour, so that the values of κ and F are positively correlated

as shown in Fig 4A.

The time-averaged spatial correlation of the velocity fluctuation supports our picture of the

local alignment interaction between the fish. Such a correlation function is defined as,

CðrÞ ¼
PN

i¼1

PN
j¼iþ1
½ðvi � �vÞ � ðvj � �vÞ dðr � rijÞ�

PN
i¼1

PN
j¼iþ1

dðr � rijÞ
; ð1Þ

where vi is the velocity of fish i, �v is the average velocity in one frame, rij is the distance between

two fish, and δ is the Dirac delta function. This function is widely used to characterise the aver-

age alignment of velocity fluctuations of moving animals, at different distances [2, 48, 49]. Fig

4B and 4C show the correlation functions for different fish groups with low and high κ values,

respectively. The distances are rescaled by the different hlnni values of each fish group. For

both conditions, the correlation curve collapses beyond one hlnni, and peaks around the value

of hlnni, supporting our assumption that hlnni is the length scale for the fish–fish interactions.

Vicsek model rationalisation of the experiments

The relationship between κ and F, presented in Fig 4A, can be easily compared with simula-

tions. Here we explore this through simulations proposing a new modification of the original

Vicsek model [21]. The Vicsek model treats the fish as point-like agents with an associated

velocity vector of constant speed v0. During the movement, the fish adjust their orientations to

align with the neighbours’ average moving direction. In order to take into account of memory

effects in a simple fashion, we add an inertia term into the Vicsek model, so that each agent

partially retain their velocities after the update, with the following rule

viðt þ 1Þ ¼ v0Y ð1 � aÞ v0RZ Y
X

j2Si

vjðtÞ

 !" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vicsek Model

þ aviðtÞ

2

6
6
6
6
4

3

7
7
7
7
5
; ð2Þ
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where~vi is the velocity or the ith fish, and the updated velocity of fish i is a linear mixture of its

previous velocity and a Vicsek term. The parameter α characterises the proportion of the non-

updated velocity, i.e. the inertia. This model is reduced to the Vicsek model by setting α to 0. If

α = 1, these agents will perform straight motion with constant speed without any interaction.

For the Vicsek term, Si is the set of the neighbours of fish i, and the Θ is a normalising function.

The operator RZ½r� randomly rotates the vector r into a new direction, which is drawn uni-

formly from a cap on the unit sphere. The cap is centred around r with an area of 4πη. The

value of η determines the degree of stochasticity of the system. Our model is thus an inertial

Vicsek model in three dimensions with scalar noise.

We set the units of the interaction range ξ and time dt and fix the number density to ρ =

1ξ−3 and speed v = 0.1ξ/dt. We then proceed with varying the two parameters α and η to match

the data. In particular we measure the average persistence length hki and polarisation hFi and

find that for α = 0.63 we can fit the data only through the variation of the noise strength η
(more details of the simulation are available in the section IV in S1 Text). For η* 1, the move-

ment of each agent is completely disordered, reproducing the low κ (or F) states of the fish.

For the case of η* 0.65 the movements of the agents are ordered (F* 0.64) and mimic the

states of fish with high κ. This is consistent with the fact that in the ordinary Vicsek model the

persistence length scales as ℓ* v0/η2 (section V in S1 Text) [45]. The good fit of the simulation

result suggests the fish–fish alignment interaction dominates their behaviour, and the fish can

change their states by changing the rotational noise (η).

We emphasise that the inertial Vicsek model is a crude approximation, as the only interac-

tion of the model is velocity alignment. Without the attractive/repulsive interactions and other

details, the inertial Vicsek model does not reproduce the velocity correlation function of the

fish, as illustrated in Fig 4B and 4C, suggesting that more sophisticated models with effective

pairwise and higher order interactions may be developed in the future. Nevertheless, the

model qualitatively reproduces the fact that the velocity correlation is stronger in the high κ
states.

Discussion and conclusion

Our results confirm some previous observations and open novel research directions. The

young fish appear to adapt to a new environment with the reduction of the effective attraction

and speed (Fig 2). Such behaviour is consistent with previous observations of dense groups of

fish dispersing over 2–3 hours [50], and it might be related to the fact that the fish perceived

less danger as they adapted to the new environment [51, 52]. At the same time, it was reported

by Miller and Gerlai that the habituation time has no influence on the Zebrafish group density

[53]. We speculate that this difference emerges from the way the statistics were performed.

Typically, Miller and Gerlai’s results were averaged over 8 different small fish groups (N = 16),

and it is possible that the noise among different groups obfuscates the time dependence fea-

tures here highlighted. Despite the different claims, our result matched Miller and Gerlai’s

result quantitatively (section VI in S1 Text).

The strong correlation between the speed and polarisation (Fig 4D) is consistent with previ-

ous studies on zebrafish [54, 55]. Such correlation had also been observed for different fish spe-

cies [15, 28, 56]. The polarisation of the young fish was found to decrease (Fig 2D), during the

adaptation process. This “schooling to shoaling” phenomenon had also been observed previ-

ously in a quasi 2 dimensional environment [51]. Our results, being quantitatively consistent

with previous reports (section VI in S1 Text), suggest that this behaviour is present also in a

fully three-dimensional context and that the change from schooling (ordered motion) to
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shoaling (disordered motion) is related to an increasingly disordered or uncorrelated behav-

iour, corresponding to the increase in the noise term η in the Vicsek model.

It is been speculated that all the biological systems were poised near the critical state, enjoy-

ing the maximum response to the environmental stimuli [57]. Here the inertial Vicsek model

offers a supporting evidence to this claim. The fluctuation of the polarisation, the susceptibil-

ity, took a maximum value at moderate reduced persistence value κ* 2, as illustrated Fig 4A.

Also, the fish states were clustered around such region, where the fish can switch between the

disordered behaviour and ordered behaviour swiftly. Such disordered but critical behaviour

was also observed for the midges in the urban parks of Rome [18].

In conclusion, our work presents a quantitative study of the spatial and temporal correla-

tions manifested by a large group of zebrafish. In our fully 3D characterisation, we have shown

that there is a timescale separation between rapid reorientations at short times and the forma-

tion of a dynamical state with characteristic spatial correlations at longer times. Such spatial

correlations evolve continuously and no steady state is observed in the time window of one

hour. Our analysis shows that the continuously changing collective macroscopic states of the

fish can be described quantitatively by the persistence length and nearest neighbour distance.

The ratio of these length scales presents a characteristic correlation with the polarisation of the

fish group. This simple relation is supported by an elementary agent based model in the class

of the Vicsek models for collective behaviour.

Our analysis also opens multiple questions: the true nature of the interactions and how

these are linked to the sensory and vision capabilities of the fish is open to debate; also, the rea-

son for the change of the fish states remained unexplored, with the possibility of the fish learn-

ing over time about the experimental conditions. Our work shows that zebrafish provides a

viable model system for the study of animal collective behaviour where such questions can be

investigated in a quantitative manner.

A further intriguing possibility is to link the methodology that we develop here, with

genetic modifications to zebrafish, for example with behavioural phenomena such as autism

[27] or physical alterations such as the stiffened bone and cartilage [58].

Supporting information

S1 Text. The details on the experiments, the analysis, and simulations. And the compari-

son between our results and previous studies. The detailed description of the tracking system

was introduced in the first section, including the analysis on the overall tracking accuracy. The

second section presented the details of the fish age. The third section discussed the details of

the analysis, typically the calculation of the correlation functions. The fourth section showed

the simulation parameters. The fifth section verified the scaling relationship between persis-

tence length and noise in the Vicsek model. The sixth section presented the comparison

between our result and previous results. The last section discussed different ways to collapse

the experimental data.

(PDF)

S1 Dataset. The behavioural quantities, correlation functions, and simulation results to

produce figures in the main text. The results were organised in the json file format, and they

can be parsed by common json libraries in different computer languages. The pedagogical

code (S1 Code) was provided to aid the reader visualising the results.

(JSON)
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S1 Code. The pedagogical code to explore the dataset and to generate the figures in the

main text. The code was written in Python language, and organised as a jupyter notebook.

(IPYNB)

S1 Video. Fifty young fish in the fast and ordered state. The movie shows the 2D video and

3D trajectories of 50 young fish in real time. In the 3D plot, The dots represent the location of

the fish, and the arrows represent the velocities of the fish. The length of the arrow indicates

the value of the speed.

(MP4)

S2 Video. Fifty young fish in the slow and disordered state. The movie shows the 2D video

and 3D trajectories of 50 young fish in real time. In the 3D plot, The dots represent the location

of the fish, and the arrows represent the velocities of the fish. The length of the arrow indicates

the value of the speed.

(MP4)

S3 Video. Fifty old fish in the fast and disordered state. The movie shows the 2D video and

3D trajectories of 50 old fish in real time. In the 3D plot, The dots represent the location of the

fish, and the arrows represent the velocities of the fish. The length of the arrow indicates the

value of the speed.

(MP4)

S4 Video. The reprojection error of the 3D tracking of 50 young fish. The circles are 2D

tracking results, and the cross markers are the reprojected 3D tracking results.

(MP4)

S5 Video. The reprojection error of the 3D tracking of 50 simulated fish. The circles are 2D

tracking results, and the cross markers are the reprojected 3D tracking results.

(MP4)
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