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Abstract

Purpose The inclusion of the patient’s perspective has become increasingly important when reporting adverse events and
may assist in management of toxicity. The relationship between drug exposure and toxicity can be quantified by combin-
ing Markov elements with pharmacometric models. A minimal continuous-time Markov model (mCTMM) was applied to
patient-reported outcomes using hand—foot syndrome (HFS) induced by capecitabine anti-cancer therapy as an example.
Methods Patient-reported HFS grades over time of 150 patients from two observational studies treated with oral capecit-
abine were analyzed using a mCTMM approach. Grading of HFS severity was based on the Common Terminology Criteria
for Adverse Events. The model was evaluated by visual predictive checks (VPC). Furthermore, a simulation study of the
probability of HFS severity over time was performed in which the standard dosing regimen and dose adjustments according
to HFS severity were investigated.

Results The VPC of the developed dose—toxicity model indicated an accurate description of HFS severity over time. Indi-
vidual absolute daily dose was found to be a predictor for HFS. The simulation study demonstrated a reduction of severe
HEFS using the recommended dose adjustment strategy.

Conclusion A minimal continuous-time Markov model was developed based on patient-reported severity of hand—foot
syndrome under capecitabine. Thus, a modeling framework for patient-reported outcomes was created which may assist in
the optimization of dosage regimens and adjustment strategies aiming at minimizing symptom burden during anti-cancer
drug therapy.

Keywords Markov model - Capecitabine - Hand—foot syndrome - Patient-reported outcomes

Introduction of toxicity [1]. The grading of adverse events is conducted
by the study personnel. However, since reports suggest that

Anticancer treatment is frequently associated with adverse  this method is associated with underestimations of adverse

events. Thus, the management of toxic effects is a major
aspect of a successful therapy. To account for the severity
of adverse events, the Common Terminology Criteria for
Adverse Events (CTCAE) are widely used for evaluation
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event severity [2, 3], the patient’s perspective has become
increasingly important. Therefore, a version of Patient-
Reported Outcomes (PRO-CTCAE) has been developed and
is increasingly used [4].
Pharmacokinetic—pharmacodynamic (PKPD) modeling
approaches have proved to be useful to quantify the rela-
tionship between drug exposure and toxicity. Whereas some
adverse events can be classified by metric data, such as mye-
losuppression [5], others, such as the severity of hand—foot
syndrome or fatigue, lack objectively quantifiable param-
eters. Particularly, patient-reported data are often categorical
as they are generated by subjective grading. One possibil-
ity to link categorical longitudinal toxicity data with drug
exposure are Markov models. By applying these models, the
probability of developing an adverse event of a certain grade
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can be estimated. Karlsson et al. introduced Markov models
into the field of PKPD by analyzing sleep stages in insomnia
patients [6]. Since then, Markov models were applied to a
wide field of scenarios, such as diarrhea and rash, in can-
cer patients [7, 8], proteinuria [9] or improvement scores in
rheumatoid arthritis [10].

Capecitabine is an orally administered prodrug of the
cytotoxic agent fluorouracil (5-FU) used for the treatment
of various tumor entities, such as colorectal and breast can-
cer. The metabolic activation of capecitabine to 5-FU occurs
primarily in tumor cells minimizing the systemic toxic
effects of 5-FU [11]. However, it causes a higher incidence
of hand—foot syndrome (HFS) than intravenously adminis-
tered 5-FU [12, 13]. Because the occurrence and severity of
HFS were assumed to be dose-dependent the management of
HEFS toxicity includes dose reductions [14, 15]. Hénin et al.
already linked capecitabine exposure to HFS toxicity using
a Markov modeling approach [16] but could only consider
CTCAE grades which were described by clinicians. There-
fore, a model-based extension towards a patient perspective
would allow to improve the management of adverse events.

The aim of this project was to develop a modeling and
simulation framework to describe and predict patient-
reported HFS severity in patients treated with capecitabine.
Based on this example, the suitability of Markov models to
simulate the time course of patient-reported toxic symptoms
should be assessed.

Methods
Patients and data

For this work, raw data from a total of 150 capecitabine-
naive patients were pooled from two open, prospective
multi-centered observational cohort studies. Both stud-
ies aimed at evaluating the effect of pharmaceutical care
on adherence of capecitabine-treated patients and were
approved by the ethics committee at the Faculty of Medi-
cine of the University of Bonn [17, 18]. A summary of the
observed data can be found in Table 1. Capecitabine was
administered orally twice daily as an intermittent regimen in
3-week cycles (14 days of treatment and seven-day break).
Dose modifications, treatment interruptions and discontinu-
ations were conducted at the sole discretion of the treating
oncologists.

Occurrence and severity of HFS were assessed by the
patients using a questionnaire developed at the Department of
Clinical Pharmacy at the University of Bonn. The description
of HFS severity grades (0 to 3) was based on the descriptions
provided by the CTCAE grades, version 3.0 [1]. Grade 0 was
described as the absence of symptoms, patients with grade 1
had minimal skin alterations (e.g. redness) without any pain.
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Grade 2 was described as skin reactions (e.g. fissures, blisters,
swelling) and/or pain without impairment of activities of daily
living and patients with HES grade 3 had severe skin reactions
(e.g. peeling, blisters, bleeding) and/or severe pain, including
impaired activities of daily living. Patients were asked to com-
plete the questionnaire after each conducted cycle. Therefore,
up to six HFS grade assessments per patient were collected.
Before starting capecitabine treatment, patients were consid-
ered asymptomatic.

Data analysis

This population pharmacodynamic analysis was performed
using non-linear mixed effect modeling. Model parameters
were estimated by the Laplacian method implemented in the
software NONMEM 7.4.3 [19]. The likelihood-ratio test was
used to discriminate between nested models. The inclusion of
an extra parameter or covariate required a statistically signifi-
cant reduction (p <0.01) of the objective function value (OFV)
provided by NONMEM. Furthermore, visual predictive checks
(VPC) assisted in model selection.

Implemented scripts in PsN (version 4.8.1) [20, 21] were
also used for model development and R (version 3.5.1) [22]
was used for visualization of results as well as generating ran-
dom numbers for simulation analyses. Pirafia (version 2.9.7)
[23] served as a front interface.

Model building

Since HFS can only be graded on a categorical scale, the prob-
ability of each grade was modeled with a proportional odds
model which was extended with Markov elements. In this
work, a minimal continuous-time Markov model (mCTMM)
was applied to analyze the severity of HFS. The mCTMM was
developed by Schindler and Karlsson and is a simplification
of standard continuous-time Markov models [24]. A compart-
mental structure with four compartments was used, with each
compartment representing one HFS severity grade (0, 1, 2,
and 3) [7]. The probability of each grade was modeled as an
amount in the respective compartment and described by dif-
ferential equations in which solely transitions between adjacent
states were considered (Eq. 1):

d}:l([O) = K,y P(1) = Ky, - P(O)
% = Ky, - PO)+ Ky, - P2) — Ky - P(1) = Ky - P(1)
dz(tz) =Ky, - P(1) + Ky - P3) — Ky - P2) — Koy - P(2)
df(’i(f) =K, - P(2) — Ky, - P(3)

ey
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ZZ':;G[ 11 7781118rilmary of observed Patients analyzed (male/female) 150 (39/101)

Age (years), median (range) 62 (28-93)
Tumor entity

Colorectal cancer 71

Breast cancer 67

Other 12
Therapy-related details

Capecitabine monotherapy 71

Capecitabine combination therapy 79

Absolute daily dose (mg), median (range) 3000 (1000 — 5000)

Number of observed cycles per patient, mean (range) 52(1-6)

Number of patients with treatment interruptions 33

Duration of treatment interruptions (days), median (range) 8(1-118)

Number of treatment discontinuations 56
Number of observed transitions between adverse event grades

0—0 254

0—1 93

0—2 41

0—3 7

1—-0 26

1—1 125

1—-2 44

1-3 9

2—0 8

2—1 34

2—2 69

2—-3 12

3—-0 2

31 6

32 9

33 22

dP(grade)/dr represents the rate of change over time of the

probability of experiencing grades O, 1, 2 or 3, P(grade)
is the probability of experiencing one of the HFS grades,
Korade grade+1 304 Kgpage orage—1 are transition rate constants
for worsening to higher grades and for recovering to lower
grades, respectively.

When an observation event occurred, the amount in
the compartment corresponding to the respective sever-
ity grade was set to 1 whereas the other compartments
were set to 0 before the next observation. This introduced
the Markov property. Between two observations, rate con-
stants defined the transitions of probabilities between dif-
ferent grades. In an mCTMM, it is assumed that the transi-
tion rate between two consecutive grades is independent of
the grade resulting in fewer model parameters than in other
Markov models. Only the mean equilibration time (MET)
was introduced as a constant parameter characterizing the
transition rates across different grades. The transition rate
constants govern the rate at which the probability of the

adverse event severity distributes between two observa-
tions. They were defined as functions of the MET and the
probabilities of the respective severity grades [24].

The calculation of the probabilities experiencing one of
the HFS grades was similar to a proportional odds model
[25]. Since four different HFS grades were considered,
three probabilities had to be estimated. The fourth prob-
ability was defined as 1 minus the sum of the three others.
Logit transformation was conducted to express the respec-
tive probability as a value within the interval between 0
and 1 (Eq. 2):

(P(Gr; > n))))) = a,+g(x) + 1,

1- (P(Grij >n
2

Gr;; is the HFS grade for the ith individual at the jth

occasion. P(Gr;=n) represents the probability that the

HFS grade is greater than or equal to grade n. This can be

logit(P(Gr; > n)) = log (
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also defined as the cumulative probability of grade n. a,, is
the intercept on the logit scale and g(x;) represents a linear
function on the logit scale which contains explanatory fac-
tors, such as drug exposure or covariates, such as age or
sex. These factors are related to the probability experienc-
ing HFS. 7, represents the interindividual random effect for
the ith individual assuming a normal distribution with a
mean of 0 and a variance of ®. To ensure that the cumu-
lative probability of the respective next higher grade is
lower, the following parametrization of the logit intercept
was used (Eq. 3):

Ay = &y + bn+1 (3)

The parameter b, | is negatively constrained and has to
be estimated in the model.

Using the inverse logit function (also called expit func-
tion), P(Gr,-j > n) can be directly calculated as follows
(Eq. 4):

1
P(Gr; > n) = 1+ o(arrsCuym) @

Additionally, an interindividual variability (IIV) as an
exponential function of the MET was included.

After building the base model, the effects of dose and
time on the MET and the logit intercepts were tested. Here,
dose was tested as a time-varying covariate between therapy
cycles. Moreover, a covariate analysis was performed. Con-
tinuous (patient’s age) as well as categorical covariates (sex,
tumor entity and concomitant chemotherapy) were included
based on their statistical significance of reducing the OFV,
i.e. improving the model fit. For one additional parameter
in the model the OFV had to decrease by at least 6.64 which
corresponds to a p value <0.01 in the case of one degree of
freedom. Additionally, adherence was tested as a covariate.
It was measured using an electronic medication event moni-
toring system (MEMS™) [17, 18] and assessed as pooled
overall adherence per patient over the course of therapy.
Patients were allocated to one of three groups (Overall
adherence > 100%, 90—100% or <90%).

Model evaluation

To assess the model fit, visual predictive checks for categori-
cal data were used. 95% confidence intervals (CI) were gen-
erated from 1000 dataset simulations based on the observed
dataset and superimposed by the observed proportions of
patients experiencing the individual HFS grades over time.

In addition, model robustness as well as precision and
bias of parameter estimates were evaluated by a non-par-
ametric bootstrap analysis without stratification. Median
and 95% CI of parameter estimates were derived from 1000
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replicate datasets obtained from sampling individuals from
the original dataset with replacement.

Simulation study

The developed model was used to perform a simulation
study based on 1000 virtual patients to assess the appro-
priateness of the standard dosing regimen for capecitabine
monotherapy of 1250 mg/m? twice daily and the proposed
dose adjustments based on HFS severity according to the
summary of product characteristics (SmPC) [15]. Since no
information of body surface areas (BSA) of the patients
from the observational studies [17, 18] was provided, ran-
dom BSA values were generated using the rnorm function
in R. BSA means and standard deviations were obtained
from published data [26]. Two simulation approaches were
performed: (1) A simulation was performed in 1000 virtual
patients with the above-mentioned starting dose of 1250 mg/
m? for six cycles without dose adjustments. (2) A step-wise
simulation was performed in the same 1000 patients with
the same dose and total simulation duration as in (1). When
meeting the criteria for dose adjustment according to the
SmPC [15], the capecitabine dose was adjusted after each
conducted cycle. To have an equal number of patients in
both simulation scenarios, patients for whom a treatment
discontinuation would be recommended were kept in the
analysis. After adjusting the dose, the simulation of the sub-
sequent cycle was performed. The HFS grade correspond-
ing to the highest simulated probability was used to assess
toxicity.

Predictive performance

The ability of the model to predict individual HFS severity
was assessed by a simulation of patients with the same char-
acteristics as in the original dataset. Therefore, the included
random effect parameters were estimated by a Bayesian
approach up to a certain cycle. Then, the HFS severity of the
subsequent cycle was simulated based on the Bayesian esti-
mates and covariate effects. This approach was conducted
for predictions of cycle 2 up to cycle 6. Since Markov mod-
els can only predict the probability for each toxicity grade
but not the grade itself, the grade corresponding to the high-
est probability was compared to the respective observed HFS
grade. All grades were allocated to one of the following two
groups: The first group consisted of HFS grades >2 which
were classified as clinically relevant since dose reductions
or treatment interruptions are conducted at grade 2 or higher
[15], the second group consisted of HFS grades 0 and 1.
For the first group, a positive predictive value (PPV) was
calculated. It indicated the ability of predicting clinically
relevant HFS:
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N true predicted events with grade > 2
PPV =

" N total predicted events with grade > 2 )

The ability of predicting the absence of toxicity > grade
2 was assessed by calculation of a negative predictive value
(NPV) within the second group:

N true predicted events with grade < 1
NPV =

" N total predicted events with grade < 1 ©)

Since patients were considered asymptomatic before
starting therapy, predicted HFS grades at baseline were not
included for calculation of both NPV and PPV.

Results
Model building

In total, 911 observations from 150 patients were used for
model building (Table 1). Three exemplary time profiles of
individual HFS severity are depicted in Fig. 1. It should be
noted that 25 patients sent back HFS questionnaires after
they discontinued therapy. These patients were also included
in this analysis and their capecitabine dose was set to zero
after discontinuation. A base minimal continuous-time
Markov model (mCTMM) for hand—foot syndrome (HFS)
was developed including interindividual variability (ITV) for
both mean equilibration time (MET) and logit intercept a,,,
respectively. The results of the analysis of various covariates
are presented in Table 2.

The final mCTMM included a linear effect of absolute
daily capecitabine dose on the logit intercept e, indicating
larger probabilities of experiencing HFS with an increas-
ing dose (AOFV =—23.45, p <0.00001). None of the other
examined covariates or time effects resulted in a statistically
significant reduction of the OFV after inclusion. Addition-
ally, after the dose effect was included into the base model,
a further analysis of the mentioned covariates or time effects
did not result in a significant improvement of the model fit.
The final equation described the cumulative probabilities as
follows (Eq. 7):

1

P(Gr.. > n) =
( v ) 1 + e~ (@ +0poex(Dose (mg)~3000 mg)+7,) %)

O, represents the slope of the linear dose effect on the
logit scale. The dose effect was centered on the population
median daily dose of 3000 mg. The final model code used
in NONMEM is provided in the electronic supplementary
material.

A summary of the parameter estimates including the
bootstrap results is depicted in Table 3. Parameters were well

w

ID #1

HFS grade
N
(_
H

HFS grade
N
e

Time [cycle]

311D #124

HFS grade

Time [cycle]

Fig.1 Observed hand—foot syndrome (HFS) grades over time of
three representative individuals. ID #1 was a patient with a median
daily starting dose of capecitabine including a dose reduction and
dose increase, indicated by downwards and upwards pointing arrows,
respectively. ID #7 was a patient of median age who had a dose
reduction (cycle 5). ID #124 was a patient who took the median daily
capecitabine dose over the whole observed period of six cycles

estimated with relative standard errors below 25%, except
for the IV parameter associated with «;.

Model evaluation

The categorical visual predictive check revealed an accurate
description of the provided data. The simulated proportions
of patients experiencing one of the HFS grades described
the respective observed proportions of patients over time
well (Fig. 2).

Simulation study

Based on the developed dose—toxicity model and on the
results of the simulation study (Fig. 3), it was evident that
dose adjustments decreased the probability of severe HFS
during therapy while increasing the probabilities of the
absence of clinically relevant toxicity (grades 0 and 1).
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Table 2 Development of the

' . . Model AOFV p value

final model including various

covariates Base model 0 _
Sex effect on logit intercept a,, —3.454 0.063
Sex effect on MET —1.348 0.246
Absolute daily dose on logit intercept a,, —23.45 <0.00001
Absolute daily dose on MET —0.445 0.505
Capecitabine monotherapy (yes/no) on logit intercept a,, —1.358 0.244
Capecitabine monotherapy (yes/no) on MET +1.006 -
Breast cancer (yes/no) on logit intercept a,, - 1.274 0.259
Breast cancer (yes/no) on MET -0.139 0.709
Colorectal cancer (yes/no) on logit intercept a,, - 1.978 0.160
Colorectal cancer (yes/no) on MET —0.467 0.494
Other tumor entities (yes/no) on logit intercept a,, —0.391 0.532
Other tumor entities (yes/no) on MET +0.488 -
Age effect on logit intercept a,, —0.077 0.930
Age effect on MET —0.132 0.716
Overall adherence (> 100%/90-100%/ < 90%) on logit intercept a,, —-0.130 0.937*
Overall adherence (> 100%/90—-100%/< 90% adherence) on MET - 1.316 0.518*
Time effect on logit intercept a,, -4.179 0.041
Time effect on MET -14 0.237

AOFYV difference in the objective function value between the covariate model and the base model, MET

mean equilibration time

*Two degrees of freedom

Table 3 Parameter estimates

Parameter Estimate (relative Bootstrap median Bootstrap 95% confidence intervals
standard error, %)

a; 1.81 (14) 1.88 1.38 t0 2.51

b, —1.80(11) -1.79 —2.23to (— 1.45)

by —2.08 (13) -2.05 —2.73t0 (- 1.57)

MET (cycle) 1.09 (10) 1.11 0.896 to 1.430

Opose 8.33 x 107 (24) 8.28 x 107 4.05x 10*to 1.48 x 107

(o 1.12 (37) 0.981 0.0112to 1.65

OMET 0.542 (22) 0.560 0.310 to 0.842

al intercept parameter on the logit scale for HFS grade 1, bn parameter for grade n such that an = an-1 +
bn, MET mean equilibration time, @, slope of the linear daily dose effect on the logit scale, wP standard
deviation of the interindividual variability of parameter P

In particular, grade 3 toxicity was more probable when
no dose adjustments were performed whereas the prob-
abilities of grade 2 did not differ between the two simula-
tion approaches. The simulation study also clearly showed
that patients without dose adjustments tended to remain in
grade 3 for a longer period of time which is characterized
by a higher transition count from grade 3 to 3 compared
to the approach which included dose adjustments (transi-
tion count of 442 and 234, respectively). However, the
transition counts from grade 2 to 2 were comparable in
both simulation groups (769 without and 774 with dose
adjustments).
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Predictive performance

The predictive ability of the model for individual patients
was assessed by calculating the positive and negative pre-
dictive value (PPV, NPV) for each cycle (from cycle 2)
based on Bayesian estimates of both random effect param-
eters from the previous cycle as well as the dose effect.
PPV ranged from 21.9 to 34.2% whereas NPV ranged from
61.9 to 73.3%. Both values indicated a rather poor predic-
tive performance on an individual patient level.
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Fig.2 Categorical visual
predictive check showing

o 1 2 3 4 5 6
| I

the proportions of patients

100

|
Grade 0

| | | | |
Grade 1

experiencing patient-reported
CTCAE-based HFS grades from
0 to 3 over time. Solid black
lines indicate the observed
proportion of patients and the
grey shaded areas are the 95%
confidence intervals of simu-
lated proportions based on 1000
simulated datasets using the

80
60
40
20

final model

Grade 2

Grade 3

Proportion of patients [%]

100
- 80
- 60
- 40
- 20

Fig.3 Simulated probabilities
versus time for HFS grades 0-3

Grade 0

Time [Cycle]

Grade 1

of 1000 virtual patients. Solid 100+

lines indicate the median prob-
ability when dose adjustments
were performed according to the
capecitabine SmPC [15]. Grey
shaded areas are the respective 25
95% confidence intervals of the

median. Dashed lines indicate 0-

75+
50

40+
30+
20+

the median probability when T T T
no dose adjustments were per-
formed. Blue shaded areas are
the respective 95% confidence

Grade 3

40-
301
20-
101

intervals of the median

Probability [%]

0 1 2 3
Time [cycle]

Discussion

This is the first study evaluating the time course of patient-
reported adverse event severity in clinical routine during
anti-cancer therapy with a Markov modeling approach.
A heterogeneous patient group with different tumor enti-
ties was analyzed regarding the occurrence and severity of

4 5 6 0 1 2 3 4 5 6
Time [cycle]
1250 mg/m?

— with dose
adjustments

1250 mg/m?
- -without dose
adjustments

HFS during treatment with capecitabine. A parsimonious
version of a continuous-time Markov model, the mCTMM,
was applied requiring fewer model parameters to be esti-
mated compared to other Markov modeling approaches
[24]. Thus, the mCTMM can also be applied to sparse-
data situations to obtain precisely estimated parameters.
Additionally, only transitions between adjacent grades
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were allowed since only a small proportion of transitions
between non-neighboring grades were observed (Table 1).
Therefore and because of the generally small number of
observations per patient, a mCTMM was chosen instead of
a continuous-time Markov model. The absolute daily dose
of capecitabine was found to be a predictor of development
of HFS which was in accordance with the observed dose-
dependency [14, 27]. Since data on height and weight were
not gathered in the studies used for this model, effects
of normalized doses could not be investigated. Other
covariates did not lead to a significant model improve-
ment including overall adherence. A previous study found
a possible influence of over-adherence on high-grade tox-
icity [28]. In addition, the study of Hénin et al. in which
clinician-reported HES severity in patients with colorectal
cancer was analyzed with a discrete-time Markov model,
found that creatinine clearance was a significant covariate
for HFS severity [16]. However, renal function was not
estimated in both studies used for our model. Therefore, a
wider selection of covariates would potentially be able to
improve the model fit.

Model parameters could be well estimated except for
a comparatively higher standard error of the IIV of «;.
This phenomenon was also observed by Schindler and
Karlsson [24]. They suggested that the absence of HFS
before starting therapy (at therapy cycle zero) caused these
large uncertainties of IIV [24]. However, the logit inter-
cept parameter itself could be precisely estimated in this
study. Another reason for larger uncertainties of the IIV
parameter estimate may be due to the overall low num-
ber of transitions between HFS grades per patient. Only a
maximum of seven time points could be analyzed (one per
therapy cycle plus baseline grade) in which the patients
reported the maximum HFS grade per therapy cycle.
Therefore, distinguishing between HFS severities within
the respective cycle was not possible which resulted in a
low transition number. For the same reason, time delays
due to treatment interruptions could not be considered for
this model. The time variation of covariates within one
cycle (such as dose) could not be implemented either. A
more frequent grading would be required to improve the
ability of Markov models of predicting the probabilities
of the respective grades for individual patients as shown
in the study of Lu et al. [29]. For example, an already
validated one-week recall period as in the PRO-CTCAE
item library [30, 31] would be more suitable for model
development. However, our questionnaire was developed
before a German version of the PRO-CTCAE question-
naire was available [32]. Using a validated, entity-specific
PRO-CTCAE questionnaire would enhance the develop-
ment and application of Markov models for evaluation of
categorical adverse event severity.
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Despite the subjectivity of the patient-reported HFS
severity, the limited number of both observed grades and
potential covariates as well as the real-world setting, the
model was able to accurately describe the observed data on
the population level. It also showed that the recommended
dosage regimen of 1250 mg/m? for capecitabine monother-
apy is appropriate to minimize the probability of HFS grade
3 and increase the probability of the absence of clinically rel-
evant toxicity. Thus, population-based recommendations of
dose adjustments can be supported using this model. How-
ever, the predictive performance for individual patients was
not satisfactory which is probably due to the limited number
of observations. As mentioned above, a more frequent grad-
ing, particularly within a therapy cycle, might enhance the
individual predictive performance. Another reason could be
the assumption that the patient-reported HFS grade equaled
the “true” grade. Therefore, a misclassification of the actual
grade could not be excluded. A possibility to account for
the error between a categorical observation and the actual
grade would be a model extension towards a hidden Markov
model [33]. In such a model the unobserved “true” grade
could be described as well. Therefore, our model has to be
further improved before it can be applied to make individual
predictions.

In conclusion, minimal continuous-time Markov models
can be set up using patient-reported outcomes. Our modeling
framework may assist in the optimization of dosage regi-
mens and adjustment strategies on the population level aim-
ing at minimizing symptom burden during anti-cancer drug
therapy. Predictive performance on the individual patient
level may be improved by more frequent PRO measurements
and more sophisticated modeling approaches.
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