
262

ABSTRACT

Cardiovascular disease (CVD) continues to be the primary cause of mortality worldwide, 
underscoring the importance of identifying additional cardiovascular risk factors. The 
consensus is that lipid levels alone do not fully reflect the status of atherosclerosis, thus 
necessitating extensive research on cardiovascular biomarkers. This review encompasses a 
wide spectrum of methodologies for identifying novel risk factors or biomarkers for CVD. 
Inflammation, oxidative stress, plaque instability, cardiac remodeling, and fibrosis play pivotal 
roles in CVD pathogenesis. We introduce and discuss several promising biomarkers—namely, 
osteocalcin, angiogenin, lipoprotein-associated phospholipase A2, growth differentiation 
factor 15, galectin-3, growth stimulation expressed gene 2, and microRNAs, all of which have 
potential implications in the assessment and management of cardiovascular risk.
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INTRODUCTION

Despite significant progress in early detection and intervention, cardiovascular disease (CVD) 
remains the primary global cause of mortality. Ischemic heart disease and stroke account 
for 16% and 11% of the total deaths, respectively.1 In this context, it is imperative to estimate 
an individual’s future risk of CVD to determine who requires early intensive preventive care 
or treatment. Therefore, the identification of additional cardiovascular risk enhancers is of 
paramount importance.

Although atherosclerosis is acknowledged as the fundamental cause of CVD, the intricate 
mechanisms driving the development of atherosclerotic plaques remain unclear. They are 
the consequence of complex processes involving the interaction of accumulating lipids, 
oxidative stress, vascular inflammation, and immune responses.2 It is acknowledged that 
lipid levels alone are inadequate to fully explain atherosclerosis.3,4 Consequently, there has 
been a significant amount of research focused on cardiovascular biomarkers.5 A wide array of 
approaches—including genetics, epigenetics, transcriptomics, proteomics, metabolomics, 
microbiomics, epidemiology, and imaging—has been employed in the search for novel 
risk factors or biomarkers for CVD. In this article, we provide a concise summary of 
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potential novel biomarkers associated with diverse aspects of CVD, including inflammation, 
oxidative stress, plaque instability, cardiac remodeling, and fibrosis. Notably, we excluded 
well-established markers, such as brain natriuretic peptide (BNP), cardiac troponin, high-
sensitivity C-reactive protein (hsCRP), and interleukin (IL)-6.

Our focus is predominantly on a broad range of CVDs, specifically coronary artery disease (CAD), 
acute coronary syndrome (ACS), acute myocardial infarction (AMI), and heart failure (HF).

The cardiovascular biomarkers reviewed in this article are summarized in Fig. 1.

OSTEOCALCIN (OC)

OC, also known as bone gamma-carboxyglutamic acid-containing protein, is a hormone 
primarily synthesized by osteoblasts. OC is initially synthesized as a precursor protein 
and later processed into its uncarboxylated form (uOC) as well as the carboxylated form 
(cOC), which facilitates calcium deposition in the bone matrix and inhibits bone resorption 
by osteoclasts. During the bone resorption process, cOC can revert to uOC and an 
undercarboxylated OC isoform (ucOC) following decarboxylation.6 The differential impacts 
of OC isoforms on metabolism and atherosclerosis remain to be elucidated.7-9

Traditionally, OC has been acknowledged for its involvement in the regulation of bone 
mineralization by influencing the activity of chondrocytes and osteoblasts. However, beyond 
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Atherosclerosis and CVD

Inflammation/oxidative stress
Osteocalcin, angiogenin, Lp-PLA2,
GDF-15, Galectin-3, sST2, miRNA

Cardiac
remodeling/fibrosis
GDF-15, Galectin-3,

sST2, miRNA

Plaque instability
Osteocalcin, angiogenin,

Lp-PLA2, Galectin-3

Fig. 1. Diverse functions of biomarkers in atherosclerosis pathophysiology and cardiovascular disease. 
This figure provides a schematic representation of the progression of atherosclerosis and cardiovascular 
disease, highlighting the specific biomarkers discussed in this review. Osteocalcin, angiogenin, Lp-PLA2, GDF-
15, Galectin-3, sST2, and miRNAs have been associated with inflammation and oxidative stress. Additionally, 
osteocalcin, angiogenin, Lp-PLA2, and Galectin-3 have been linked to plaque instability. Finally, GDF-15, 
Galectin-3, sST2, and miRNAs are involved in the progression of CVD. 
Lp-PLA2, lipoprotein-associated phospholipase A2; GDF-15, growth differentiation factor 15; ST2, growth 
stimulation-expressed gene 2; CVD, cardiovascular disease.



its bone-related functions, OC exerts diverse effects on glucose and lipid metabolism, 
contributing to aspects implicated in vascular calcification and atherosclerosis.10,11

OC has been identified as crucial in the process of vascular calcification. Triggered by 
oxidative stress, vascular smooth muscle cells may undergo a transformation into osteoblast-
like cells, initiating osteogenic activities that elevate OC levels.12 OC is recognized for its 
ability to inhibit apoptosis in endothelial cells triggered by free fatty acids, and this effect is 
mediated through the phosphatidylinositol 3-kinase/Akt signaling pathway.13 On the other 
hand, OC can promote the proliferation of endothelial progenitor cells (EPCs), which are 
beneficial in the regeneration of vascular endothelium in patients with atherosclerosis.14 
Previous studies have suggested that EPCs can mitigate atherosclerotic alterations and may 
assist in distinguishing between clinically stable and unstable atherosclerotic disease.15 A low 
count of EPCs has been associated with peripheral vascular disease and diabetes.16

OC has also been implicated in the regulation of glucose and lipid metabolism. Studies 
have shown that mice lacking OC can accumulate excessive visceral fat and exhibit reduced 
pancreatic beta-cell proliferation, resulting in conditions such as hyperglycemia, decreased 
insulin secretion, and insulin resistance.17 Additionally, administration of OC to wild-type 
mice has been found to notably alleviate adverse effects on glucose metabolism and fat 
accumulation.18 The suggested underlying mechanisms for this association involve the 
upregulation of adiponectin expression in adipocytes17,18 and the specific role of the ucOC 
isoform in pancreatic beta cells and adipocytes.19-21

Reduced OC levels have been independently associated with a higher risk of future diabetes 
in Asians.20,22 Additionally, lower OC levels have been correlated with the presence of 
atherosclerosis or atherosclerotic plaques in diverse populations, including individuals with 
type 2 diabetes mellitus.23-26

In contrast, the occurrence of carotid plaque markedly diminishes with higher OC levels, a 
relationship that persists even after accounting for conventional CVD risk factors in middle-
aged and elderly males with normal glucose tolerance.26

Regarding the association with incident CVD or mortality outcomes in population-based 
studies, the results have been inconclusive. In the Health In Men Study, which included 
3,542 community-dwelling elderly men, serum OC levels were shown to have a U-shaped 
association with all-cause and CVD-related mortality.27 On the contrary, a different study that 
tracked 1,290 middle-aged and elderly men over 8.7 years observed no notable correlation 
between serum OC levels and the occurrence of CVD.28

Before serum OC can be considered a cardiovascular biomarker, several issues need to be 
addressed: the standardization of OC measurement, whether total serum OC or specific OC 
isoforms are more indicative, and the establishment of specific protocols are required.29-31

ANGIOGENIN

Angiogenin, an extracellular protein and a member of the ribonuclease superfamily (RNase 
5), is recognized as among the strongest angiogenic factors.32 It engages with endothelial cells 
and smooth muscle cells, instigating the generation of new blood vessels, thereby contributing 
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to the destabilization of coronary plaques.33 Angiogenin is implicated in a range of processes, 
including tumorigenesis, inflammation, tissue regeneration, and innate immunity.33

Angiogenesis is intimately associated with atherosclerosis.34,35 Angiogenin works in 
conjunction with vascular endothelial growth factor to promote angiogenesis within the core 
of atherosclerotic plaques.36 The resultant microvessels, which are fragile and unsupported 
by vascular smooth muscle cells, are susceptible to rupture, potentially leading to occlusive 
thrombosis and ACS.

Moreover, angiogenin can interact with proteases, such as the metalloproteinase family that 
mediates wound healing, and it can stimulate tissue plasminogen activator to generate plasmin, 
further contributing to plaque destabilization.37,38 High levels of angiogenic factors, including 
angiogenin (≥400 ng/mL), have been proposed as potential indicators of plaque instability in 
ACS and as risk markers for future ACS events.36 In a study comparing 107 patients with three-
vessel CAD to 15 controls, those with CAD exhibited significantly higher angiogenin levels.39 
Furthermore, elevated angiogenin levels have been associated with advanced CAD, as indicated 
by higher Gensini scores (the Gensini scoring system quantifies angiographic atherosclerosis 
severity, and a score of 0 signifies the absence of atherosclerotic disease).39

The association between angiogenin levels and HF has also been documented. Jiang et al. 
reported a positive correlation between angiogenin and NT-proBNP (N-terminal pro-B-type 
natriuretic peptide) levels.40 Elevated angiogenin levels (≥426 ng/mL) were correlated with an 
increased risk of all-cause mortality in individuals with HF and preserved ejection fraction, 
as well as with poorer outcomes.40 In a cohort of 109 men with congestive HF and 112 control 
patients, angiogenin concentrations were elevated in the congestive HF group relative to 
controls.41 Angiogenin demonstrated a positive correlation with age, plasma glucose, insulin, 
and BNP levels. Elevated angiogenin levels were predictive of adverse events, including death, 
during the follow-up period.

LIPOPROTEIN-ASSOCIATED PHOSPHOLIPASE A2 (LP-PLA2)

Lp-PLA2 is an enzyme that hydrolyzes platelet-activating factor and oxidized phospholipids in 
low-density lipoproteins (LDLs).42 At present, Lp-PLA2 levels serve as a biomarker indicating 
vulnerability to atherosclerosis and vascular inflammation, aiding in the prediction of 
forthcoming cardiovascular events.43 The enzyme is chiefly produced by macrophages and 
monocytes and is bound predominantly to LDL or high-density lipoprotein (HDL) cholesterol, 
with a small fraction unbound. Its expression is induced by oxidized LDL, apolipoprotein CIII, 
serum amyloid A, and leukocytes but downregulated by nitro-oleic acid.44

Lp-PLA2 has dual roles in inflammation, contingent on the type of lipoprotein it is associated 
with.45 When bound to LDL, Lp-PLA2 has pro-atherogenic and pro-inflammatory effects; on 
the other hand, Lp-PLA2 associated with HDL exerts anti-inflammatory and anti-atherogenic 
actions.45 Lp-PLA2 is predominantly bound to LDL in the circulation.

The involvement of LDL-associated Lp-PLA2 in the pathogenesis of atherosclerosis is as 
follows.46 The hydrolysis of oxidized LDL initiates an inflammatory cascade, inducing 
chemotaxis of monocytes and leukocytes and promoting their entry into the sub-intimal 
areas of arterial walls, resulting in foam cell and fatty streak formation.46-48 Muscle cells 
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migrating to the intima contribute to stabilizing the atherosclerotic plaque by producing 
collagen and elastin.47 Additionally, lysophosphatidylcholine, a byproduct of oxidized 
LDL, can enhance the production of reactive oxygen species. Cholesterol-lowering drugs 
and substances, such as statins, omega-3 fatty acids, and ezetimibe, can decrease both 
Lp-PLA2 activity and LDL cholesterol levels.46 On the other hand, HDL-bound Lp-PLA2 
reduces endothelial adhesiveness and macrophage recruitment.47 In patients with metabolic 
syndrome, LDL-Lp-PLA2 levels are elevated, whereas HDL-Lp-PLA2 levels are diminished.45 
Previous studies have also indicated increased Lp-PLA2 levels in individuals with a history 
of CVD or HF.47 These factors contribute to the recognition of Lp-PLA2 as a promising 
biomarker for atherosclerosis in asymptomatic patients.46

Epidemiological studies have reported a significant association between traditional 
cardiovascular risk factors and Lp-PLA2 levels in the general population.49-52 Lp-PLA2 levels have 
been positively associated with the risk of coronary events in both the MONICA (MONItoring 
of trends and determinants in CArdiovascular disease) and Rotterdam studies, independent of 
non-HDL cholesterol levels.53-55 In the Rancho Bernardo Study, which included 1,077 older adults 
followed for 16 years, increased Lp-PLA2 levels (≥488.5 ng/mL) were independently associated 
with coronary heart disease (CHD), even after adjusting for hsCRP levels.55 A meta-analysis of 32 
prospective studies with 79,036 participants found that both the activity and mass of Lp-PLA2 
were significantly associated with the risk of CHD and vascular death, comparable to systolic 
blood pressure or non-HDL cholesterol.49 Additionally, combining Lp-PLA2 (>200 ng/mL) with 
hsCRP (>3 mg/L) may aid in predicting the risk of CAD and stroke.56

However, several other prospective studies have reported contradictory findings.57 In the 
Atherosclerosis Risk in Communities (ARIC) study, elevated Lp-PLA2 levels were linked to an 
increased 6-year risk of CHD only in subjects with LDL cholesterol levels below 130 mg/dL.57 
A recent Swedish cohort study found no association between Lp-PLA2 levels and a 12.8-year 
risk of CHD events.58

Moreover, data on the prognostic value of Lp-PLA2 levels in non-Caucasian populations are 
limited, suggesting a need for further research in this area.59-61 Overall, Lp-PLA2 appears to 
be a marker of the processes contributing to plaque formation, but its clinical significance 
requires additional investigation.

GROWTH DIFFERENTIATION FACTOR 15 (GDF-15)

GDF-15 is a cytokine that belongs to the transforming growth factor β superfamily. It has 
been considered a strong biomarker for various comorbidities.62,63 GDF-15 activation is 
associated with p53, which is involved in inflammation, oxidative stress, and oncogene 
activation.62 Consequently, GDF-15 levels are elevated in macrophages within atherosclerotic 
plaques64 and have been well-established as related to the risk of malignancy and malignancy-
associated mortality.62 In CVD, GDF-15 has emerged as a robust predictor for CVD, HF, and 
CVD-related mortality.65

Previous studies have demonstrated a GDF-15 level ≥1,200 ng/L to be a strong indication 
of 1-year mortality risk in 2081 patients with non-ST elevation myocardial infarction (non-
STEMI),66 and in 741 patients with STEMI.67 In populations with stable angina pectoris 
(n=1,352) or ACS (n=877), GDF-15 >1,800 ng/L remained an independent predictor of 3.6-year 
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CHD mortality, even after adjustments for cardiac troponin I and NT-proBNP.68 Additionally, 
in a prospective study involving 3641 patients with CAD followed for a median of 6.4 years, 
elevated GDF-15 levels exceeding 1800 ng/L were linked to an increased risk of major adverse 
cardiovascular events (MACEs) and all-cause mortality.69

In a cohort from the Framingham Heart Study involving 3523 participants, GDF-15 was found 
to be associated with incident HF (hazard ratio [HR], 2.08), CVD death (HR, 1.96), and all-
cause mortality (HR, 1.96).70 Additionally, in 5010 patients with symptomatic HF, GDF-15 was 
shown to independently prognosticate mortality.71 In Table 1,49,53-55,57,65-78 a comparison of the 
clinical impact of GDF-15, Lp-PLA2, and ST2 was presented.

Despite its significance, the use of GDF-15 as a biomarker for CVD in the general population 
is challenging owing to its lack of cardiac specificity.79

GALECTIN-3

Galectin-3 is a member of the galectin family, which is involved in processes such as healing, 
fibrosis, immunity, inflammation, and malignancy. Intracellularly, galectin-3 is implicated 
in cellular growth, differentiation, and apoptosis, and extracellularly, it can stimulate the 
growth and differentiation of T and B cells.80 Galectin-3 has diverse roles in various organs, 
including those within the cardiovascular, renal, hepatic, and pulmonary systems.80,81 As a 
biomarker, galectin-3 has been identified as a marker of cardiac fibrosis, along with growth 
stimulation expressed gene 2 (ST2) and BNP.82

In the context of atherosclerosis, galectin-3 is known to be upregulated in unstable plaques, 
potentially attracting monocytes and exacerbating inflammation.83 The ARIC study revealed 
a positive association between elevated galectin-3 levels and increased mean carotid intima-
media thickness, as well as the presence of carotid plaque or shadowing.84

While there is less extensive evidence for CAD, galectin-3 (≥6.18 ng/mL) is significantly 
associated with both the presence and severity of CAD.85 Wang et al.86 reported an association 
between galectin-3 and myocardial infarction (MI) size, left ventricular hypertrophy, and 
potentially cardiovascular mortality.82 A recent meta-analysis investigating the link between 
galectin-3 levels and the occurrence of MACEs following an MI revealed a significant negative 
association between galectin-3 and left ventricular ejection fraction (LVEF). Additionally, higher 
galectin-3 levels showed a significant predictive value for MACEs and all-cause mortality.78
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Table 1. Studies evaluating the association of Lp-PLA2, GDF-15, and ST2 in various cardiovascular diseases
Variables Population CHD Stroke MACE HF Vascular death All-cause mortality References
Lp-PLA2 General population ✓ ✓ ✓ 49,53,55,57

Patients with CVD ✓ ✓ 49,54
GDF-15 General population ✓ ✓ ✓ 65,70

Patients with CVD ✓ ✓ ✓ 66-69
Patients with HF ✓ 71

ST2 Patients with CVD ✓ ✓ ✓ 72-74,78
Patients with HF ✓ 75-78

MACEs were determined as a composite of all-cause mortality, nonfatal events, such as acute coronary syndrome, or unplanned revascularization treatment.
Lp-PLA2, lipoprotein-associated phospholipase A2; GDF-15, growth differentiation factor 15; ST2, growth stimulation expressed gene 2; CHD, coronary heart 
disease; MACE, major adverse cardiovascular event; HF, heart failure.



Galectin-3 can predict adverse cardiovascular outcomes such as increased severity and 
mortality in patients with chronic HF82 and AMI.87 In patients post-AMI, a decrease in 
galectin-3 levels at follow-up was associated with the absence of subsequent clinical 
endpoints, such as additional MI, percutaneous coronary intervention (PCI), coronary artery 
bypass grafting, stroke, hospitalization, or death.88 An elevated galectin-3 concentration 
exceeding 9.2 ng/mL at discharge was associated with an increased risk of experiencing the 
composite endpoint during long-term follow-up.88 In a population-based incident MI cohort 
with a mean follow-up of 5.4 years, patients in the highest tertile of galectin-3 had a 2.4-
fold higher risk of death and a 2.3-fold higher risk of HF, independent of troponin T levels.89 
Consequently, in conjunction with soluble ST2 (sST2), galectin-3 has been recommended as a 
prognostic marker in patients with HF.90

Additionally, galectin-3 has been associated with right ventricular function, atrial fibrillation, 
and pulmonary hypertension.82 Despite some inconsistent findings and the clinical 
implications of serial galectin-3 measurements, when combined with BNP, galectin-3 can 
differentiate patients with preserved left ventricular function based on their risk profile.82

For galectin-3 to be adopted as a biomarker, its utility in serial measurements and its 
diagnostic value for cardiac disorders must be substantiated.

GROWTH STIMULATION EXPRESSED GENE 2

Growth stimulation-expressed gene 2 (ST2), a receptor for IL-33, is a member of the IL-1 
receptor family located on chromosome 2q12.1. It is also referred to as IL1RL-1, DER4, T1, 
and FIT-1.91 It is important not to confuse this with products of the gene ST2 (suppression 
of tumorigenicity-2; 11p14.3-p12), which are linked to several malignancies and have been 
reclassified as “serum stimulation-2.”92 Of the four ST2 isoforms, the transmembrane ST2 
and sST2 are the most studied in relation to cardiac and inflammatory diseases.92 When 
cells undergo damage and experience mechanical stress, the IL-33/ST2 system is triggered 
to increase its activity in both cardiomyocytes and fibroblasts. This activation initiates 
an anti-inflammatory pathway, potentially diminishing myocardial fibrosis and offering 
cardio-protective effects.92-94 Conversely, sST2 can act as a decoy receptor, diminishing the 
availability of IL-33 to bind to transmembrane ST2.93

Increased sST2 concentrations are linked to an increased risk of MACEs, all-cause mortality, 
and HF in individuals with CAD. Elevated serum levels of sST2 have demonstrated a 
significant ability to predict upcoming MACEs in the ACS population.95 In a study involving 
379 patients undergoing PCI for STEMI, higher levels of sST2 (>11.6 ng/mL) were observed in 
the no-reflow group.96

In patients with HF, concentrations of sST2 have been demonstrated to be associated with 
future CVD incidence in ACS patients, as well as with the severity, myocardial stretch, and 
inflammation in individuals experiencing acute HF.93 In chronic HF, elevated sST2 levels are 
found in patients with diabetes, indicative of left ventricular stiffness, and are associated with 
poorer clinical outcomes. Additionally, sST2 levels are elevated in individuals experiencing 
HF with reduced left ventricular function compared to those with preserved LVEF, and these 
concentrations are associated with prognosis.93
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Considering the extensive evidence highlighting the significance of sST2 in cardiac fibrosis 
and adverse cardiovascular outcomes, sST2 has been recommended as a prognostic 
biomarker in patients with HF.90

However, its use as a diagnostic biomarker is limited, as elevated sST2 levels have been 
observed in a variety of noncardiac disorders, including pulmonary and immune diseases.95 
Additionally, noncardiac secretion of sST2 from the colon and various hematopoietic cells 
has been documented.97,98

microRNAs

In the human genome, over two-thirds of genes are responsible for encoding RNAs that do not 
translate into proteins, collectively referred to as non-coding RNAs (ncRNAs).99,100 A diverse 
array of ncRNAs has been identified over the years, encompassing long ncRNAs, circular 
RNAs, small nuclear RNAs, small nucleolar RNAs, ribosomal RNAs, heterogeneous nuclear 
RNAs, and transfer RNAs.101 The biological roles of ncRNAs, which are pivotal in regulating 
gene expression and genome organization, have garnered considerable attention, with some 
being considered candidates for circulating biomarkers in CVD.102 Among these, microRNAs 
(sometimes abbreviated miRNAs or miRs) have shown strong associations with CVD.

Ranging from 18–25 nucleotides in length, miRNAs primarily regulate gene expression by 
binding to the 3′ or 5′ untranslated regions of messenger RNA.103,104 To date, 2654 miRNAs 
have been identified in humans.105 Additionally, miRNAs are implicated in mediating 
inflammation, oxidative stress, apoptosis, cardiac remodeling, and fibrosis.106 Prior research 
has indicated that altered expression levels of miRNAs are associated with the development 
of atherosclerosis and CVD.107 In a clinical context, microRNAs hold promise as biomarkers 
for CVD screening, prediction, severity assessments, and prognostication, as illustrated in 
Fig. 2 and Table 2.108-126

Numerous studies have underscored the importance of miRNA in predicting or diagnosing 
cardiovascular events.108,127,128 Wang et al.108 demonstrated that miRNA-208a offers high accuracy 
in identifying the presence of AMI, with its levels rising within one hour of occlusion in 90% 
of AMI patients tested, reaching 100% within four hours. Liu et al.109 reported a notable 
increase in plasma levels of miR-1, miR-208, and miR-499 in patients with AMI compared to the 
control group. Receiver operating characteristic curve analyses showed miR-208 and miR-499 
to be more reliable biomarkers for AMI screening than miRNA-1.109 Furthermore, Liu et al.110 
suggested that combining miRNA-208a with miRNA-370 may offer more diagnostic accuracy 
for CAD than either miRNA alone. The analysis by Condrat et al.129 highlighted the upregulation 
of miRNA-1, miRNA-133a, miR-208a/b, and miRNA-499 shortly after ACS.

Additionally, miRNA-1 and miRNA-133a play crucial roles in early cardiogenesis by 
influencing cardiac conductance, automaticity, and action potential in the heart. Notably, 
miRNA-1 exacerbates oxidative stress and increases apoptosis.130-132 miRNA-133a is associated 
with positive effects on angiogenesis, inflammation, fibrosis, hypertrophy, apoptosis, and 
cardiac remodeling in infarcted cardiomyocytes.133-136 miRNA-133a levels are elevated in 
patients with an occluded infarct-associated artery after MI.112,121,137,138 Circulating levels of 
miRNA-1 and miRNA-133a rise earlier than creatine phosphokinase or cardiac troponin T 
following the onset of chest pain.111
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Chen et al. concluded that eight miRNAs (miRNA-1, miRNA-21, miRNA-126, miRNA-133, 
miRNA-145, miRNA-208, miRNA-223, and miRNA-499) have demonstrated significant 
clinical value as biomarkers for CAD.128 Significantly, miRNA-126 is recognized for its role in 
inhibiting the formation of atherosclerotic lesions by suppressing the Notch1 inhibitor delta-
like 1 homolog.139 In an analysis of the circulating miR-17-5p, miR-126-5p, and miR-145-3p in 
29 patients with AMI and 21 matched controls, plasma miR-17-5p, miR-126-5p, and miR-
145-3p were significantly increased in AMI patients, and those levels showed considerable 
diagnostic efficiency for AMI.114 Of 195 individuals who underwent coronary angiography for 
chest pain, the expression of miRNA-145 in plasma was downregulated in patients with CAD 
compared to the non-CAD group.113

Recently, serum miR-483-5p has garnered attention as a potential diagnostic marker for 
ACS and predictor of post-PCI adverse cardiac events. Higher levels of miR-483-5p have 
been identified in patients with ACS, with an association between miR-483-5p levels and the 
severity of the condition, as estimated by SYNTAX and Gensini scores, thereby differentiating 
AMI from ACS. Furthermore, miR-483-5p levels can predict the risk of MACEs after PCI.115

While the number of studies investigating diagnostic properties has been limited, a few 
studies on this topic have evaluated the severity of CVD. In patients with CAD, lower levels 
of miRNA-145 are associated with the severity of coronary lesions.113 In two studies in 
China, Gensini scores reflecting the severity of coronary stenotic lesions were significantly 
associated with miRNA-208a and miR-223 expression in the analysis of individuals with and 
without CHD.116,117 In patients with systolic dysfunction and cardiac remodeling, miRNA-122 
upregulation has been demonstrated.122

Interestingly, miRNAs can serve as biomarkers for predicting cardiovascular-related 
prognoses. In a multicenter study of 1,155 patients presenting with acute chest pain, plasma 
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· miRNA-197 and -223119

· miRNA-145120

· miRNA-133a/b121

· miRNA-122-5p122

· miRNA-483-5p115
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· miRNA-1 and -133a111
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· miRNA-483-5p115
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· miRNA-208a116

· miRNA-223117

Severity

Fig. 2. Influence of miRNAs on various aspects of the pathogenesis of cardiovascular disease. 
This figure categorizes miRNAs based on their roles in cardiovascular disease, including prediction and diagnosis, 
assessment of severity, determination of prognosis, and identification of therapeutic options. 
miRNA, microRNA.
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Table 2. Comprehensive overview of research on microRNA implications in cardiovascular health, excluding meta-analyses
Function miRNAs as candidates Patients/disease Findings Year Reference
Diagnosis miRNA-1, miRNA-133a, 

miRNA-208a, miR-499
33 patients with AMI Plasma levels of all four miRNAs in patients with AMI were 

substantially higher than those from healthy people, patients 
with non-AMI coronary heart disease, and patients with other 
cardiovascular diseases.

2010 Wang et al.108

33 non-AMI patients with 
chest pain

Diagnosis miR-1, miR-208, miR-499 70 AMI patients The expression of plasma miR-1, miR-208, and miR-499 
were all significantly elevated in AMI patients compared 
with controls. From ROC analysis, the summary estimates of 
miR-1, miR-208, and miR-499 were 0.73, 0.80, and 0.83 for 
sensitivity, 0.82, 0.95, and 0.90 for specificity, and 0.84, 0.89, 
and 0.91 for AUC, respectively.

2015 Liu et al.109

72 healthy controls

Diagnosis miR-208a, miR-370 95 CAD patients and 50 
non-CAD control subjects

The plasma levels of miR-208a and miR-370 were significantly 
higher in the CAD group than in the control group. In ROC 
analysis, the largest AUC was associated with the combination 
of miRNA-208a and miRNA-370.

2016 Liu et al.110

Diagnosis miRNA-1, miRNA-133a 29 patients with ACS Serum levels of miR-1 and miR-133a increased rapidly in 
patients with ACS.

2011 Kuwabara et al.111

42 patients with non-ACS Serum miR-133a level was sensitive for myocardial injury 
compared with miR-1 level.

Diagnosis miR-1, miR-16, miR-34a, miR-
122, miR-124, miR-208b, miR-

133a/b, miR-375, miR-499

43 patients with ACS Patients with infarct-associated arterial occlusion had 
significantly higher levels of circulating miR-34a, miR-124, 
miR-133a/b, and miR-134.

2016 Gacon et al.112

Diagnosis miR-145 167 patients with CAD Ln_miRNA-145 was significantly lower in CAD patients 
compared with the non-CAD group.

2015 Gao et al.113

28 in the non-CAD group
Diagnosis miR-17-5p, miR-126-5p,  

and miR-145-3p
29 patients with AMI and 

21 matched control
The expression levels of plasma miR-17-5p, miR-126-5p, and 
miR-145-3p were significantly increased in AMI patients.

2019 Xue et al.114

Diagnosis miR-483-5p 118 patients with ACS Serum miR-483-5p was effective in identifying ACS patients 
from healthy individuals (AUC=0.919) and AMI patients from 
ACS patients (AUC=0.867).

2023 Zhao et al.115

and 75 healthy controls A higher prevalence of MACEs was observed in patients with 
elevated miR-483-5p (p=0.01).

Severity miR-145 167 patients with CAD Three-vessel disease, higher SYNTAX scores, and STEMI were 
significantly associated with lower Ln_miRNA-145.

2015 Gao et al.113

28 in the non-CAD group
Severity miR-208a 290 CHD patients and  

110 subjects without CHD
Gensini score reflecting the severity of coronary stenotic 
lesions was significantly associated with miRNA-208a 
expression (r=0.853, p<0.001).

2017 Zhang et al.116

Severity miR-223 300 CHD patients and 100 
subjects

Gensini score was significantly associated with miR-223 
expression (r=0.729, p<0.001).

2018 Guo et al.117

Prognosis miR-208b 1155 patients with acute 
chest pain

Levels of miR-208b were higher in patients who died within 30 
days.

2013 Devaux et al.118

Prognosis miR-126, miR-197,  
miR-223

Large prospective cohort of 
873 patients with CAD

Elevated levels of miRNA-197 and miRNA-223 reliably 
predicted future cardiovascular death.

2015 Schulte et al.119

HRs (95% CI) per 1 SD of miRNA-197 and miRNA-223 were 
1.77 (1.20–2.60) and 2.23 (1.20–4.14), respectively.

Prognosis miR-145 246 patients with first 
STEMI who underwent PCI

Circulating miR-145 was a significant independent predictor 
of MACEs (HR [95% CI] was 7.17 [4.21–12.23]) and cardiac 
death (HR [95% CI] was 5.63 [1.99–15.91].

2015 Dong et al.120

Prognosis miR-1, miR-133a/b and  
miR-208

47 patients who had died 
from MI

miRNA-133a/b levels were downregulated in patients with 
incident VF after MI.

2018 Bostjancic et al.121

Prognosis miR-122-5p, miR-26a, miR-
192, miR-483-5p, miR-720, 
miR-885-5p, and miR-1274

180 patients after 
Transcatheter aortic valve 

replacement

Aortic valve stenosis increased circulating miR-122-5p, which 
correlated with a lack of improvement of the left ventricular 
ejection fraction in patients after TAVR.

2022 Hosen et al.122

Prognosis miR-483-5p 118 patients with ACS miR-483-5p was also an effective predictor of MACE 
occurrence (HR, 5.955; 95% CI, 1.928–18.389; p=0.002).

2023 Zhao et al.115

and 75 healthy controls
Therapeutic miR-133 - Increasing miR-133 levels using treatments such as carvedilol 

and hydrogen sulfide (H2S) can protect cardiac remodeling.
2014 Mishra et al.123

2012 Xu et al.124

Therapeutic miR-21 Pig model of heart failure Anti-miRNA-21 therapy led to reducing cardiac hypertrophy 
and fibrosis

2020 Hinkel et al.125

Therapeutic miR-195-3p AMI mouse models Inhibiting miR-195-3p was found to suppress myofibroblast 
differentiation and collagen deposition, thereby providing 
protection to cardiac function.

2023 Carvalho et al.126

miRNA, microRNA; AMI, acute myocardial infarction; ROC, receiver operating characteristic; AUC, area under the curve; CAD, coronary artery disease; ACS, 
acute coronary syndrome; MACE, major adverse cardiovascular event; SYNTAX score, synergy between PCI with taxus and cardiac surgery score; STEMI, ST-
segment elevation myocardial infarction; CHD, coronary heart disease; HR, hazard ratio; CI, confidence interval; SD, standard deviation; PCI, percutaneous 
coronary intervention; VF, ventricular fibrillation; TAVR, transcatheter aortic valve replacement.



miRNA-208 levels were elevated in those with CAD and related to 30-day mortality after 
adjustment for age and sex.118 In the large AtheroGene study cohort of 873 patients with CAD, 
elevated levels of miRNA-197 and miRNA-223 were reliable predictors of future cardiovascular 
death.119 Dong et al.120 demonstrated that miRNA-145 could predict the 1-year incidence of 
MACEs and cardiovascular death after AMI. In an analysis of 47 patients who died from MI, 
miRNA-133a/b levels were downregulated in patients with incident ventricular fibrillation 
after MI.121 Additionally, there is an inverse correlation between miRNA-122 levels and the 
lack of improvement in LVEF following transcatheter aortic valve replacement.122 miRNA-122 
promotes endothelial cell apoptosis and reduces cardiomyocyte viability by inhibiting the 
anti-apoptotic protein Bcl-2 expression.140 A recent study showed that miR-483-5p is also an 
effective predictor of MACE occurrence.115

With extensive evidence of their various impacts on CVD, miRNAs have been suggested 
as the basis of novel therapeutic strategies.141 In the case of miR-133, which is known to 
suppress cardiac remodeling, there have been various approaches to increase miR-133 levels 
using treatments such as carvedilol, choline supplements, adiponectin, and hydrogen 
sulfide.123,124,142 Recent studies using a pig model have shown that anti-miRNA-21 therapy 
improves cardiac function following ischemia–reperfusion injury, leading to reduced cardiac 
hypertrophy and fibrosis.125 The role of miRNA-21 in cardiac fibrosis has been emphasized in 
a mouse model of pressure overload–induced disease; silencing of miRNA-21 has been shown 
to reduce hypertrophy and fibrosis, helping to restore impaired cardiac function.143 Carvalho 
et al.126 used MI mouse models to illustrate that MI induces elevated levels of miR-195-3p. 
Moreover, inhibiting miR-195-3p was found to suppress myofibroblast differentiation and 
collagen deposition, thereby protecting cardiac function.

However, despite numerous findings linking miRNAs with CVD, there are several 
challenges when considering miRNAs as cardiovascular biomarkers for public use. Given 
the heterogeneous nature of miRNA regulation across cell types, there is variability in 
the significance of miRNA levels in CVD.108,127,128 Quantification of miRNAs is primarily 
performed by real-time quantitative polymerase chain reaction assays, which are expensive, 
time-consuming, and can be confounded by antiplatelet drugs or even a single injection 
of heparin.144,145 Additionally, current miRNA assays exhibit lower sensitivity compared to 
protein-based biomarkers.146

CONCLUSIONS

This review highlights several biomarkers that can enhance the prediction of CVD risk when 
combined with established biomarkers or when used independently. A multi-omics approach 
appears promising for identifying individuals with the highest risk of cardiovascular events. 
We anticipate that these efforts will facilitate the integration of multidimensional molecular 
data throughout life, improving the precision of CVD risk prediction.
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