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Burkitt lymphoma (BL) is an aggressive neoplasm derived from mature,

antigen-experienced B-lymphocytes. Three clinical/epidemiological variants have

been recognized, named sporadic, endemic and immunodeficiency-associated BL

(ID-BL). Although they are listed within a unique entity in the current WHO Classification,

recent evidence indicated genetic and transcriptional differences among the three

sub-groups. Further, the presence of latently persisting Epstein-Barr virus (EBV) has

been associated with specific features in endemic and sporadic cases. In this study,

we explored for the first time whether EBV infection could be related with a specific

molecular profile in immunodeficiency-associated cases. We studied 30 BL cases,

including nine occurring in HIV-positive patients (5 EBV-positive and 4 EBV-negative)

by gene and microRNA (miRNA) expression profiling. We found that ID-BL presented

with different profiles based on EBV presence. Specifically, 252 genes were differentially

expressed, some of them being involved in intracellular signaling and apoptosis

regulation. Furthermore, 28 miRNAs including both EBV-encoded (N = 18) and cellular

(N = 10) ones were differentially regulated. Of note, genes previously demonstrated to be

targeted by such miRNA were consistently found among differentially expressed genes,

indicating the relevant contribution of miRNA to the molecular profile of the examined

cases. Grippingly, 17 out of the 252 differentially expressed genes turned out to be

potentially targeted by both cellular and EBV-encoded miRNA, suggesting a complex

interaction and not excluding a potential synergism. In conclusion, we documented

transcriptional differences based on the presence of EBV in ID-BL, and suggested a

complex interaction between cellular and viral molecules in the determination of the

global molecular profile of the tumor.
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Introduction

Burkitt lymphoma (BL) is an aggressive lymphoid malignancy
derived from antigen experienced B-cells, resembling germinal
center (GC) cells (Leucci et al., 2008; Onnis et al., 2012). It
represents around 1% of all B-cell non Hodgkin lymphomas,
being the most common cancer in children in developing
countries but a relatively rare condition in Europe, USA, and
Japan (Swerdlow et al., 2008; Simbiri et al., 2014; Stefan,
2015). In the WHO classification it is divided into three
clinical/epidemiological variants, namely endemic BL (eBL),
sporadic BL (sBL) and immunodeficiency-associated (ID-BL)
(Leucci et al., 2008; Swerdlow et al., 2008).

The endemic form is the most common variant, typically
occurring in children in the peri-equatorial Africa (Hadley et al.,
2012; Stefan, 2015). By contrast, the sporadic and the ID-
associated forms occur in western countries more often in young
to middle aged adults (Bellan et al., 2003, 2005; Satou et al.,
2015). In particular, the ID-associated BL is encountered more
often in patients with HIV infection/AIDS or, less frequently,
in subjects with congenital or iatrogenic immunodeficiency,
including post-transplant immunosuppression (Morscio et al.,
2013; Morales-Sanchez and Fuentes-Panana, 2014; Navari et al.,
2014). In HIV-infected patients, BL appearance can either be
the first sign of manifested AIDS, being among the tumors
defining the disease, or develop in more advanced stages of
the disease (Bellan et al., 2003; Crosswell et al., 2008). As far
as the etiopathogenesis is concerned, immunodeficiency per se
is considered a risk factor for the development of lymphomas;
however, this concept is at least partially challenged by the
evidence that BL often arises in HIV patients when the number
of circulating T-cells is still within the normal range (Leoncini
et al., 2008). On the other hand, evidence suggested that a
chronic polymicrobial stimulation, a condition typically observed
in immunodeficient subjects, may play a crucial role (Lenoir and
Bornkamm, 1987; Van Den Bosch, 2004; Piccaluga et al., 2011).

Among the different pathogens, Epstein-Barr virus (EBV), a
very common human herpesvirus which is present in several
humanmalignancies, is currently considered amajor player in BL
pathogenesis, being documented in around 10–20% of sporadic
BL, 30% of ID-BL, and 95% of endemic BL (Niller et al., 2004;
Bellan et al., 2005; Hummel et al., 2006; Carbone et al., 2008;
Piccaluga et al., 2011; Onnis et al., 2012). However, its exact role
is still debated, although virus-induced transformation and the
inhibition of apoptosis may be considered as major alternative
pathogenetic mechanisms (Niller et al., 2003, 2004). Of note, EBV
can adopt different gene expression programs in its latent (non-
lytic) state, which are defined based on the expression of 9 viral
proteins including both Epstein-Barr Nuclear Antigens (EBNAs)
and Latent Membrane Proteins (LMPs). In fact, differently
from other lymphomas, including Hodgkin lymphoma, post-
transplant lymphoproliferative diseases and EBV-associated
T-cell malignancies in which the major EBV-encoded latent
oncoproteins like LMP-1 and/or LMP-2 are expressed, BL,
according to its typical latency type I program, typically presents
with EBNA-1 expression only (Thorley-Lawson and Gross, 2004;
Brady et al., 2007; Carbone et al., 2008; Piccaluga et al., 2011;

Ghigna et al., 2013; Ito et al., 2014; Murata et al., 2014; Navari
et al., 2014; Kim et al., 2015; Vockerodt et al., 2015). In this
regard, it has been documented that EBV, through EBNA-1, can
manipulate gene and microRNA (miRNA, small RNA molecules
with post-transcriptional regulatory role) expression profiles
in BL with potential pathogenetic implications like genomic
instability (for a recent review see Westhoff Smith and Sugden,
2013), as EBNA-1 can act as a transcription factor. In this
context, we documented that hsa-miR-127 overexpression can
be induced by EBNA-1 and that the concomitant expression of
these two molecules can significantly impair the physiology of
memory B-cells (Onnis et al., 2012). The contribution of the
resulting miRNAs differentially expressed in EBV-positive vs.
EBV-negative BL is so far not clarified (Lenze et al., 2011).

An alternative mechanism, as recently proposed by our
group and others, provided evidence that EBV-encodedmiRNAs,
more than 40 of which are encoded by EBV, might play a
pathogenetic role, e.g., through interfering with apoptosis, cell
proliferation, cellular miRNA machinery, immune response and
metastasis (Choy et al., 2008; De Falco et al., 2009; Skalsky
et al., 2012; Ambrosio et al., 2014; Navari et al., 2014; Vereide
et al., 2014; Kanda et al., 2015; Kim et al., 2015; Shinozaki-
Ushiku et al., 2015). In particular, we showed that EBV-positive
BL presented with significant overexpression of EBV-encoded
miRNAs belonging to the BART family that were likely to
contribute to its global molecular profile (Ambrosio et al., 2014;
Navari et al., 2014). Furthermore, we observed that BART6-3p
modulation had significant effects on the transcriptome of BL
cells and provided evidence that it can affect the expression of
relevant proteins including IL-6 receptor, PTEN and WT1, thus
inhibiting apoptosis and probably escaping immunosurveillance
(Ambrosio et al., 2014).

Another mechanism proposed for the participation of EBV in
human malignancies underlines the viral interference with the
physiological epigenetic status of the cellular genome (Kang et al.,
2002; Grafodatskaya et al., 2010; Caliskan et al., 2011; Hansen
et al., 2014; Hernando et al., 2014; Niller et al., 2014).

Nevertheless, most of the studies mainly referred to endemic
BL or sporadic BL, and provide us with minor information
concerning the molecular pathology of ID-BL (Deffenbacher
et al., 2010; Piccaluga et al., 2011; Luzzi et al., 2014).

In this study, we explored the gene and miRNA expression
profile of ID-BL, aiming to dissect for the first time the possible
contribution of EBV.

Material and Methods

Ethics Statement
The study was conducted in Italy according to the principles of
theHelsinki declaration after approval of the Local Review Board.

Case Series
Thirty cases of BL, including 8 eBL, 13 sBL and 9 ID-
BL cases, corresponding to 17 EBV-positive and 13 EBV-
negative cases, were collected from Italian and African institutes
(Supplementary Table 1). The diagnosis was made by at least
two expert hematopathologists and confirmed as previously
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described (Swerdlow et al., 2008; Piccaluga et al., 2011; Navari
et al., 2014).

Gene Expression Profiling (GEP) Analysis
The global GEP of the abovementioned 30 BL cases was prepared
from formaldehyde-fixed, paraffin-embedded (FFPE) tissues
using DASL (cDNA-mediated Annealing, Selection, extension,
and Ligation) whole genome assay, an assay specially designed
for FFPE tissues which covers 29,377 human transcripts, as
described previously (Piccaluga et al., 2013). In brief, after
deparaffinization of FFPE sections using a series of xylene and
ethanol washes, total RNA was extracted using RecoverAll™
Total Nucleic Acid Isolation Kit (Life Technologies, Monza,
Italy) and quantified using NanoDrop spectrophotometer, and
was further converted to cDNA using biotinylated oligo(dT)
and random nonamer primers. The biotinylated cDNA was then
annealed to the DASL Assay Pool (DAP) probe groups and was
further processed according to the manufacturer’s instructions.
At the end, BeadArray Reader or iScan System was used to
determine the presence or absence of specific genes.

Gene expression analysis was carried on as previously
reported (Piccaluga et al., 2007, 2008, 2011). The expression
value of each selected gene was normalized to have a zero mean
value and unit standard deviation. The distance between two
individual samples was calculated by Pearson correlation with
the normalized expression values. Unsupervised clustering was
generated using a hierarchical algorithm based on the average-
linkage method. To perform the supervised gene expression
analysis, we used GeneSpring GX 12 (Agilent, MI, Italy) and
TM4/MeV software version 4.9 using Cosine Correlation (Saeed
et al., 2003). Differentially expressed genes between different
groups were identified using a two-tails Student t-test and
adjusted Benjamini-Hochberg correction for false discovery rate,
applying the following filtering criteria: p-value < 0.05, and fold
change >2.

microRNA Expression Profiling Analysis
microRNA expression profiling, performed on the same cases
used for GEP except for one EBV-negative ID-BL case, was
achieved using Nanostring nCounter R© miRNA Expression Assay
Kits (Human V1 miRNA), which detects 654 and 80 human
and viral miRNAs, respectively (NanoString Technologies,
Seattle, WA, USA) (Supplementary Table 1) as described
before (Navari et al., 2014). Raw data was normalized using
NanoStringNorm package developed in R 2.15 version: first,
probe levels quantified by microarrays were adjusted for miRNAs
with specific background correction factor, and were further
normalized using geometric mean of positive controls and
mean of negative controls for background subtraction. Lastly,
the dataset was normalized such that the mean of each gene
was zero. The data was further analyzed in the terms of
unsupervised Hierarchical Clustering Analysis (HCA) using
GeneSpring version GX 12 (Agilent, MI, Italy), as described
(Piccaluga et al., 2007, 2008, 2011; Navari et al., 2014). The
miRNAs differentially expressed between the two categories
were selected on the basis of the following criteria: fold
change ≥ 2, corrected p-value (Benjamini-Hockeberg FDR) ≤

0.05. A supervised HCA was then performed as described
above.

The gene and miRNA expression profiles of the BL cases were
generated using Illumina DASL and Nanostring microarrays,
respectively (one experiment for GEP and one for MiRNA).
Biological replicates were represented by the different samples
(see Supplementary Table 1 for details on each subgroup).

microRNA Target Determination
The experimentally validated targets for the viral and cellular
miRNAs were searched in public databases. In case of
the viral miRNAs, we used VIRmiRNA (http://crdd.osdd.net/
servers/virmirna/), a recently established database that contains
experimentally validated targets for a wide range of viral
miRNAs, including those encoded by EBV (Qureshi et al.,
2014). For the cellular miRNAs, we used miRWalk 2 (http://
zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/), a very recent
version of the popular database for miRNA-related research
which comprehends several related databases, to collect the
experimentally validated targets (Dweep et al., 2011, 2014).

Gene Set Enrichment Analysis (GSEA) and
Statistical Analysis of the Overlapping Genes
Gene Set Enrichment Analysis (GSEA) of the interested gene sets
was performed in the terms of Gene Ontology (GO) Biological
Processes, Oncogenic Signatures and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways using GSEA MsigDB
(www.broadinstitute.org/gsea/msigdb) web-based analysis tool
(Mootha et al., 2003; Subramanian et al., 2005), setting the
options to the default (displaying top 10 gene sets with FDR
q-value below 0.05).

Enrichment in expression of EBNA-1 upregulated target genes
(Dresang et al., 2009) and EBER-1/2 target genes (Gregorovic
et al., 2011) was evaluated using Gene set enrichment analysis
(GSEA) software (Mootha et al., 2003; Subramanian et al.,
2005) on the set ID-BL samples (EBV-positive vs. EBV-negative,
Supplementary Tables 2–3).

The overlapped (shared) genes of the desired sets were
extracted and analyzed by GeneSpring GX 12 (Agilent, MI, Italy)
for their statistical significance.

Results

EBV-positive and EBV-negative ID-BL Exhibit
Different Global Gene Expression Profiles
In order to evaluate the possible similarity/differences across ID-
BL cases (i.e., EBV-positive vs. EBV-negative), we first looked at
the global position of this subtype between the other two subtypes
of BL. We analyzed the global gene expression profiles of 30
BL cases, which included 17 EBV-positive and 13 EBV-negative
cases (Figure 1A, Supplementary Table 1). A supervised analysis
benefiting from the ANOVA (Analysis of Variance, a statistical
method for comparing values among three or more groups)
method showed that the three categories are relatively similar
but distinct, with ID-BL being more similar to the eBL subtype,
rather than sBL (Figure 1A). We then proceeded focusing on the
ID-BL subtype, as the main goal of our research, and compared
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FIGURE 1 | Gene expression profiling of EBV-pos and EBV-neg

ID-BL cases. (A) An ANOVA analysis demonstrated that BL subtypes are

slightly different, with ID-BL being closer to eBL. In the matrix, each

column represents a group (mean values recorded in each of the three

groups being plotted), and each row represents a gene. The color scale

bar shows the relative gene expression changes normalized to the

standard deviation (0 is the mean expression level of a given gene). (B)

Unsupervised hierarchical clustering failed to clearly separate EBV-positive

and EBV-negative ID-BL specimens. In the matrix, each column

represents a sample, and each row represents a gene. The color scale

bar shows the relative gene expression changes normalized to the

standard deviation (0 is the mean expression level of a given gene). (C)

Supervised HCA allowed identifying 252 genes differentially expressed in

EBV-positive vs. EBV-negative ID-BL cases (T-test, p ≤ 0.05; fold

change ≥ 2). In the Volcano plot genes with a p-value ≤ 0.05 (y-axis, log

scale) and fold change ≥2 (x-axis, log scale) are depicted as red squares.

(D) Based on the expression of the 252 differentiating genes, ID-BL

samples were clearly discriminated by a hierarchical clustering according

to the EBV presence. In the matrix, each column represents a sample,

and each row represents a gene. The color scale bar shows the relative

gene expression changes normalized to the standard deviation (0 is the

mean expression level of a given gene).

the two categories based on the presence/absence of EBV using
an unsupervised HCA, which was inefficient in distinguishing
between the two categories (Figure 1B).

Aiming at revealing themolecular differences between the two
groups of ID-BL, a t-Test analysis followed by a fold change
filtering was done. Out of 29,377 genes included in the array, we
found 69 genes to be downregulated in EBV-negative ID-BL, and
183 genes to be suppressed in EBV-positive ID-BL (Figure 1C,
Supplementary Table 4).When these genes were used as the input
for a supervised HCA, an efficient discrimination across the two
groups was observed (Figure 1D).

We then asked whether the genes differentiating our ID-BL
cases might have a significant role in tumorigenesis; thus we
analyzed them using GSEA MSigDB for GeneOntology (GO)
Biological Processes and Oncogenic Signatures (Figures 2A,B).
Interestingly, we found enrichment for processes like apoptosis,
defense response, protein kinase cascade, programmed cell
death and cell development (Figure 2A). Similarly, tumor-related
signatures, like Cyclin D1, HOXA9, BMI1 and PDGF were
enriched for the deregulated genes (Figure 2B).

EBV might Affect Gene and miRNA Expression
Profiles in ID-BL
Since the only known difference in our two groups of tumors
is presence/absence of EBV, we then looked for evaluating
possible changes that might occur due to the presence of the
virus. First, the possible effect of EBNA-1, the only viral protein
consistently expressed in BL, was sought using GSEA software,
comparing the expression of its targets in EBV-positive and
EBV-negative ID-BLs (Figure 3A). Interestingly, a significant
enrichment of those targets was observed in EBV-positive ID-
BL cases (Figure 3A). Inspired by these results, we further
profiled viral and cellular miRNA expression in all BL cases
used for GEP, except for one EBV-negative case (Supplementary
Table 1). The obtained results were further analyzed in an
unsupervised HCA, which demonstrated a relatively similar
global miRNA expression profile across the two sets (Figure 3B).
However, when a discriminating supervised test was performed,
we found 18 EBV-encoded miRNAs (out of 40 viral miRNAs
included in the array), all of which belong to BART family
of EBV-encoded miRNAs, and nine cellular miRNAs (out of
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FIGURE 2 | Gene Set Enrichment Analysis of the differentially expressed genes in ID-BL samples according to the presence of EBV. The set of the

differentiating genes significantly enriched in well recognized Gene Ontology Biological Processes (A) or Oncogenic Signatures related to known oncogenes (B).

654 human miRNAs included in the array) to be overexpressed
in EBV-positive ID-BL, while, on the other hand, only one
cellular miRNA was found to be overexpressed in EBV-negative
ID-BL (Table 1, Figure 3C). Of note, these miRNAs could
categorize the two sets of tumor samples in a supervised HCA
(Figure 3D).

The Deregulated Viral and Cellular miRNAs might
Affect the Global Gene Expression Profile of
EBV-Positive ID-BL
Since only one cellular miRNA was deregulated in EBV-
negative ID-BL, we then focused on the role of the upregulated
miRNAs in the other category, i.e., EBV-positive ID-BL. In
this regard, experimentally validated targets of those miRNAs
were extracted from VIRmiRNA (for EBV-encoded miRNAs)
and miRWalk 2 (for cellular miRNAs). A total number of
7654 and 2003 unique targets were found for the differentially
expressed cellular and viral miRNAs, corresponding to 4954
and 1293 probes in DASL array, respectively. The effect of
the resulting genes on the global gene expression profile
of EBV-positive ID-BL was further assessed in a supervised
HCA (Figures 4A–C). The results revealed that the targets of
viral and cellular miRNAs could roughly distinguish the two
groups of ID-BLs (Figures 4A,B, respectively). When these
target genes were considered altogether, however, the clustering
precision improved, misplacing one sample in each category only
(Figure 4C).

These target genes, related to either upregulated cellular or
viral miRNAs, were in addition investigated for recognizing
the genes common between them, or among them and
genes downregulated in EBV-positive ID-BL, and the overlap
significance was calculated statistically. The results are presented
in Figure 5A. Of note, we found 89 genes of the potential
targets of the deregulated cellular miRNAs to be underexpressed
in EBV-positive ID-BL (p < 0.0001, Supplementary Table 5).
In addition, 23 of downregulated genes in EBV-positive ID-BL
were observed among targets of BART miRNAs (p = 0.006,
Supplementary Table 6). Interestingly, we found 949 common
genes between the targets of human and EBV-encoded miRNAs

(p < 0.0001), 17 of which were downregulated in EBV-positive
ID-BL (Supplementary Table 7).

To estimate the role of the deregulated miRNAs in EBV-
positive ID-Burkitt lymphomagenesis, the genes targeted by
either human or EBV miRNAs were assessed for GO Biological
Processes and KEGG pathways. Regarding the processes, we
saw enrichment formetabolic-related processes like biopolymers,
nucleic acids and RNA molecules (Figure 5B). Concerning
KEGG pathways, on the other hand, the noted results included
MAPK, phosphatidylinositol and chemokine signaling pathways
(Figure 5C).

Discussion

Since discovery of EBV numerous studies have been performed to
elucidate the role of this virus in different human malignancies,
especially in associated lymphomas (for a recent review see
Vockerodt et al., 2015). Although such a role looks to be
more definable in the context of tumors like Post-Transplant
Lymphoproliferative Disorder (PTLD) or Hodgkin’s Lymphoma,
where the virus expresses its oncoproteins like LMP-1, the
contribution of EBV to BL is still debated (Niller et al., 2003, 2004;
Hummel et al., 2006; Carbone et al., 2008; Morscio et al., 2013;
Morales-Sanchez and Fuentes-Panana, 2014; Navari et al., 2014).
However, several mechanisms like genomic instability induced
by EBNA-1 or inhibition of apoptosis, induction of metastasis
and cell growth, interfering with cellular miRNA machinery
and escaping immunosurveillance directed by miRNAs targeting
proteins like PUMA, BIM, BAD, PTEN, and IL6ST among others
have been proposed (Choy et al., 2008; Gruhne et al., 2009;
Marquitz et al., 2011; Skalsky et al., 2012; Ambrosio et al., 2014;
Kanda et al., 2015; Kim et al., 2015; Shinozaki-Ushiku et al., 2015).
While infection of EBV alongside with HIV, a phenomenon
observed in 30% of ID-BL cases, adds another dimension to
this uncertainty, at the same time it represents an excellent
opportunity for unraveling the contribution of EBV to ID-BL and
more generally to other tumors associated with HIV AND EBV,
e.g., a subset of PTLDs (Shimoyama et al., 2006; Carbone et al.,
2008; Morovic et al., 2009; Morscio et al., 2013).
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FIGURE 3 | EBV might interfere with gene and microRNA expression

profiling of EBV-positive and EBV-negative ID-BL. (A) GSEA shows

differential expression of the genes up-regulated by EBNA-1 between ID-BL

EBV-positive and ID-BL EBV-negative (n = 45). GSEA was done with a list of

genes up-regulated by EBNA-1 obtained by Dresang et al. (2009). After

filtering and normalization, the ∼12,000 genes included in the microarray are

ranked on the X axis (“rank in ordered data set”) of the graph from left to

right. Genes on the left are up-regulated in EBV-negative cases, whereas the

genes ranked to the right are up-regulated in EBV-positive cases. Green line

represents the enrichment score (ES, Y axis) with a maximum (absolute value)

ES at ∼-0.4; black vertical lines, position of individual genes (up-regulated by

EBNA-1) from the used gene set in the ordered list of ∼12,000 genes. To

derive significance, the data set was permuted 1000 times and random ES

were calculated. The FDR-q-value was = 0.038, indicating that the observed

distribution is unlikely due to chance. (B) Unsupervised analysis failed to

discriminate EBV-positive and EBV-negative cases. In the matrix, each

column represents a sample, and each row represents a miRNA. The color

scale bar shows the relative miRNA expression changes normalized to the

standard deviation (0 is the mean expression level of a given miRNA). (C).

Supervised analysis identified 28 miRNA differentially expressed between the

two groups, with almost all of them to be up-regulated in EBV-positive ID-BL.

In the Volcano plot miRNA with a p-value ≤ 0.05 (y-axis, log scale) and fold

change ≥ 2 (x-axis, log scale) are depicted as red squares. (D) Based on the

expression of the identified miRNAs, the two groups were clearly

discriminated in a HCA. In the matrix, each column represents a sample, and

each row represents a miRNA. The color scale bar shows the relative miRNA

expression changes normalized to the standard deviation (0 is the mean

expression level of a given miRNA).

Here we used a combination of experimental data and
bioinformatic tools to investigate the differences between EBV-
positive and EBV-negative ID-BL cases. In this regards, we
evaluated BL samples in the terms of both gene and miRNA
expression profiling. We found that BL subtypes are similar, but
distinct, and that EBV-positive and EBV-negative ID-BL samples
differ in their gene and miRNA expression profiles. Furthermore,
we showed that EBV, through EBNA-1 and its miRNAs, might be
able to manipulate the global molecular profile of EBV-positive
ID-BLs, and that the deregulated viral and cellular miRNAs in
this tumor might co-target different genes.

In line with a previous study performed by our laboratory we
found that global gene expression profiles of ID-BLs are more
similar to eBL, rather than sBL (Lenze et al., 2011; Piccaluga
et al., 2011). As discussed before, this similarity might be
based on the similar predisposition of the patients to infectious
agents, i.e., Malaria and HIV, for eBL and ID-BL, respectively
(Van Den Bosch, 2004; Piccaluga et al., 2011). Of note, in

the abovementioned project we used fresh frozen samples for
defining such profiles, while here we used FFPE tissues. These
results, besides the nature of the outcome, served us also as a
control for our experiment, since FFPE tissues normally result in
low-quality RNA not appropriate for most microarray platforms,
and indicate once more the appropriateness of DASL technology
for FFPE tissues (Piccaluga et al., 2013; Laginestra et al., 2014a).

Our incapability to discriminate between EBV-positive and
EBV-negative ID-BLs in an unsupervised analysis was expected
somehow, as the two groups belong to the same category (Leucci
et al., 2010; Piccaluga et al., 2011). Consistently, we found a
moderate number of genes to be differentially expressed between
the two groups, which could differentiate the two sets of tumors
very well. Although little in number, however, the differentiating
genes turned out to be enriched in tumor-related biological
processes and signaling pathways; a fact that could be interpreted
as different tumorigenic mechanisms in the two sides leading
to the same pathological phenotype, a phenomenon already
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TABLE 1 | microRNAs differentially expressed between EBV-positive and EBV-negative immunodeficiency-related Burkitt Lymphoma.

microRNA p-Value Regulation in EBV-negative ID-BL FC (abs) FC Log FC Accession

hsa-miR-16 0.039689098 Down 15.61871 −15.618711 −3.9652035 nmiR00181.1

hsa-miR-26a 0.03562978 Down 5.11845 −5.1184497 −2.355707 nmiR00263.1

hsa-miR-142-5p 0.011306038 Up 10.52236 10.522355 3.3953857 nmiR00153.1

hsa-miR-148a 0.045191273 Down 3.461709 −3.4617088 −1.7914844 nmiR00166.1

hsa-miR-200b 0.0489749 Down 3.620994 −3.6209939 −1.8563857 nmiR00227.2

hsa-miR-223 0.03486547 Down 6.085912 −6.085912 −2.6054735 nmiR00257.1

hsa-miR-668 0.046277743 Down 3.499872 −3.4998715 −1.8073019 nmiR00624.1

hsa-miR-877 0.007698981 Down 5.764233 −5.764233 −2.5271287 nmiR00649.1

hsa-miR-1178 0.0076339 Down 5.158424 −5.1584244 −2.3669305 nmiR00020.1

hsa-miR-1233 0.006532014 Down 6.064163 −6.0641627 −2.6003084 nmiR00049.1

ebv-miR-BART1-3p 9.84E-04 Down 12.96857 −12.968566 −3.696947 nmiR00719.1

ebv-miR-BART3 7.82E-04 Down 14.73585 −14.735851 −3.8812585 nmiR00742.1

ebv-miR-BART4 0.00264483 Down 10.94573 −10.945732 −3.4522965 nmiR00743.1

ebv-miR-BART6-3p 0.003621548 Down 9.292624 −9.2926235 −3.216086 nmiR00745.1

ebv-miR-BART6-5p 0.004313744 Down 6.969126 −6.9691257 −2.8009777 nmiR00746.1

ebv-miR-BART7 0.001733595 Down 9.257492 −9.257492 −3.2106214 nmiR00747.1

ebv-miR-BART8 5.99E-04 Down 14.31189 −14.311886 −3.8391418 nmiR00748.1

ebv-miR-BART9 7.05E-04 Down 15.58953 −15.589533 −3.9625058 nmiR00749.1

ebv-miR-BART10 0.008975662 Down 6.915864 −6.9158635 −2.7899094 nmiR00721.1

ebv-miR-BART11-5p 4.62E-04 Down 13.35172 −13.351724 −3.738954 nmiR00723.1

ebv-miR-BART12 0.001006074 Down 10.04338 −10.043382 −3.3281732 nmiR00724.1

ebv-miR-BART15 0.049200244 Down 3.334332 −3.3343318 −1.7373977 nmiR00727.1

ebv-miR-BART17-3p 8.22E-04 Down 15.04786 −15.047857 −3.9114861 nmiR00729.1

ebv-miR-BART17-5p 0.004375282 Down 6.616519 −6.6165185 −2.7260723 nmiR00730.1

ebv-miR-BART18-5p 0.023275565 Down 4.343551 −4.343551 −2.118875 nmiR00732.1

ebv-miR-BART19-3p 0.010132639 Down 6.937569 −6.937569 −2.7944303 nmiR00733.1

ebv-miR-BART21-3p 0.002361224 Down 9.619139 −9.619139 −3.2659078 nmiR00739.1

ebv-miR-BART22 2.28E-04 Down 34.03384 −34.033844 −5.088898 nmiR00741.1

described in human tumors, e.g., activated B-cell (ABC) and
germinal center B (GCB) phenotypes of diffuse large B-cell
lymphoma (Blenk et al., 2007; Dasmahapatra et al., 2012).

Concerned with the role of EBV, we showed that EBNA-
1, as the only EBV-encoded latent protein of EBV consistently
present in BL, is able to modulate the global gene expression
profile of EBV-positive ID-BLs. It is known that EBNA-1, the
prime role of which is maintaining the EBV episome inside the
nucleus, binds to cellular DNA and can alter the transcriptional
pattern of the host cells, affecting both genes and miRNAs
(Wood et al., 2007; Dresang et al., 2009; Onnis et al., 2012).
It has also been suggested that EBNA-1 might induce genomic
instability caused by reactive oxygen species (ROS) (Gruhne et al.,
2009). Furthermore, in murine models EBV has shown B-cell
lymphoma inducing properties (Wilson et al., 1996).

By contrast, quite surprisingly, when we sought for a possible
enrichment in EBERs (1 and 2) targets (Gregorovic et al., 2011)
within the genes characteristic of EBV-positive ID-BL, we did not
find any significant enrichment. This might be due to the fact
that we referred to EBER targets as identified in lymphoblastoid
cells (Gregorovic et al., 2011). This model, for any reason, might
be suboptimal for our system. Alternatively, it might be that in

BL molecular programs similar to the ones induced/repressed
by EBERs are anyway affected by genomic imbalances, including
MYC abnormalities themselves, this making EBV-positive and
EBV-negative cases rather similar in this respect. Further, the
presence of HIV and the possible associated immune hyper
stimulation might affect the cellular programs mimicking the
EBER effects, again inducing similar molecular phenotypes in
EBV-positive and EBV-negative cases.

EBV encodes more than 40 miRNAs and several reports
highlight the role of those miRNAs in human tumorigenesis,
like evading the immune system, resistance to apoptosis and
induction of metastasis (Ramalingam et al., 2012; Cullen,
2013; Ambrosio et al., 2014; Andrade et al., 2014; Qiu and
Thorley-Lawson, 2014; Kanda et al., 2015; Qiu et al., 2015;
Shinozaki-Ushiku et al., 2015). In addition, we have previously
demonstrated how those miRNAs, especially one named ebv-
miR-BART6-3p, could influence the global gene expression
profile of EBV-positive BLs (Navari et al., 2014). Thus, we
proceeded with investigation of miRNA profiling in our samples
and found several cellular and viral miRNAs to discriminate
EBV-positive and EBV-negative ID-BLs. We did not find any
miRNAs from the BHRF family, which was expectable, as they
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FIGURE 4 | microRNA targets expression analysis in ID-BL primary

cases. A hierarchical clustering of BL cases based on the expression

of genes proved to be targeted by cellular miRNAs (A) or EBV-encoded

miRNAs (B) could roughly discriminate the two subsets of ID-BL. The

combination of targets of both cellular and viral miRNAs appeared to

be the most effective in clustering the two groups (C). In the matrix,

each column represents a sample, and each row represents a gene.

The color scale bar shows the relative gene expression changes

normalized to the standard deviation (0 is the mean expression level of

a given gene).

seem to be expressed in latency type III of EBV (Xia et al.,
2008; Qiu et al., 2011; Navari et al., 2014). Instead, several
miRNAs belonging to the BART family (both cluster 1 and
cluster 2) were found to be upregulated in EBV-positive ID-BL.
Interestingly, all these miRNAs except three of them (namely
ebv-miR-BART15, 18-5p and 19-5p) were in common with the
set we described comparing EBV-positive BL and EBV-positive
PTLD-DLBCL (Navari et al., 2014). This confirms our previous
findings regarding low expression or absence of expression of
these miRNAs in EBV-positive PTLD-DLBCL, which displays
latency type III of EBV (Navari et al., 2014).

When the cases were clustered using the discriminating
miRNAs, curiously we found that one of the EBV-negative
cases (BL_25) was clustered together with EBV-positive ones.
Although unexpected, this might be related to the presence of an
EBER-deleted genome, or more generally to lack of the sensitivity
of EBER in situ hybridization in this specific case. However,
it should be also noted that by GEP it clustered within EBV-
negative cases as it did another EBV-positive case (BL_22). This
might reflect the presence of genetic lesions, additional to MYC
translocation, that seem to occur more often in EBV-negative
cases than in EBV-positive ones (Laginestra et al., 2014b).

A previous study by Lenze et al. (2011) compared the
cellular miRNAs expression levels between EBV-positive and
EBV-negative BL cases, irrespective of the BL subtypes, and
not including the viral miRNAs, as we did in the present

study. Interestingly, they reported no miRNA discriminating
the two subgroups of BL. Similarly, we found only one cellular
miRNA differentiating the same two categories (Piccaluga et al.,
submitted). By contrast, when in the present study we focused on
ID-BL cases (i.e., studied the effect of EBV in the presence of HIV
on the miRNA profile—not done by Lenze et al.), we found 10
differentially expressed cellular miRNAs.

These results inspired us to ask if the presence of HIV,
when combined with the presence of EBV, might influence the
expression level of cellular miRNAs.

Although normally HIV does not infect B-cells, 95% of
all lymphomas described in HIV-infected individuals are of
B-cell origin (Swerdlow et al., 2008). A change in the host
microenvironment induced by HIV infection and abnormalities
in B-cells of infected individuals has been reported (Cheng
et al., 2009). It has been speculated that such changes in the
microenvironment aremainly exerted byHIV-encoded products,
which are released from the infected cells and taken up by the
uninfected cells. This has been well proved at least for a soluble
form of HIV-Tat protein, for which transforming properties have
been suggested (Frankel and Pabo, 1988; Chen et al., 1995; Ma
and Nath, 1997). Indeed, we have found positivity for HIV-
Tat in B-cell lymphomas, as proved by immunohistochemistry
(Lazzi et al., 2002). Furthermore, our recent findings indicate
an active role for this protein in disrupting cellular gene and
miRNA expression in ID-BL, primarily exerted through DNA
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FIGURE 5 | Analysis of the experimentally validated targets of

differentially expressed cellular and viral miRNAs. Genes

targeted by the differentially expressed miRNAs between EBV-positive

and EBV-negative ID-BLs were significantly over-represented among

genes differentially expressed between the same two tumor

categories. Of note, several targets were in common between cellular

and viral miRNAs (A). The genes targeted by either cellular or viral

miRNAs and down-regulated in EBV-positive ID-BL (n = 95) were

further analyzed for Gene Ontology Biological Process (B) and KEGG

pathways (C).

methyl transferase enzymes (Luzzi et al., 2014). Based on these
findings we speculate that co-expression of EBV- and HIV-
encoded proteins (and possibly miRNAs) in ID-BLmight explain
the high number of induced cellular miRNAs, when compared to
EBV-negative ID-BL cases.

As miRNAs, both viral and human, seemed to be major
players in EBV-positive ID-BL, we further investigated
their experimentally validated targets and their effect on
transcriptional profile of EBV-positive ID-BL. The results of
a supervised HCA indicated that the differentiating ability of
the targets of these miRNAs, i.e., cellular or viral, improved
when both of them were included in the analysis. These
outcomes could indicate that the transcriptional profile of the
tumor could be deregulated by both miRNA groups, instead
of single sets. When common genes between different gene
sets, including targets of viral and human miRNAs and genes
downregulated in EBV-positive ID-BL were searched, they
significantly overlapped. The overlapping set of genes between
targets of EBV or human miRNAs and genes downregulated
in the EBV-positive tumor cases turned out to be enriched in
metabolic processes, comparable to our previous results (Navari
et al., 2014), and cancer-related pathways, an indication of the
possible importance of these targets in lymphomagenesis of
EBV+ ID-BL.

The interaction between cellular and viral miRNAs could
be defined in a complex network of interactions which might
contain both synergism and antagonism among the miRNAs

(Lutter et al., 2010; Xu et al., 2011). Although viral miRNAs
generally share low homology with human miRNAs, some do
not follow the general rule and thus are considered as orthologs
to human miRNAs (Babu et al., 2011). For example, miR-K12-
11, a miRNA encoded by Kaposi’s-sarcoma-associated herpes
virus (KSHV) is a well-proven ortholog of the human oncogenic
miRNA has-miR-155 (Gottwein et al., 2007; Skalsky et al., 2007;
Boss et al., 2011), and ebv-miR-BART-5 might be an ortholog of
hsa-miR-18 and act as a viral oncogenic miRNA in human cells
(Babu et al., 2011). In addition, it has been suggested that some
of these viral miRNAs, despite low global homology, might have
shared target sites with human ones, probably due to homology
in their seed sequence (Babu et al., 2011; Andrade et al., 2014).
For instance, ebv-miR-BART15 is reported target NLRP3 at the
same binding site of has-miR-223, conferring to the virus the
ability to regulate the inflammation (Haneklaus et al., 2012).
Furthermore, common targets for human and EBVmiRNAs with
different binding sites have been reported (Riley et al., 2012).
Very interestingly, in our results we found a very high number of
genes which would be targeted by both human and viral miRNAs,
17 of which were suppressed in EBV-positive ID-BL. Of note,
the possible contribution of lowered expression of several of
these genes in human tumors is already proven, like PAFAH1B1
in non-small cell lung cancer, SMARCC1 in pancreatic cancer
and NKN2 in myeloproliferative neoplasm (MPN) precursors
(Lo et al., 2012; Iwagami et al., 2013; Mehrotra et al., 2013).
These findings might indicate a synergism between the viral and
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induced human miRNAs, although more experimental data are
needed in support of such a hypothesis.

From an evolutionary point of view, the two viruses, although
not infecting the same cell type, could be considered competitors,
as they both manipulate their microenvironment through release
of their encoded products from infected cells (like miRNAs in
case of EBV and Tat in case of HIV) which might not necessarily
be favorable for each other. However, on the other hand, a
synergy or favorable pathogenetic mechanism between the two
viruses might resolve such a conflict and help the viruses to
improve their chance of survival. Such a phenomenon has been
long known for plant viruses (Pruss et al., 1997), and has been
suggested between HIV and herpes simplex virus 1 (Heng et al.,
1994; Cheng and Nixon, 2009) and HIV and Hepatitis-B Virus
(Sun et al., 2014).

Based on our findings, we hypothesize that the outcome of the
co-infection with both viruses might be different from the sum of
them in singularity, as it is a matter of virus-virus and virus- host
complex interaction networks. However, this hypothesis needs
further support by experimental models.

In conclusion we showed for the first time that the presence
of EBV significantly affects the transcriptional profile of ID-BL,

in terms of both genes and miRNAs. Particularly, EBV appeared
to exert its influence through both EBNA-1 and viral miRNAs.
Finally, differently from sporadic and endemic BL, cellular
miRNAs turned out to be largely deregulated in the presence
of EBV. Future studies should address the specific relationship
between genes and miRNAs, as well as the potential interaction
among HIV-encoded, EBV-encoded, and cellular miRNAs and
proteins.
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