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Abstract ER O-glycosylation can be induced through relocalisation GalNAc-Transferases 
from the Golgi. This process markedly stimulates cell migration and is constitutively activated in 
more than 60% of breast carcinomas. How this activation is achieved remains unclear. Here, we 
screened 948 signalling genes using RNAi and imaging. We identified 12 negative regulators of 
O-glycosylation that all control GalNAc-T sub-cellular localisation. ERK8, an atypical MAPK with 
high basal kinase activity, is a strong hit and is partially localised at the Golgi. Its inhibition induces 
the relocation of GalNAc-Ts, but not of KDEL receptors, revealing the existence of two separate 
COPI-dependent pathways. ERK8 down-regulation, in turn, activates cell motility. In human breast 
and lung carcinomas, ERK8 expression is reduced while ER O-glycosylation initiation is hyperactivated. 
In sum, ERK8 appears as a constitutive brake on GalNAc-T relocalisation, and the loss of its expression 
could drive cancer aggressivity through increased cell motility.
DOI: 10.7554/eLife.01828.001

Introduction
GalNAc-type O-linked glycans are polysaccharides present on secreted and membrane-inserted pro-
teins (Tran and Ten Hagen, 2013). Traditionally associated with mucin-like proteins, recent advances in 
mass spectrometric analysis have revealed O-glycosylation on hundreds of different proteins (Steentoft 
et al., 2013). Recent results have also highlighted specific functional roles for O-glycans; for instance, in 
regulating the secretion of the phosphatemia regulator FGF23 (Kato et al., 2006) and in processing of 
the angiopoietin-like factor ANGPTL2 (Schjoldager et al., 2010).

O-glycans are synthesised through the step-wise action of various glycosylation enzymes, 
starting with the UDP-N-Acetyl-Alpha-D-Galactosamine:Polypeptide N-Acetyl-galactosaminyltransferases 
(GalNAc-Ts), a large family of 20 different isoforms that catalyses the addition of N-Acetylgalactosamine 
(GalNAc) onto serine or threonine residues (Bennett et al., 2012). The addition of GalNAc on pro-
teins generates the Tn antigen, with antigenicity being lost upon the addition of other sugar residues. 
Earlier work demonstrated that carcinomas stain prominently with antibodies and lectins such as the 
Helix Pomatia Lectin (HPL), which binds to Tn antigens (Springer, 1983). The high prevalence and 
specificity of this cancer glycophenotype is remarkable, with matching normal tissues and benign 
tumours expressing much lower levels.

This increase in Tn levels is proposed to stem from a block or reduction in the activity of the 
main O-GalNAc-modifying enzyme, the Core 1 Galactosyl-Transferase (C1GALT) (Ju et al., 2002a, 
2008b; Stanley, 2011); indeed, the loss of C1GALT in the high Tn-expressing T cell leukaemia 
Jurkat cell line has been reported (Ju et al., 2008a). In breast carcinoma, however, high Tn levels 
seem to be caused by a different mechanism: GalNAc-Ts are massively relocated from the Golgi 
apparatus to the endoplasmic reticulum (ER) with Tn staining largely located in the ER (Gill et al., 
2013). Further, in some cancer cells, O-glycosylation initiation in the ER has also been reported 
(Egea et al., 1993).
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Trafficking of GalNAc-Ts to the ER can be stimulated by growth factors such as epidermal growth 
factor (EGF) and platelet-derived growth factor (PDGF), with GalNAc-Ts active in the ER and GalNAc 
incorporation in proteins increasing after relocation (Gill et al., 2010). It is surmised that glycosylation 
of ER-resident proteins likely explains this observed increase in Tn staining, as several of these proteins 
bear O-GalNAc in mass spectrometric analyses (Steentoft et al., 2013).

Although it is unclear which specific proteins are modified, O-glycosylation in the ER results in a 
marked stimulatory effect on cell adhesion and cell migration (Gill et al., 2013). This suggests that ER 
O-glycosylation promotes the invasive and metastatic potential of malignant tumour cells. Tn levels are 
consistently higher in higher grade, more aggressive breast tumours. Conversely, ER-specific inhibition 
of O-glycosylation reduced drastically lung metastasis in a mice model (Gill et al., 2013).

GalNAc-Ts transport is stimulated by activated SRC tyrosine kinases and requires the COPI coat 
(Gill et al., 2010). COPI is a multimeric protein complex required for the formation of transport carriers 
and functions in the retrograde traffic between the Golgi and the ER (Beck et al., 2009; Szul and 
Sztul, 2011). COPI coat assembly is regulated by small GTPases of the Arf family and their regulator, 
the GTP exchange factor, GBF1; however, the regulation of COPI-coated carrier formation in response 
to extracellular signals is poorly understood.

To better understand the mechanisms regulating Tn expression in cancer, we performed an RNAi screen 
targeting 948 genes presumed to be involved in signal transduction. We identified and validated 12 regu-
lators, with a particular focus on the MAP kinase ERK8 (alias MAPK15), the most recently identified member 
of the MAPK family (Abe et al., 2002). Unlike classical MAP kinases, ERK8 possesses an atypically long 
C-terminal domain and appears to constitutively auto-phosphorylate its Thr-X-Tyr motif (Klevernic et al., 
2006). Here, we find that a fraction of the ERK8 protein is localised at the Golgi where it specifically inhibits 
COPI vesicle formation and the export of GalNAc-Ts. The loss of ERK8 activity results in increased 
O-glycosylation and increased cell motility. We find that ERK8 expression is also frequently downregulated 
in lung carcinomas, which may partly explain the high Tn phenotype and invasiveness of these tumours.

Results
RNAi screening identifies 12 signalling genes that negatively regulate 
Tn levels
We recently reported the results from a screen for regulators of Golgi morphology and organisation 
using various markers including fluorescently labelled HPL (Chia et al., 2012). In the analysis presented 

eLife digest The likelihood of an individual being able to recover from cancer depends on: 
where the cancer is within the body, how quickly the disease is detected and how quickly treatment 
is started. Cancers that have spread from their original location to another part of the body are 
particular challenging to treat, and cause the vast majority of cancer deaths every year.

Treatments that can recognize and eradicate cancer cells, while leaving nearby healthy cells 
untouched, are still needed—and so there has been a lot of research into identifying the key 
differences between healthy cells and cancer cells. For several decades, researchers have been 
aware that cancer cells have more proteins coated with modified sugars on their cell surfaces than 
healthy cells. This is caused by the enzymes that add these sugars to the proteins relocating from 
one location within the cell, the Golgi apparatus, to another, called the endoplasmic reticulum. 
These specific ‘sugar-coated’ proteins are known to encourage cancer cells to migrate and invade 
new tissues, but the mechanisms that regulate the addition of these sugar molecules to proteins 
remains poorly understood.

Now Chia et al. have discovered 12 molecules that regulate this process, including an enzyme 
called ERK8 that is found at the Golgi apparatus. ERK8 is shown to prevent the relocation of the 
sugar-adding enzymes from the Golgi to the endoplasmic reticulum, thereby restricting the production 
of sugar-coated proteins that help the cancer cells to spread within the body. By identifying 12 
potential targets for new therapeutics aimed at preventing the spread of cancer, the work of Chia 
et al. could ultimately help to improve the chances of patients recovering from certain cancers.
DOI: 10.7554/eLife.01828.002
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in this study, we quantified Tn levels using HPL fluorescence intensity per cell (Figure 1A). In a pilot 
screen using HeLa cells, which targeted 63 known players of membrane traffic (Chia et al., 2012), 
we identified that knockdown of the SNARE gene Syntaxin 5 (STX5) reproducibly induced a 6–7-fold 
increase in Tn levels relative to a non-targeting (NT) control (GFP siRNA) (Figure 1A). This effect was 
presumably due to a defect in the balance in anterograde vs retrograde ER-to-Golgi traffic of GalNAc-Ts. 
Using STX5 and GFP siRNA as positive and negative controls, we then screened 948 signalling genes in 
search for regulators of O-glycosylation. We discarded the results for 134 siRNA pools that reduced the 
cell number to less than 20% of the control (Figure 1B). Of the remaining siRNA pools, we identified 
numerous gene knockdowns that increased HPL levels significantly more than STX5 depletion. None of 
the gene depletions seemed to significantly reduce the basal levels of Tn in HeLa cells (Figure 1C). The 
knockdown effects were reproduced in independent replicates (Figure 1–figure supplement 1A), and 
the trend was mostly independent of the analysis algorithm used, although the fold increase was higher 
with one method than with the other (Figure 1—figure supplement 1B).

To focus our analysis, we used a stringent cut-off of a ninefold increase in HPL staining intensity, 
which resulted in 19 genes (Figure 1B,C). Depletion of one of these negative regulators—the 
Extracellular Signal Regulated Kinase 8 (ERK8)—induced a particularly marked increase in Tn, ranging 
from 4–25-fold depending on the experimental design and RNAi reagent (Figure 1D, Figure 1—
figure supplement 1C, Figure 3—figure supplement 1A). It should be noted that knock-down 
was not optimised for the other 18 genes and thus Tn levels may reflect partly the extent of target 
depletion.

To exclude the possibility of off-target effects in the 19 hits, we repeated the screen using the indi-
vidual siRNAs that were used in each siRNA pool in the primary screen. For ERK8, we observed that 
three out of the four single siRNAs significantly increased Tn levels above the NT control (Figure 1—
figure supplement 1C,D). Using a threshold of 4.5-fold increase for at least two independent siRNAs, 
12 genes were considered validated (Figure 1—figure supplement 1D). To verify that the effects 
observed were not specific to the detection method used, knockdown cells were also stained with a 
different lectin, Vicia Villosa Lectin (VVL), which revealed a highly consistent pattern (Figure 1—figure 
supplement 1E).

To validate that these genes indeed led to the up-regulation in GalNAc protein O-glycosylation, we 
sought to downregulate the responsible enzymes. Although GalNAc-Ts represent a large family, the 
T1 and T2 isoforms are by far the most prevalent and represent most of GalNAc-T activity in HeLa 
cells (Bennett et al., 2012). This is apparent in the almost complete loss of Tn levels when GalNAc-T1 
and -T2 were depleted (Figure 1E). Co-depletion of the two enzymes also reduced significantly the Tn 
increase from the knockdown of ERK8 as well as that from other Tn regulators (Figure 1E, Figure 1—
figure supplement 1F). This effect was not caused by inefficient ERK8 knockdown, as other co-
knockdown experiments did not have such an effect. In addition, ERK8 levels were still significantly 
reduced in the triple knockdown configuration (Figure 1—figure supplement 1G).

Overall, our screen revealed several negative regulators of the O-GalNAc glycosylation process, 
which thus appears to be tightly controlled by signalling mechanisms.

Tn negative regulators are not required for O-glycan extension
Two mechanisms are known to increase Tn levels: inhibition of O-GalNAc extension (Ju et al., 2008a, 
2008b) or relocation of GalNAc-Ts from the Golgi apparatus to the ER. The loss of expression of 
C1GALT or its molecular chaperone, COSMC, results in a failure to generate the subsequent Core 1 
glycan structure (the TF antigen) and thus inhibits O-GalNAc extension, which is detectable as a loss 
in Peanut Agglutinin (PNA) lectin positive staining (Swamy et al., 1991). Relocation of GalNAc-Ts from 
the Golgi apparatus to the ER, on the other hand, induces a modest but measurable increase in PNA 
staining (Gill et al., 2010).

To distinguish between the two possibilities, PNA staining was quantified upon depletion of each 
of the 12 Tn regulators. HeLa cells with a stable COSMC knockout which prohibits C1GALT activity, 
was used as a positive control and, as expected, completely abolished PNA staining. Comparatively, 
there was either no significant decrease or some increase in PNA staining following depletion of each 
of the Tn regulators (Figure 2B, Figure 2—figure supplement 1A), with the most significant increase 
in PNA staining observed after ERK8 knockdown (Figure 2A). Therefore, none of the Tn-regulating 
genes we identified appears to be required for core 1-forming activity and thus do not regulate Tn 
levels by inhibiting O-GalNAc extension.

http://dx.doi.org/10.7554/eLife.01828
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Figure 1. RNAi screening reveals 12 negative regulators of Tn expression. (A) Helix pomatia lectin (HPL) staining was analysed using the ‘Transfluor HT’ 
module of MetaXpress software (Molecular Devices). A mask was generated for both HPL and nuclei (Hoechst) staining to classify the region of measurement 
(lower panels). Scale bar: 30 µm. (B) Schematic overview of the screening process. Images from the RNAi screen in Chia et al. (2012) were quantified for 
HPL intensities. Non-targeting (NT) siRNA and Syntaxin 5 (STX5) siRNA were used as negative and positive controls, resepectively. (C) Fold-change of 
HPL intensities normalised to NT siRNA treatment (green dots) and STX5 (orange dots). Primary hits were selected based on a threshold of a 
Figure 1. Continued on next page

http://dx.doi.org/10.7554/eLife.01828


Cell biology

Chia et al. eLife 2014;3:e01828. DOI: 10.7554/eLife.01828 5 of 22

Research article

Tn levels depend on GalNAc-Ts subcellular localisation
To evaluate whether the alternative mechanism of GalNAc-Ts relocation to the ER was implicated, the 
subcellular distribution of GalNAc-Ts was evaluated by immunofluorescence. In control cells, GalNAc-T1 
localised exclusively in the perinuclear region, co-localising with the Golgi marker MannII (Figure 2C). 
Upon ERK8 depletion, GalNAc-T1 distribution appeared more diffuse, co-localising with the ER marker 
Calreticulin (Figure 2C), with MannII-GFP staining remaining mostly perinuclear (Figure 2C). The 
MannII-GFP-positive structures were more fragmented in the knockdown cells than in the untreated 
cells; this finding is reminiscent of the effects of SRC activation (Gill et al., 2010).

Depletion of phosphatidylinositol (PI) 4-kinase (PI4KA), another major regulator of Tn, also resulted 
in GalNAc-T1 redistribution (Figure 2C). However, unlike ERK8 depletion, MannII-GFP appeared to 
also redistribute to a cytoplasmic pattern upon PI4KA depletion (Figure 2C). This suggests that the 
entire content of the Golgi apparatus becomes redistributed to the ER, and is consistent with our 
previous findings, where PI4KA depletion induced a redistribution of TGN46, a trans golgi marker 
(Chia et al., 2012) (Figure 2—figure supplement 1D).

Next, we used a quantitative approach to determine the extent of ER relocalisation that occurs in 
response to depletion of the other Tn-regulating genes, measuring the degree of co-localisation 
between GalNAc-T1 and Calreticulin staining. The Pearson’s correlation coefficient between these two 
markers was significantly increased following the knockdown of all 12 genes (Figure 2D, Figure 2—
figure supplement 1B). Most exhibited levels similar to that induced by Brefeldin A (BFA) treatment, 
which redistributes Golgi proteins to the ER (Fujiwara et al., 1988). Comparatively, there was only 
slight perturbation of GalNAc-T1 localisation in the COSMC knockout cells. Similar trends were also 
observed for GalNAc-T2 staining (Figure 2—figure supplement 1C). In contrast to the GalNAc-T 
staining, none of the signalling genes significantly affected the MannII-GFP distribution, apart from 
PI4KA depletion (Figure 2—figure supplement 1E).

Collectively, our results suggest that signalling genes influence Tn levels through the subcellular 
distribution of GalNAc-Ts and that, with the exception of PI4KA, they affect the trafficking of these 
enzymes specifically.

Tn-regulating proteins likely act at the level of the Golgi apparatus
To explore how the products of these genes might be functioning, we retrieved data pertaining to 
their subcellular localisation and protein–protein interactions from Protein Atlas, GeneCards and 
STRING (Jensen et al., 2009; Safran et al., 2010; Uhlen et al., 2010). Three proteins—PI4KA, 
PKMYT1 and MAP4K2—have previously been reported to be localised at least partially at the Golgi 
apparatus (Nakagawa, 1996; Ren et al., 1996; Liu et al., 1997). PI4KA is proposed to generate 
phosphoinositol-4-phosphate (PI4P), which is essential for recruiting membrane trafficking effectors to 
the Golgi (De Matteis et al., 2005), including Vps74/GOLPH3, which retains various glycosyltrans-
ferases at the Golgi through retrograde trafficking (Wood et al., 2009). Although GalNAc-Ts have not 
been known to be regulated by Vps74/GOLPH3, it represents a potential mechanism for their reten-
tion at the Golgi. PKMYT1 is required for the reassembly of the Golgi during telophase (Nakajima 
et al., 2008). In addition, ERK8 has been reported to localise perinuclearly in A431 cells (Uhlen et al., 
2010), suggesting a potential Golgi localisation.

Four other kinases—HIPK3, TTK, MARK2 and DUSP7— interact with Golgi-associated proteins 
(Dowd et al., 1998; Colland et al., 2004; Dou et al., 2004; Sowa et al., 2009; Cui et al., 2010). 
HIPK3 was also found to interact with Golgi structural protein GRASP65, the Golgi-localised LIM 
kinase, and the ERK8 interactor, HIC-5 (Colland et al., 2004). HIPK3 also interacts with PKMYT1 
(Wells et al., 1999). The MARK2 protein controls microtubule stability through phosphorylation of 

nine-fold increase (red dashed line) and the final validated genes are labelled in red (Hit genes). (D) Images from the screen of HPL staining in HeLa cells 
depleted of ERK8. MannII-GFP labels the Golgi apparatus. Scale bar: 30 μm. (E) HPL staining in cells knockdown of ERK8 with a control siRNA or 
GalNAc-T1 and -T2 siRNA. Scale bar: 30 μm.
DOI: 10.7554/eLife.01828.003
The following figure supplements are available for figure 1:

Figure supplement 1. Helix Pomatia Lectin (HPL) stains reliably and specifically for Tn antigen. 
DOI: 10.7554/eLife.01828.004

Figure 1. Continued
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Figure 2. Tn regulators control Tn expression through GalNAc-T subcellular localisation. (A) Peanut Agglutinin (PNA) lectin staining in ERK8-depleted 
HeLa cells. Scale bar: 30 μm. (B) PNA lectin staining quantification after depletion of the 12 Tn regulators, using COSMC knockout HeLa cells as a 
positive control. (C) Co-staining for endogenous GalNAc-T1 and Golgi (MannII-GFP) and ER (Calreticulin) markers. Scale bar: 10 μm. (D) Co-localisation 
of the GalNAc-T1 and Calreticulin measured using Pearson’s correlation coefficient of the staining intensities of the two markers. Cells were analysed 
using MetaXpress Translocation-Enhanced analysis module. Values on graphs indicate the mean ± SEM. **p<0.0001, *p<0.05 by two-tailed unpaired 
t test, relative to NT siRNA-treated cells. (E) A potential regulatory network of signalling proteins regulating GalNAc-T localisation.
DOI: 10.7554/eLife.01828.005
The following figure supplements are available for figure 2:

Figure supplement 1. Tn regulators control GalNAc-T1 and -T2 localisation. 
DOI: 10.7554/eLife.01828.006

http://dx.doi.org/10.7554/eLife.01828
http://dx.doi.org/10.7554/eLife.01828.005
http://dx.doi.org/10.7554/eLife.01828.006


Cell biology

Chia et al. eLife 2014;3:e01828. DOI: 10.7554/eLife.01828 7 of 22

Research article

microtubule-associated proteins (Yoshimura and Miki, 2011) and its interaction with the microtubule 
tracking protein, CLASP2 (Sowa et al., 2009), suggests CLASP2 as a potential substrate. CLASP2 is 
involved in microtubule nucleation at the Golgi (Miller et al., 2009) and microtubules could be nucle-
ated at the cis Golgi (Rivero et al., 2009). Since Golgi-to-ER retrograde traffic depends on microtubule 
tracks (Palmer et al., 2005; Spang, 2013), GalNAc-T relocation could depend on CLASP2-associated 
microtubules regulated by MARK2.

Two proteins—ERK8 and TGFBR2—interact with SRC (Abe et al., 2002; Galliher and Schiemann, 
2007). ERK8 activity was reported to increase in the presence of active SRC (Abe et al., 2002) and 
TGFBR2 is phosphorylated by SRC (Galliher and Schiemann, 2007). In addition, MAP4K2, IKBKE and 
PPP6C are linked to the canonical NFkB pathway, suggesting that this pathway might control GalNAc-T 
localisation (Shimada et al., 1999; Chadee et al., 2002; Eddy et al., 2005; Stefansson and Brautigan, 
2006). Finally, several other interactions, either direct or with one intermediate, were found between 
the Tn-regulating genes.

Altogether, this analysis suggests that the Tn-regulating genes are acting at the Golgi level, per-
haps part of a regulatory network controlling the subcellular localisation of GalNAc-Ts (Figure 2E). 
Further experiments are required to confirm the reality of this network and its precise connectivity.

ERK8 kinase activity is required for O-glycosylation regulation
We next sought to understand the mechanistic basis of Tn level regulation by ERK8. ERK8 displays 
high basal activity in resting cells and is not stimulated by growth factor activity (Abe et al., 2002; 
Klevernic et al., 2006) but through auto-phosphorylation on residues Thr 175 and Tyr 177. To test 
if its kinase activity is important, we selected the siRNA dERK8-4 for its potency (Figure 3—figure 
supplement 1B) and designed an siRNA-resistant ERK8 construct tagged with GFP (GFP-ERK8-siR), as 
well as a kinase-inactive mutant counterpart (GFP-ERK8-siR-T175A-Y177F).

ERK8-depleted cells were then transfected with either wild-type or kinase-mutant ERK8 constructs 
48 hr after siRNA treatment. HPL intensities were quantified for transfected (GFP-expressing) and non-
transfected (non-GFP-expressing) cell populations, each comprising hundreds of cells. Non-transfected 
ERK8-depleted cells displayed a marked increase in HPL staining, whereas significantly lower HPL 
staining was observed in cells transfected with the wild-type GFP-ERK8-siR construct (Figure 3A,B). 
Importantly, HPL levels remained almost similar to non-GFP-expressing ERK8-depleted cells when the 
cells were transfected with the kinase-inactive mutant (GFP-ERK8-siR-T175A-Y177F) indicating that 
kinase activity is important for the negative regulation of O-glycosylation (Figure 3B).

ERK8 inhibitor induces a rapid increase in Tn levels
Ro-31-8220 inhibits the kinase activity of ERK8 (Klevernic et al., 2006). To see if this compound could 
recapitulate the effects of ERK8 depletion, cells were treated with 5 µM Ro-31-8220 for various dura-
tions. A significant increase in Tn was observed as early as 1 hr after treatment and peaked at a nearly 
eightfold increase after 3.5 hr as compared with basal levels (Figure 3C,D). After that, we observed 
some cell death, which possibly explains the accompanying decrease in Tn levels.

This result indicated that the increase in Tn staining is a relatively rapid phenomenon and that 
O-GalNAc glycosylated protein accumulation can be achieved in a few hours. Our findings also suggest 
that these changes were not caused by expression changes of the O-glycoproteins or the O-glycosylation 
machinery. Indeed, co-treatment of cells with Ro-31-8220 and a transcriptional inhibitor α-amanitin 
(Chafin et al., 1995) did not reduce Tn levels (Figure 3—figure supplement 1D) and protein levels of 
the enzymes and chaperones involved in the early O-glycosylation stages were unaffected in ERK8-
depleted cells (Figure 3—figure supplement 1E). The rapid effect of Ro-31-8220 suggests that ERK8 
acts relatively directly on GalNAc-T traffic.

O-glycosylation is initiated in the ER and several proteins are 
hyperglycosylated following ERK8 depletion
GalNAc-T staining upon ERK8 depletion strongly suggests the relocalisation of these enzymes to the 
ER. To further confirm this, we used an ER-specific glycosylation reporter (GFP-Muc-PTS), which 
contains a Pro-Thr-Ser (PTS)-rich sequence with up to 15 sites for GalNAc addition (Gill et al., 2010). 
After pulldown with HPL-conjugated beads, we found a significant increase in the glycosylation of 
this reporter upon treatment with Ro-31-8220 for 3.5 hr (Figure 3E). We also verified ER localisation 
using a stably expressed ER-localised GalNAc-T inhibitor described previously (Gill et al., 2013). 

http://dx.doi.org/10.7554/eLife.01828
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Figure 3. ERK8 regulates ER-localised O-glycosylation initiation. (A) Protein replacement by expression of siRNA-resistant wild-type ERK8 or the kinase 
inactive mutant in ERK8-depleted HeLa cells. Cells were stained for Helix pomatia lectin (HPL) and ERK8. Scale bar: 30 µm. (B) Tn levels of non-targeting 
(NT) siRNA-treated and ERK8-depleted cells that were untransfected (red bars) or transfected with wild-type ERK8 (blue bars) or kinase-inactive 
mutant ERK8 (orange bars). (C) Treatment with 5 µM ERK8 inhibitor Ro-31-8220 (iERK8) over time and staining for Tn expression with HPL in HeLa 
cells. (D) Quantification of Tn expression after 5 µM iERK8 treatment. (E) SDS-PAGE analysis of ER-specific glycosylation reporter (Muc-PTS) expressed in 
HEK293T cells treated with vehicle or with 5 µM iERK8 for 3.5 hr. Muc-PTS was immunoprecipitated using HPL-conjugated agarose. (F) SDS-PAGE 
analysis of untreated, ERK8-depleted and inhibitor-treated cell lysates metabolically labelled using GalNAz-FLAG. Arrows point to bands with changed 
intensities (G) Tn staining after 5 µM iERK8 treatment for 3 hr followed by chase over time. Scale bar: 30 µm. (H) Quantification of Tn expression levels 
upon iERK8 treatment and washout. Values on graphs indicate the mean ± SEM. **p<0.0001, *p<0.05 by two-tailed unpaired t test, relative to untrans-
fected or ERK8 wild-type transfected cells in (B) and vehicle treated cells in (D) and (H).
DOI: 10.7554/eLife.01828.007
The following figure supplements are available for figure 3:

Figure supplement 1. ERK8 regulates Tn expression through GalNAc-T relocation and not related to transcriptional or translational events. 
DOI: 10.7554/eLife.01828.008
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This inhibitor counteracted the increase in Tn levels observed upon ERK8 knockdown (Figure 3—
figure supplement 1C).

Recently, several ER-resident proteins were shown to be O-glycosylated (Steentoft et al., 2013). To 
determine the extent to which the proteome is modified upon ERK8 depletion, we metabolically labelled 
cells with a GalNAc sugar analogue, FLAG-GalNAz (Laughlin and Bertozzi, 2007). After 24 hr, cells 
depleted of ERK8 (by siRNA or Ro-31-8220) exhibited substantial increases in GalNAz incorporation, 
as revealed by the presence of several bands on SDS-PAGE gels (Figure 3F). This suggests that ERK8 
controls the O-glycosylation status of several proteins, which probably includes ER residents.

GalNAc-Ts relocation is rapidly reversible
The effects of Ro-31-8220 offered the possibility to test how quickly Tn levels can return to baseline 
levels after drug washout. High Tn levels obtained after 3.5 hr of treatment decreased progressively 
with an approximately 2.5-hr half-life (Figure 3G,H). Consistently, staining for GalNAc-Ts showed 
a similar trend, with a significant increase in enzyme localisation at the Golgi within 2 hr of washout 
(Figure 3—figure supplement 1F,G). This suggests that reactivation of ERK8 slows the continuous 
retrograde flow of GalNAc-Ts and that anterograde traffic shifts their distribution back to the Golgi. 
These results show that GalNAc-T relocalisation is rapidly reversible and suggests that ERK8 provides 
a continual brake for GalNAc-T relocation at the Golgi.

ERK8 localises at the Golgi and is displaced upon growth factor 
stimulation
GalNAc-Ts are thought to regularly cycle between the ER and the Golgi apparatus (Rhee et al., 2005). 
Thus, relocation of these glycosylation enzymes to the ER upon ERK8 depletion could result either 
from an enhanced export from the Golgi or an inhibition of exit from the ER. To address this, we first 
analysed the subcellular localisation of ERK8 protein by immunofluorescence and observed a pre-
dominantly cytosolic pattern in wild-type HeLa cells. However, prolonged permeabilisation (2 hr) 
clearly revealed positive Golgi staining, suggesting that a fraction of ERK8 is associated with this 
organelle (Figure 4A). This is consistent with the perinuclear pattern reported in A-431 cells by the 
Protein Atlas project (Uhlen et al., 2010).

Next, HeLa cells were stimulated with 50 ng/µl of PDGF, resulting in an increase in HPL staining 
intensity between 30 min and 2 hr and a decrease in ERK8 at the Golgi apparatus (Figure 4B). Using 
the Pearson’s Correlation coefficient of ERK8 and TGN46 staining, we found a 60% decrease after 
2 hr, suggesting that ERK8 is displaced from the Golgi after cell stimulation (Figure 4C).

SRC is a key signal transducer between PDGF and GalNAc-T traffic. A mutant, inactive form of 
SRC (Src-8A7F) can be re-activated using imidazole (Qiao et al., 2006). Using a HeLa cell line stably 
expressing Src-8A7F-mCherry, we observed a gradual decrease in ERK8 at the Golgi (Figure 4—
figure supplement 1A,B), whereas no change was observed with a catalytically defective SRC mutant 
(Src 6N7F) (Figure 4—figure supplement 1C). This suggests that SRC activity regulates ERK8 localisa-
tion at the Golgi.

Overall, our data indicate that ERK8 is dynamically localised at the Golgi apparatus where it likely 
controls GalNAc-T export.

ERK8 regulates COPI-dependent GalNAc-Ts traffic
To test if the relocation of GalNAc-Ts in ERK8-depleted cells is dependent on COPI, we first expressed 
the dominant-negative mutant of Arf1(Q71L), which is unable to hydrolyse bound GTP (Dascher 
and Balch, 1994) and found significant rescue of Tn levels in contrast with cells expressing wild-
type Arf1 (Figure 5—figure supplement 1A). ERK8-depleted cells were also treated with 50 nM of the 
GBF1 inhibitor Golgicide (Saenz et al., 2009), which also provided significant rescue (Figure 5—
figure supplement 1B).

Consistent with these results, combined knockdown of ERK8 and GBF1 almost completely reversed 
high HPL staining, further indicating that GBF1 is required for GalNAc-T relocation from the Golgi 
to the ER (Figure 5A). Co-knockdown of ERK8 with Arf1, -3, -4 or -5 also reduced Tn levels by about 
60% (Figure 5B). Combined knockdowns of Arfs further increased the rescue, suggesting func-
tional redundancy amongst the Arf proteins. By contrast, co-knockdown with Arf6, which does not 
regulate COPI, did not affect Tn levels (Figure 5B). These reductions in HPL levels were not due 
to reduced knockdown efficiencies of ERK8, as similar effects were observed with increasing amounts 
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of non-targeting (NT) siRNA added to the transfection mix (Figure 5—figure supplement 1C). The 
efficiency and specificity was also verified by assaying protein expression of each gene (Figure 5—
figure supplement 1D). Collectively, these data indicate that the COPI trafficking machinery is essen-
tial for the ER relocation of GalNAc-Ts.

A key activation step for the COPI coatomer is the exchange of GDP for GTP on Arf1 (Antonny 
et al., 2005; Beck et al., 2009; Szul and Sztul, 2011). Therefore, we assessed Arf1-GTP loading 
after ERK8 inhibition using Ro-31-8220 and found activation of Arf1 as early as 15 min and sustained 
for over 2 hr (Figure 5C).

To evaluate the effect of ERK8 depletion on COPI, we next stained cells depleted by siRNA for 
the Golgi marker GM130 and the COPI subunit beta-COP (COPB). As previously observed with 

Figure 4. ERK8 is dynamically localised at the Golgi. (A) High magnification of HeLa MannII-GFP expressing cells stained for endogenous ERK8 following 
cytosol extraction. (B) Cytosol-depleted cells treated with platelet-derived growth factor (PDGF; 50 ng/ml) for the indicated times and stained for ERK8, 
Tn (Helix pomatia lectin, HPL) and the Golgi marker, TGN46. Scale bar: 10 μm. (C) Pearson’s correlation coefficient between ERK8 and Golgi marker 
TGN46 in cells treated with PDGF for the indicated times. Values on graphs indicate the mean ± SEM. **p<0.0001, *p<0.05 by two-tailed unpaired t test, 
relative to vehicle treated cells.
DOI: 10.7554/eLife.01828.009
The following figure supplements are available for figure 4:

Figure supplement 1. ERK8 is dynamically localised when SRC is increasingly activated at the Golgi. 
DOI: 10.7554/eLife.01828.010
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Figure 5. ERK8 regulates COPI-dependent GalNAc-T traffic. (A) Co-knockdown of ERK8 with Arf1 or GTP exchange factor, GBF1, and staining with Helix 
pomatia lectin (HPL). NT, non-targeting. Scale bar: 30 μm. (B) Quantification of Tn levels upon ERK8 co-knockdown with Arf proteins and GBF1. Grey bar 
indicates knockdown of ERK8 only. Blue bars indicate co-knockdowns. (C) SDS-PAGE analysis of total Arf and Arf1-GTP in cells treated with 5 µM 
Figure 5. Continued on next page
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MannII-GFP, GM130 staining revealed significant Golgi fragmentation after ERK8 depletion (Figure 5—
figure supplement 1E). Interestingly, COPB staining was significantly more affected and found on 
small structures in the cytoplasm, suggesting enrichment on transport intermediates (Figure 5—
figure supplement 1E). Using a granularity measurement algorithm, we found a nearly 4-fold increase 
in distribution for COPB but only slightly more than a twofold increase for GM130 (Figure 5—figure 
supplement 1F).

When treated with the ERK8 inhibitor Ro-31-8220, cells displayed a significant redistribution of 
COPI coatomer staining as early as 5 min after treatment (Figure 5—figure supplement 1G,H). 
Furthermore, in cells inhibited by Ro-31-8220 for 15 min, numerous COPI-positive vesicular structures 
were clearly co-stained with GalNAc-T1 antibodies (Figure 5D). In several instances, we could detect 
tubular structures emanating from the Golgi apparatus that stained positively for GalNAc-T1 as well as 
COPB, although not as homogenously along their length as for seen for GalNAc-T1 (Figure 5D).

A well-described cargo of COPI carriers in Golgi-to-ER retrograde traffic is the KDEL receptor (KDEL-R) 
(Orci et al., 1997). KDEL-R trafficking can be induced by a wave of cargo or by SRC activation (Bard 
et al., 2003; Pulvirenti et al., 2008). However, we found that ERK8 depletion did not detectably affect 
KDEL-R distribution in cells where GalNAc-T relocation was extensive (Figure 5E, Figure 5—figure 
supplement 1I). By contrast, expression of an active form of SRC (E378G; SrcE) similarly relocated 
GalNAc-T1 to the ER, as compared with inactive SRC (K295M; SrcK) but it also strongly affected KDEL-
R-GFP distribution (Figure 5F). Visual scoring of the localisation of KDEL-R and GalNAc-T1 revealed 
than more than 80% of the cells display relocation for both proteins in SrcE expressing cells. By con-
trast, while more than 70% of ERK8 depleted cells exhibit clear GalNAc-T redistribution from the 
Golgi, less than 20% show KDEL-R relocation (Figure 5G). These results indicate that GalNAc-Ts and 
KDEL-R trafficking are differentially regulated.

Consistent with this observation, when a wave of the temperature-sensitive mutant of the vesicular 
stomatitis virus G glycoprotein (VSVG) was induced by temperature shift, KDEL-R was relocated from 
the Golgi to the ER as previously reported (Figure 5H; Pulvirenti et al., 2008), whereas GalNAc-Ts 
were not affected (Figure 5H,I).

Altogether, these results suggest that SRC stimulates both GalNAc-Ts and KDEL-R COPI-dependent 
retrograde traffic whereas ERK8 inhibits specifically the formation of transport intermediates contain-
ing GalNAc-Ts.

ERK8 regulates cell migratory ability through control of O-glycosylation
O-glycosylation in the ER stimulates cell adhesion and cell migration and tends to induce a spindle- 
shaped morphology (Gill et al., 2013). Interestingly, this morphology was also apparent in ERK8-
depleted HeLa cells under phase contrast microscopy (Figure 6A) and after staining for the actin and 
tubulin cytoskeletons (Figure 6B).

When tested on fibronectin-coated plates in a scratch-wound healing assay, ERK8-depleted 
HeLa cells migrated about twofold faster into the denuded area compared with NT siRNA-treated 
cells (Figure 6C). This faster rate was constant over 7 hr (Figure 6D), indicating that the faster wound clo-
sure is caused by faster cell migration and not enhanced reactivity to the initial wound. ERK8 knockdown 

Ro-31-8220 (iERK8). (D) Co-staining of Beta-COP (COPB) and GalNAc-T1 in cells treated with 5 µM iERK8 for 15 min. Transient tubular structures 
emanating from the Golgi appear stained for GalNAc-T1 and beta-COP (arrowhead, second panel). Scale bar: 10 μm. (E) Effect of ERK8 depletion on 
GalNAc-T1 and KDEL receptor (KDEL-R) subcellular location. (F) Effect of expression of active SRC (SrcE-mcherry, containing the E378G mutation) or 
inactive SRC (SrcK-mcherry, containing the K295M mutation) on both proteins. Scale bar: 10 μm. (G) Visual scoring of KDEL-R and GalNAc-T1 redistribu-
tion from the Golgi in cells subjected to various treatment conditions. Cells were counted in each condition from three independent experiments (NT 
control: 83 cells; ERK8 KD: 86; SrcE-mcherry: 42; SrcK-mcherry: 32). (H) Temperature-sensitive vesicular stomatitis virus G glycoprotein (VSVG-mcherry) 
traffic to the Golgi induced by shift from restrictive to permissive temperature for 15 min in KDEL-R expressing cells stained for GalNac-T1. Scale bar: 
10 μm. (I) Visual scoring of KDEL-R and GalNAc-T1 relocation in VSVG expressing cells at 0 and 15 min after temperature shift. Cells were counted in 
each condition from three independent experiments (0 min, 44 cells; 15 min, 63 cells). Values on graphs indicate the mean ± SEM. **p<0.0001, *p<0.05 
by two-tailed unpaired t test, relative to NT siRNA-treated (B and G) cells and cells at 0-min timepoint (I).
DOI: 10.7554/eLife.01828.011
The following figure supplements are available for figure 5:

Figure supplement 1. ERK8 regulated GalNAc-T traffic depends on the activity of COPI regulators. 
DOI: 10.7554/eLife.01828.012

Figure 5. Continued
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also led to a dramatically higher cell surface Tn staining, with numerous Tn-positive protrusion structures 
(Figure 6—figure supplement 1A). These Tn-bearing glycoproteins are likely to promote increased cell 
adhesion, as shown previously (Gill et al., 2013).

However, ERK8 has also been implicated in various other cellular processes. To verify that the 
increased cell motility was due to enhanced O-glycosylation, the scratch-wound healing assay was 
repeated in ERK8 and GalNAc-T1 and -T2 knocked down cells (ERK8+GalNAcT1&2 KD). We found 
that these cells migrated significantly slower than ERK8 and ERK8+NT knockdown cells and were 
similar to NT control cells (Figure 6D, Figure 6—figure supplement 1B). To further confirm the impor-
tance of ER O-glycosylation, we used the ER-localised GalNAc-T inhibitor, Lec2GFP. Cell migration 
rates induced by ERK8 depletion in Lec2GFP cells were significantly reduced compared with cells 
expressing only GFP (NGFP cells) (Figure 6D, Figure 6—figure supplement 1C) and, again, were 
rather similar to NT control cell migration. It is important to note that the Lec2GFP construct itself did 
not significantly slow cell migration in the absence of ERK8 depletion.

Thus, collectively, our results indicate that ERK8 is a negative regulator of cell migration through 
inhibition of protein O-glycosylation in the ER.

Figure 6. ERK8 regulates cell migration through ER O-glycosylation. (A) Phase contrast images and (B) actin and 
tubulin staining of non-targeting (NT) siRNA-treated and ERK8-depleted cells. Scale bars: 100 μm in (A) and 10 μm 
in (B). (C) Migration assay using scratch wound of cellular monolayer in NT siRNA-treated and ERK8-depleted cells. 
Scale bar: 100 μm. (D) Rate of wound closure (area) measured over 7 hr (n = 4 experiments for each condition). 
Values on graphs indicate mean ± SEM. **p<0.001, *p<0.05 by two-tailed unpaired t test. Red asterisks indicate 
t test between NT siRNA-treated and ERK8-depleted cells. Green asterisk indicates t-test between cells co-knockdown 
with ERK8 and GalNAc-T1 and -T2 (ERK8+GalNAc-T1 & -T2 KD) and cells co-knockdown with ERK8 and NT siRNA 
(ERK8+NT control KD). Blue asterisk indicates t test between ERK8 knockdown in NGFP-expressing and ER-localised 
GalNAc-T inhibitor Lec2GFP cells. NS, not significant (black vertical lines).
DOI: 10.7554/eLife.01828.013
The following figure supplements are available for figure 6:

Figure supplement 1. ERK8 inhibits cell motility by controlling Tn expression on cell-surface O-glycoproteins. 
DOI: 10.7554/eLife.01828.014
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ERK8 expression is frequently downregulated in breast and lung 
carcinoma
An initial goal of this study was to elucidate mechanisms for the increase in Tn levels frequently 
observed in tumours. Interestingly, ERK8 protein levels are reported to be fairly constant in normal 
breast tissue and benign tumours but drop significantly in malignant tumours, with a loss measured in 
approximately 50%, 80% and 100% of grade 1, 2 and 3 tumours, respectively (Henrich et al., 2003). 
Henrich et al. proposed that ERK8 stimulates the degradation of Oestrogen Receptor-alpha, suggest-
ing a possible selective advantage for the loss of this MAPK (Henrich et al., 2003). Interestingly, this 
trend is also consistent with the increased frequency and intensity of Tn staining (Gill et al., 2013).

To further examine this question, both ERK8 and Tn (stained with VVL) were co-labelled in a panel 
of 39 frozen tissue arrays comprising 5 normal and 34 invasive ductal breast carcinoma (Figure 7—
figure supplement 1A–C). Quantification of ERK8 levels of each tissue core was performed by meas-
uring the area above a fixed threshold, normalised to the total area of the core represented by nuclei 
staining (DAPI) (Figure 7—figure supplement 1D). Although levels varied considerably, more than 
half of the carcinoma cores (18/34) showed at least 50% lower expression of ERK8 (Figure 7A). Tn 
levels also varied significantly but, in the large majority of samples, they were significantly higher in 
tumour samples as compared with normal cores (Figure 7B, Figure 7—figure supplement 1C,D). In 
most cores, ERK8 and Tn levels appeared to show opposing trends, suggesting that the loss of ERK8 
could partially drive high Tn expression. However, there was no clear correlation between the levels of 
both antigens (Figure 7—figure supplement 1E).

High Tn has also been reported in other tumour types, where oestrogen regulation is not thought 
to be critical. As ERK8 was previously found to be highly expressed in the lung (Abe et al., 2002), we 
set out to explore the link between ERK8 and Tn levels in lung cancer with 23 lung biopsies containing 
2 normal lung tissues, 14 squamous cell carcinomas, 6 adenocarcinomas and 1 small cell carcinoma. 
We found that ERK8 was clearly detectable in normal tissues but that the levels appeared markedly 
lower in all lung carcinomas (Figure 7—figure supplement 1H), with an average 80% loss of expres-
sion, and a range of 40–90% (Figure 7C). No specific trend in regard to the cancer type was noticed. 
Next, we quantified Tn levels (Figure 7—figure supplement 1F) and found a significantly higher 
expression of Tn in a majority of the samples, with a more than fourfold average higher expression 
(Figure 7D, Figure 7—figure supplement 1I) and a range of 2–10-fold; 18 cores (86%) displayed 
higher than normal levels of Tn (Figure 7D).

We next explored if high Tn levels were linked to ER O-glycosylation, as in the case of breast carci-
nomas and indeed found that Tn staining co-localised extensively with the ER marker calnexin in the 
carcinoma samples. By contrast, Tn staining in the normal lung tissue was clearly more punctuate and 
reminiscent of a Golgi localisation (Figure 7E).

Thus, in most lung carcinoma tumours, ERK8 expression is lower while Tn levels are higher as 
compared with normal lung tissue. Furthermore, in samples with heterogeneous staining for Tn, 
we observed a reverse correlation between ERK8 and Tn staining (Figure 7F,G). However, at the 
whole core level, the staining intensities of the two levels were not inversely correlated from sample to 
sample (Figure 7—figure supplement 1J).

The lack of a direct correlation indicates that, in human lung and breast tumours, ERK8 levels do not 
strictly control the levels of Tn. Given the number of regulators that have been already identified in this 
and previous studies, this is not surprising. Notwithstanding, our analysis indicates that ERK8 is frequently 
downregulated in lung and breast carcinomas, which probably facilitates the relocation of GalNac-Ts 
to the ER when other biochemical or genetic perturbations, such as SRC activation, are engaged.

Discussion
Cellular levels of the Tn antigen vary dramatically in cancer cells, suggesting that O-glycosylation 
initiation and/or elongation is highly regulated. Indeed, our screen results reveal that several sig-
nalling molecules exert significant control over O-glycosylation initiation. In recent years, we have 
reported that this initiation step can be regulated through trafficking of the GalNAc-Ts between 
the ER and the Golgi (Gill et al., 2010) and that marked ER localisation explains the high Tn phenotype 
in at least 60% of human breast tumours (Gill et al., 2013). High Tn levels can also arise from a loss or 
inhibition of the elongation of the O-GalNAc, a mechanism that has also been proposed to underlie 
the cancer phenotype (Ju et al., 2011).

http://dx.doi.org/10.7554/eLife.01828
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Figure 7. ERK8 is downregulated in human breast and lung carcinoma. (A) Quantification of ERK8 staining in 
human breast biopsies. Each point represents the staining of one tissue core normalised to the average staining 
of the normal tissue cores. (B) Quantification of Tn (Vicia Villosa Lectin; VVL) staining in human breast biopsies. 
(C) Quantification of ERK8 staining in human lung biopsies. (D) Quantification of Tn staining in human lung biopsies. 
*p<0.05, **p<0.01, ***p<0.0001 by two-tailed unpaired t test. (E) Co-staining VVL and ER marker Calnexin revealed 
extensive ER co-localisation of Tn in lung carcinoma (FMC407: Core B3), whereas Tn appeared as punctuate structures 
in the normal lung (FBN406: Core C1). Scale bar: 20 μm. (F) ERK8 and Tn staining in a lung adenocarcinoma core 
(FMC407: Core B8). Scale bar: 200 μm. (G) Close-up image of the core shown in (F). Scale bar: 20 μm.
DOI: 10.7554/eLife.01828.015
The following figure supplements are available for figure 7:

Figure supplement 1. ERK8 levels are frequently reduced in human lung carcinoma. 
DOI: 10.7554/eLife.01828.016

In secondary screens, it appeared that most, if not all, signalling proteins affecting Tn levels regu-
late the subcellular localisation of GalNAc-Ts and not the elongation process. This obviously does not 
preclude the main elongation enzyme, C1GALT or its specific chaperone, COSMC (alias C1GALT1C1) 
from being regulated in some conditions, but a significant inhibition of the activity of these proteins was 
not observed in our screen conditions. In contrast, the subcellular localisation of GalNAc-Ts appears  
to be a nodal point of control in a complex signalling network. Indeed, at least 12 independent 
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negative regulators were identified and at least as many positive regulators, including the SRC family 
tyrosine kinases, are likely to be involved. This regulatory complexity suggests that perhaps signals of 
different origins are being integrated at the level of GalNAc-Ts traffic.

ERK8 is one of the most potent regulators we identified. Multiple pieces of evidence indicate that 
it acts at the level of the Golgi by inhibiting the formation of GalNAc-T-containing COPI vesicles. 
Based on their genetic interaction profile, the other negative regulators appear to act at the same level 
as ERK8. Consistently, two of these proteins, PKMYT1 and MAP4K2, are also reported to localize at 
the Golgi (Ren et al., 1996; Liu et al., 1997), and several other regulators interact with Golgi-localised 
proteins. Together, this suggest that the incorporation of GalNAc-Ts in COPI vesicles is the key point 
of regulation of this potential regulatory network.

This regulation point also reveals the existence of at least two different types of COPI-dependent 
Golgi-to-ER retrograde traffic carriers: one type of transport, GalNAc-Ts, is activated by growth factor 
stimulation and cancerous transformation and is repressed by ERK8; the other, KDEL-R, is activated by 
cargo protein traffic and is independent of ERK8. However, both routes appear to be under the control 
of the SRC kinase family. A key step in understanding these differences will be to identify the relevant 
phosphorylation substrates for both SRC and ERK8.

The trafficking of GalNAc-Ts to the ER results in the glycosylation of multiple different substrates, 
as indicated by the metabolic labelling results. The precise identity of these substrates, as well as the 
functional effects of their glycosylation, remains to be established. Notwithstanding, the outcome of 
the relocation at the cellular level is clearly a significant stimulator of cell migration. Indeed, the stim-
ulatory effect of ERK8 depletion is dependent on ER-localised O-glycosylation. These results are 
also consistent with our previous data based on the expression of an exogenous, ER-targeted form 
of GalNAc-T2 (Gill et al., 2013). Thus, an interesting hypothesis is that the intensity of packaging of 
GalNAc-Ts into Golgi-derived COPI-coated vesicles could be a signalling integration point that sets 
the ‘motility potential’ of cells.

In breast and lung cancer cells, this set-point appears constitutively high, as the relocation of 
GalNAc-Ts is extensive and frequent. The promotion of cell motility associated with ER-localised 
O-glycosylation appeared to favour the formation of lung metastases in a tail-vein injection-based assay 
(Gill et al., 2013). Thus, how GalNAc-T relocation is stimulated in cancer cells has probably important 
medical implications. Our analyses suggest that multiple mechanisms are possible, including a decrease 
in ERK8 protein levels. However, the actual level of decrease required to stimulate relocation is not 
known and is anyway probably dependent on other cellular parameters. Additionally, Tn levels are not 
likely to depend only on the intracellular distribution of GalNAc-Ts. For instance, normal tissues with 
high levels of mucin expression, such as stomach, colon or kidney, tend to have higher endogenous Tn 
levels without clear evidence for relocation. This complexity probably contributes to the lack of direct 
correlation between ERK8 and Tn levels.

In addition to promoting O-glycosylation, ERK8 depletion could also have other beneficial advan-
tages for cancer cells. Indeed, ERK8 has been implicated in multiple, apparently unrelated, molecular 
processes, such as maintenance of genomic integrity (Groehler and Lannigan, 2010), regulation 
of telomerase activity (Cerone et al., 2011), autophagy (Colecchia et al., 2012) and inhibition of 
nuclear receptor activity (Henrich et al., 2003; Saelzler et al., 2006; Rossi et al., 2011). Recently, 
the Drosophila homolog Erk7 and human ERK8 were also shown to participate in the regulation of 
protein secretion during starvation through disassembly of ER exit sites (Zacharogianni et al., 
2011). Whether these different processes are somewhat linked through ERK8 or whether ERK8 is 
simply moonlighting in different, independent functions constitutes an interesting challenge for 
the future.

In sum, our results suggest that initiation of O-glycosylation in the ER is under an elaborate regula-
tory control system of which ERK8 is a key player. This regulation sets the level of cellular motility and 
is frequently perturbed in cancer cells of breast and lung origins.

Materials and methods
Cloning and cell culture
HeLa MannII-GFP was from Vivek Malhotra’s laboratory (CRG, Barcelona) and maintained in DMEM 
with 10% fetal bovine serum (FBS). HeLa cells that were knockout of COSMC was obtained from U 
Mendel and H Clausen (University of Copenhagen, Denmark). HeLa ER-Lec2-GFP and KDEL-R-GFP 
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cell lines were generated by lentiviral infection of HeLa wild-type cells with ER-2Lec-GFP (Gill et al., 
2013) and KDEL-R-GFP lentivirus and subsequently, FACS sorted to enrich for GFP-expressing cells. 
HEK293T cells were grown in DMEM supplemented with 15% FBS. All cells were grown at 37°C in a 
10% CO2 incubator. Human MAPK15/ ERK8 (NM_139021) was amplified from cDNA purchased from 
Origene (#RG216589; Rockville, MD) by PCR and cloned into entry vector pDONR221 (Invitrogen, Life 
Technologies Corporation, Carlsbad, CA). The catalytically inactive ERK8 mutant construct was gener-
ated by introducing T175A and Y177F mutations using the QuikChange Site-Directed Mutagenesis 
Kit (Stratagene, Amsterdam, The Netherlands). The entry vectors were subsequently cloned into 
pcDNA6.2-Nmcherry-DEST, a gateway compatible destination vector constructed by the replacement 
of the GFP tag with mCherry on pcDNA6.2-NGFP-DEST (Invitrogen). Human ARF1 (NM-001024228)-
GFP expression clones were described previously (Gill et al., 2010). miR-ERK8 and miR-GFP vector 
were generated from BLOCK- iT Pol II miR RNAi expression vector kits from Invitrogen. All constructs 
were verified by sequencing and restriction enzyme digests before use.

Antibodies and reagents
Helix pomatia Lectin (HPL) conjugated with 647 nm fluorophore (#L32454), Alexa Fluor secondary 
antibodies, and Hoechst 33342 (#H3570) were purchased from Invitrogen. siRNAs were obtained 
from Dharmacon (Thermo Fisher Scientific, Wilmington, DE). OptiMEM was purchased from Invitrogen, 
and Hiperfect transfection reagent was purchased from Qiagen (Valencia, CA). Anti-GalNAc-T1, 
GalNAc-T2 and Tn hybridomas for immunofluorescence staining were a gift from U Mendel and  
H Clausen (University of Copenhagen, Denmark). Anti-COPI coatomer (targeting native coatomer) 
was a gift from FT Wieland (University of Heidelberg, Germany). Anti-GRASP55 was a gift from 
Vivek Malhotra’s laboratory (CRG, Barcelona). Anti-GalNAc-T1 (#sc-68491) for western blotting 
was purchased from Santa Cruz Biotechnology (Dallas, TX). Anti-ERK8 antibody (#HPA002704)  
was purchased from Sigma–Aldrich (St Louis, MO). Anti-beta COP antibody (#ab2899), anti-Giantin 
(#ab24586), anti-C2GNT1 (#ab38858) and anti-COSMC (#ab93483) were from Abcam (Cambridge, 
MA). Fluorescein-labelled Vicia Villosa Lectin (VVL) (#FL-1231) and Rhodamine-labelled Peanut 
Agglutinin PNA (#RL-1072) were from Vector laboratories Inc. (Burlingame, CA). Ro-31-8220 (#557521) 
and α-Amanitin (#129741) was from Merck (Rahway, NJ). Golgicide A (GCA) (#G0923) was from 
Sigma–Aldrich. ERK8-specific siRNA sequences (dERK8-1: 5′-GUAGUGGACCCUCGCAUUG-3′, 
dERK8-2: 5′-AGAACGACAGGGACAUUUA-3′, dERK8-3: 5′-GGAGAUACCUACUCAGGCG-3′ and 
dERK8-4: 5′-CCUAUGGCAUUGUGUGGAA-3′) were purchased from Thermo-fisher.

siRNA screening
siRNA transfection, immunofluorescence staining and imaging procedures were described in detail 
previously (Chia et al., 2012).

Automated image acquisition and quantification
During automated image acquisition, four sites per well were acquired sequentially with a 20 × Plan 
Apo 0.75 NA objective on a laser scanning confocal high-throughput microscope (ImageXpress Ultra, 
Molecular Devices, Sunnyvale, CA). Image analysis was performed using MetaXpress software (version 
3.1.0.89). For each well, total HPL staining intensity and nuclei number was quantified using Transfluor 
HT application module in the software. Briefly, masking for both Cy5 (HPL) and DAPI (Nuclei) channels 
was generated by setting the mask dimensions and cut-off intensity above the background for each of 
the two channels (Figure 1A) and intensities were quantified in the area covered by the masking. 
Hundreds of cells were quantified and the averages per well were calculated. To compare HPL inten-
sities between wells, HPL intensity per cell of each well was obtained by normalising the total HPL 
intensity (‘Integrated Granule Intensity’ of Cy5 channel) with nuclei number of the well. The same 
procedures were performed for the quantification of PNA and GalNAc-T1 staining in the secondary 
screens. Statistical significance was measured using a paired t test assuming a two-tailed Gaussian 
distribution.

Drug treatments
For ERK8 inhibitor Ro-31-8220 treatment, HeLa MannII-GFP cells were seeded into imaging plates over-
night, treated with 5 µM Ro-31-8220 in DMEM with 10% FBS for various durations and then fixed with 
4% paraformaldehyde-4% sucrose in phosphate-buffered saline (PBS) followed by subsequent staining. 
For Golgicide A treatment, cells were treated with 50 nM of Golgicide A and fixed at different time points.
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High-resolution fluorescence microscopy
Cells were seeded onto glass coverslips in 24-well dishes (Nunc, Denmark). After the respective treat-
ments, cells were fixed with 4% paraformaldehyde-4% sucrose in D-PBS, permeabilised with 0.2% 
Triton-X for 10 min and stained with the appropriate markers using the same procedure performed in 
the primary siRNA screen. To effectively observe ERK8 localisation at the Golgi, the cells were permea-
bilised with 0.2% Triton-X for 2 hr and stained with anti-ERK8 antibody diluted in 2% FBS in D-PBS 
overnight. For beta-COP (COPB) and COPI coatomer staining, cells were permeabilised with 0.05% 
NP40 for 5 min twice, washed with D-PBS twice for 5 min, blocked with 2% bovine serum albumin 
(BSA) for 1 hr at room temperature, and then stained with primary antibody diluted in 2% FBS in D-PBS 
overnight. Cells were mounted onto glass slides using FluorSave (Merck) and imaged at room temper-
ature using an inverted confocal microscope (IX81; Olympus Optical Co. Ltd, Tokyo, Japan) coupled 
with a CCD camera (model FVII) either with a 60 × objective (U Plan Super Apochromatic [UPLSAPO]; 
NA 1.35) or 100 × objective (UPLSAPO; NA 1.40) under Immersol oil. Images were acquired at 100x 
magnification and processed using Olympus FV10-ASW software.

O-glycosylation reporter analysis
GalNaz metabolic labelling
HeLa cells were treated with siRNA for 3 days before metabolically labelling with 20 µM GalNAz for 
6 hr. Ro-31-8220 was added to cells during GalNAz metabolic labelling for 4 hr treatment before 
harvesting. Cells were washed twice using ice-cold D-PBS before scraping in D-PBS. Cells were cen-
trifuged at 300×g for 5 min at 4°C and were lysed with ice-cold lysis buffer (50 mM Tris [pH 8.0, 4°C], 
200 mM NaCl, 0.5% NP-40 alternative and complete protease inhibitor [Roche Applied Science, 
Mannheim, Germany]) for 30 min with gradual agitation before clarification of samples by centrifugation 
at 10000×g for 10 min at 4°C. Clarified lysate protein concentrations were determined using Bradford 
reagent (Bio-Rad Laboratories, Hercules, CA) before sample normalisation. Samples were diluted in 
lysis buffer with 4 × SDS loading buffer and boiled at 95°C for 2 min. They were then resolved by SDS-
PAGE electrophoresis using bis-tris NuPage gels as per the manufacturer’s instructions (Invitrogen) 
and transferred to PVDF membranes. Membranes were then blocked using 3% BSA dissolved in Tris-
buffered saline with tween (TBST: 50 mM Tris [pH 8.0, 4°C], 150 mM NaCl, and 0.1% Tween 20) for 
2 hr at room temperature. Membranes were washed to remove traces of BSA before incubation with 
antibodies, as per the manufacturer’s instructions. Membranes were washed five times with TBST 
before incubation with secondary HRP-conjugated antibodies (GE Healthcare). Membranes were 
further washed five times with TBST before ECL exposure.

ER-specific GalNAc-T activity reporter assay
The experiment was performed as described previously (Gill et al., 2010). Briefly, HEK293T cells were 
seeded into 10-cm petri dishes 24 hr before transfection and were then transfected with the ER-trapped 
mucin construct using the calcium phosphate method. The growth media was then replaced the fol-
lowing day and the cells were further incubated for 24–48 hr before ERK8 inhibitor treatment for 4 hr. 
Cells were harvested and lysed as described above. All subsequent steps were performed either on ice 
or at 4°C. Immunoprecipitation (IP) samples were incubated with 1–2 μg of HPL-conjugated agarose 
(Sigma–Aldrich) overnight at 4°C. The next day, IP samples were washed five times with 1 ml of IP wash 
buffer (50 mM Tris [pH 8.0, 4°C], 100 mM NaCl, 0.5% NP-40 alternative, 1 mM DTT, and complete pro-
tease inhibitors [Roche]). Samples were diluted in IP wash buffer and 4 × SDS loading buffer before 
boiling at 95°C for 2 min. Samples were then resolved by SDS-PAGE electrophoresis as described above.

VSVG pulse-chase assay
HeLa KDELR-R-GFP expressing cells were transfected to express the temperature-sensitive mutant of 
vesicular stomatitis virus G glycoprotein (VSVG-tsO45) tagged with mcherry at the C-terminus. For the 
VSVG pulse-chase experiment, cells were transferred to 40°C for 16 hr and then shifted to 32°C for 
various durations in the presence of 100 μg/ml of cycloheximide before fixation. Cells were imaged at 
100x magnification and quantified by eye for KDEL-R and GalNAc-T subcellular localisation.

Wound healing assay
Cells were seeded onto fibronectin-coated 35-mm plastic tissue culture dishes (Ibidi GmbH) and grown 
to confluence (16–24 hr). A wound was generated using a micropipette tip before washing to remove 
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cell debris. Live phase contrast imaging was performed at 37°C using a Zeiss Axiovert microscope 
(model 200M; Zeiss Microimaging; Thornwood, NY) equipped with a CCD camera (AxioCam HRc) 
and a 20 × objective (LD Plan-NEOFLUAR; 20 ×; N.A. 0.4). Frames were acquired at 5-min inter-
vals. Areas of wound invasion were calculated using ImageJ (National Institutes of Health, 
Bethesda, MD).

Human tumour microarray imaging and quantification
Frozen human tumour microarrays FBN406a and FMC407 were purchased from US Biomax, Inc. 
(Rockville, MD). Briefly, the slides were dried and fixed in chilled in a 1:1 acetone:methanol solution for 
10 min at room temperature. The slides were then washed three times with TBST and blocked with 
10% goat serum-PBS for 30 min. Subsequent staining with ERK8 antibody (0.9 µg/ml), VVL-biotin 
(4 μg/ml) and Hoescht (1:10,000) was performed overnight before staining with anti-rabbit Alexa Fluor 
488 (1:1000) and Streptavidin-Alexa 594 (1:400) secondary antibodies for 30 min. Slides were counter-
stained with DAPI and then mounted (Vectashield). The arrays were first automatically imaged (using 
constant acquisition parameters) using a 10 ×objective (LD Plan-NEOFLUAR; 10 ×; N.A. 0.4) on a 
motorised stage coupled to a Zeiss inverted confocal microscope equipped with a CCD camera 
(AxioCam HRc). Images of the cores were exported from Zeiss Zen2011 software to enable quantifica-
tion of ERK8 and VVL staining in tumour cores. To quantify the levels of ERK8 or Tn (VVL) expression in a 
tissue core, the images were first converted to 8-bit images using ImageJ. The area above the threshold 
was set for background staining (Threshold for ERK8 and VVL was 30 and DAPI was 40) and then quanti-
fied. The area of ERK8 and VVL was normalised to the total area of the core represented by nuclei (DAPI) 
staining. The values of each core were then normalised to the average area of the normal tissue cores.
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