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Abstract

Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most
intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter
drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental
results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated,
mathematical modeling and computational predictions using systematic and quantitative approaches have become
increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses
or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of
experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms,
posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms.
Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then,
we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including
mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular
networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model,
agent-based model, pharmacokinetic–pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-
based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module
biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.).
Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resist-
ance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine.
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Introduction

Cancer drug resistance is an important cause of the often inevit-
able failure of targeted drug therapeutics in clinical anticancer
treatment [1]. In recent decades, targeted therapy has become
one of the standard strategies for treating malignant tumors, as
targeted therapy can significantly improve the survival rate of
cancer patients [2]. However, resistance to targeted agents al-
ways emerges in various types of cancers, which eventually

limits the long-term effectiveness of chemotherapy for cancer
patients [3]. As such, drug resistance is currently one of the big-
gest obstacles for successfully treating cancers in clinical prac-
tice. Effective clinical approaches that could overcome or that
could reduce drug resistance by restoring the sensitivity of
tumors to the targeted agents are urgently required.

Drug resistance either preexists before drug treatment (i.e.
intrinsic resistance) or develops after an early stage of initial
drug response (acquired resistance) [4]. To better understand
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and to prevent cancer drug resistance, more and more attention
has been paid to the underlying resistance mechanisms. Many
experimental studies have been conducted that aim to reveal
the various mechanisms of intrinsic or acquired drug resistance
and to verify promising treatment strategies, such as combin-
ation therapy [5, 6], for reducing drug resistance. However, trad-
itional hypothesis-driven experimental approaches are time-
consuming and expensive because of the necessity for multiple
experimental conditions, cell lines and time points. Moreover,
cancer systems involve multiple scales and numerous inter-
active components, which are always dynamic and stochastic.
Therefore, systems biology approaches are required to system-
atically and quantitatively investigate drug response and resist-
ance and to generate new hypotheses for experimental
validation.

In recent decades, various types of computational models
have been developed in the area of cancer systems biology [7–
15]. When combined with in vitro and/or in vivo experiments, as
well as clinical data, the computational models that best use
current knowledge of cancer mechanisms can be used to simu-
late molecular dynamics (MD), signaling kinetics, growth of the
cellular population or tumor volume and the responses of can-
cers to therapeutic agents. Moreover, the rapid accumulation of
high-throughput data in various cancers increasingly calls for
powerful computational methods to unearth valuable informa-
tion for the diagnosis, treatment, prognosis and prevention of
cancers, particularly in the context of drug resistance. As such,
the development of mathematical modeling and computational
prediction methods is anticipated to advance our understand-
ing of the underlying mechanisms of drug resistance and to fa-
cilitate the design of more effective treatment strategies to
improve drug efficacy.

In this article, we first briefly review current knowledge of
experimental data on cancer drug resistance mechanisms at
various levels, including genetic, epigenetic, signaling networks,
cellular, microenvironmental and pharmacokinetic scales.
Then, we introduce some databases and Web servers that can
be used for drug resistance studies. Next, we emphatically intro-
duce two types of computational methods, i.e. mechanistic
modeling approaches and data-driven prediction methods, for
cancer drug resistance. Finally, we discuss several further ques-
tions and future directions for the use of computational
methods for studying drug resistance, including inferring drug-
induced signaling networks, multiscale modeling, drug combin-
ations and precision medicine.

Experimentally revealed mechanisms of
cancer drug resistance

Some important progress on cancer drug resistance has been
made because of the abundance of experimental studies that
have been conducted to unravel resistance mechanisms at mul-
tiple levels, including at the molecular, cellular and microenvir-
onmental scales [16–21]. The experimentally revealed
mechanisms of cancer drug resistance involve at least the fol-
lowing mechanisms: genetic, epigenetic, posttranslational, cel-
lular and microenvironmental (Figure 1).

Genetic mechanisms

Many experimental studies have demonstrated that a variety of
newly acquired genetic modifications could render tumor cells
insensitive to therapeutic agents [22], which is a well-studied
paradigm for the mechanisms underlying drug resistance. The

genetic mutation of the drug target can weaken the drug–target
interaction, thus preventing the activation of the target and sus-
taining cell survival. For instance, epidermal growth factor re-
ceptor (EGFR) mutation can lead to the resistance of non-small
cell lung cancer to Gefitinib by preventing this EGFR inhibitor
from binding to its target [23]. Similarly, an acquired mutation
at codon 2032 in the ROS1 kinase domain confers resistance to
crizotinib during the treatment of metastatic lung adenocarcin-
oma through steric interference with drug binding [24].

Genomic modifications that regulate upstream or down-
stream signaling of a given target might also attenuate drug ef-
ficiency. For example, KRAS is an EGFR downstream signaling
phosphoprotein, and the emergence of KRAS mutations is asso-
ciated with acquired resistance to cetuximab, an inhibitor bind-
ing the extracellular domain of EGFR, in colorectal cancer
(CRC) [25].

Epigenetic mechanisms

Epigenetic modifications in tumors can change gene expression
patterns, which might adapt to the targeted therapy and cause
acquired drug resistance [16]. For instance, an experimental
study [26] suggested that histone deacetylase inhibitors
(HDACis) could reduce the treatment effectiveness of some
anticancer drugs (e.g. natural toxins to cyclic nucleotides) in
acute myeloid leukemia cells. This study revealed an epigenetic
mechanism by which HDACi could induce the hyperacetylation
of histone proteins in the promoter regions of multiple ABC
transporter genes, including MDR1, BCRP and MRP8, which
modulated the expression patterns of these genes. Moreover,
experimental evidence has indicated that epigenetic changes
that silence proapoptotic genes (e.g. death-associated protein
kinase 1) [27]. Apoptotic peptidase activating factor 1 [28] and
regulating DNA-repair genes (e.g. MSH2, MLH1 and PMS2 [29])
also led to the acquisition of drug resistance [30]. These studies
might have important clinical implications regarding epigenetic
therapies and drugs that modify the corresponding epigenomes,
as they could be designed to reverse the drug resistance respon-
siveness of anticancer drugs.

Posttranslational mechanisms

Various cancer studies involving targeted therapy have demon-
strated that alteration of posttranslational signaling or rewiring
can contribute to drug resistance. A typical paradigm is that
subtle, posttranslational activations of signaling pathways that
bypass therapeutic target stress can modulate the expression
patterns of oncogenes and can thereby lead to acquired drug re-
sistance. For instance, in many ‘oncogene-addicted’ cancer
cells, a positive feedback loop of Stat3 induced by MEK inhib-
ition can promote cell survival, which consequently limits
overall drug response [19]. Another example of signaling
feedback-mediated drug resistance is [31] the relief of ERK-
dependent feedback inhibition on receptor tyrosine kinase
(RTK) signaling by a RAF inhibitor, which could in turn attenu-
ate the targeted effect in melanoma cells. Specifically, before
treatment with the RAF inhibitor, strong ERK-dependent feed-
back can suppress RTK signaling and can maintain mutant
BRAF in a drug-sensitive state. While using the RAF inhibitor,
the inhibited feedback can then lead to the reestablishment of
RTK signaling to Ras, which activates RAF dimers that are re-
sistant to RAF inhibitors. Thus, the bypassed signaling pathway
leads to the reactivation of ERK signaling and improves cell
survival.
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Cellular mechanisms

Intratumor cell populations are always heterogeneous. Cancer
stem cells (CSCs) are a subpopulation of cancer cells with char-
acteristics of normal stem cells in regard to their ability to
self-renew and differentiate into multiple cell types [32]. The
concept of CSCs has been proposed to explain tumor initiation,
progression and, more importantly, drug resistance. Many bio-
logical processes and pathways have been found to be involved
in the CSC-mediated cellular mechanisms that are responsible
for drug resistance [33]. An experimental study [34] demon-
strated that the acquisition of stem cell-like properties arose in
some tumor cells along with the occurrence of drug resistance.
These stem cell-like properties enabled the tumor cells to es-
cape the drug assault. Moreover, in this study, the KRAS-RalB-
NFjB pathway was identified to facilitate both cancer stemness
and drug resistance to EGFR inhibition in lung cancer. The au-
thors further indicated that a(v)b61 was a therapeutic target for
sensitizing such resistant tumor cells to EGFR inhibition.
Moreover, many resistance-associated characteristics, such as
drug efflux [35], overexpression of antiapoptotic molecules
[36, 37], activation of pro-survival signaling [38] and differ-
entiation resistance [39], were found to be involved in CSC-
mediated therapy resistance.

In addition, other cellular mechanisms, such as epithelial–
mesenchymal transition [40, 41] and autophagy [42–44], were
also found to contribute to drug resistance.

Microenvironmental mechanisms

Various cytokines or growth factors can be secreted from tumor
cells or stromal cells into the microenvironment on drug treat-
ment, which can promote the rapid emergence of acquired drug
resistance [5, 45]. Therefore, microenvironmental adaptation [6]
has been revealed as an important mechanism causing drug re-
sistance. For instance, a recent study [5] demonstrated that, in
response to targeted therapy with BRAF inhibition in melan-
oma, drug-sensitive cancer cells can secrete various cytokines

(e.g. IGF, HGF, etc.) into the microenvironment. These secreted,
soluble factors can in turn activate the survival signaling of
drug-sensitive cells and can promote the proliferation, migra-
tion and metastasis of drug-resistant cancer cells.

Another preclinical study [46] revealed a microenvironment-
dependent mechanism underlying the acquired resistance to
CSF1R inhibition in gliomas. Without CSF1R inhibition, macro-
phages usually present a pro-tumorigenic M2 phenotype and
promote glioma cell growth. While in the presence of CSF1R in-
hibition, macrophages switch to an antitumorigenic M1 pheno-
type that can promote tumor cell death. Following prolonged
treatment of CSF1 inhibition, macrophages then secrete IGF1
into the microenvironment under the stimulation of accumu-
lated IL4 from other cell types (e.g. T cells). The secreted IGF1
can sustain the survival and growth of glioma cells and thereby
resist the CSF1 inhibition effect [46].

Pharmacokinetic mechanisms

Pharmacokinetic factors, including drug transportation, uptake,
metabolism, elimination and efflux, determine the amount of
drug delivered to tumor cells [47]. Zhang et al. [48] experimen-
tally measured and quantitatively analyzed the cellular
pharmacokinetics of adriamycin in human breast cancer cells
MCF-7 and in adriamycin-resistant MCF-7 (MCF-7/Adr) cells.
The differential distribution and accumulation of adriamycin in
sensitive cells and resistant cells were found to influence drug-
induced apoptosis. The resistant cells were found to express
high levels of P-gp at cellular/subcellular membranes, which re-
sulted in different cellular pharmacokinetic and pharmaco-
logical properties of adriamycin in resistant cells compared
with sensitive cells. Furthermore, the authors found that in-
hibiting P-gp activity can attenuate adriamycin resistance.

Database and Web servers

Several Web-based tools, such as databases and Web servers,
have been developed to collect and explore information related

Figure 1. Various mechanisms of drug resistance. Cancer drug resistance can be caused by various mechanisms, including genetic mutation of the drug target or its

upstream/downstream proteins, epigenetic alterations of proapoptotic gene expressions, signaling cross talk/feedback-mediated dynamic adaptive responses, micro-

environment adaptation-induced signaling bypass or reactivation and pharmacokinetic mechanism.
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to drug resistance. For example, the National drug resistance
database (http://www.portal.pmnch.org/hiv/topics/drugresist
ance/national_database/en/) [49] was developed to record and
analyze HIV drug resistance data from WHO-recommended sur-
veys. Another database, PIRSpred (http://protinfo.compbio.buf
falo.edu/pirspred/) [50], was designed for the prediction of reli-
able HIV-1 protein inhibitor resistance/susceptibility. In particu-
lar, several databases and Web servers related to cancer drug
sensitivity and resistance have been developed in recent years.
Table 1 lists the current results (data deposited, potential appli-
cations, year developed, Web site and reference) of these data-
bases and Web servers.

CancerDR

CancerDR (http://crdd.osdd.net/raghava/cancerdr/) [51] is a can-
cer drug resistance database based on the information of muta-
tions in drug targets. CancerDR integrated several Web-based
tools, such as COSMIC [56], CCLE [57], PubChem [58] and
Therapeutic Target Database [59]. CancerDR collected pharma-
cological profiling information of 148 anticancer drugs (36 FDA-
approved drugs, 48 drugs in clinical trials and 64 experimental
drugs) across 952 cancer cell lines. The information about each
drug target in this database includes the sequence of natural
variants, mutations, tertiary structure and alignment profiles of
mutants/variants. This database can be used to identify genetic
mutations in the drug targets and the associated residues re-
sponsible for drug resistance.

HerceptinR

HerceptinR (http://crdd.osdd.net/raghava/herceptinr/) [52] is a
database of assays performed to test sensitivity or resistance of
Herceptin antibodies toward breast cancer cell lines. It can as-
sist to design biomarkers to test whether Hercepting is effective
for a specific patient and examine whether Herceptin with sup-
plementary drug can be used to treat this patient.

MACE

MACE (http://mace.sookmyung.ac.kr/) [53] is a database with an
interactive Web interface for a huge amount of chemical re-
sponse and gene expression data on cancer cell lines. Individual
GI50 data of chemicals against NCI60 cell lines were normalized
and organized to statistically identify mutation- or lineage-
specific chemical response. DNA microarray data on NCI60 cell
lines were also processed to analyze mutation- or lineage-
specific expression signatures.

mutLBSgeneDB

Kim et al. [54] built a mutated Ligand Binding Site gene database
called mutLBSgeneDB (http://zhaobioinfo.org/mutLBSgeneDB).
The authors collected and analyzed over 2300 genes with
�12 000 somatic mutations at about 10 000 ligand-binding sites
across 16 cancer types. From these, they selected 744 drug-
targetable genes by integrating genetic, genomic, transcrip-
tomic, proteomic, network and functional information.
Pharmacological information, such as the binding affinities of
selected genes with their drugs in wild-type and mutant forms,
can be calculated from mutLBSgeneDB. Owing to the correlation
between ligand-binding site mutation and drug resistance,
mutLBSgeneDB provides a useful resource for researchers in the
field of functional genomics, protein structure and, particularly,
cancer drug resistance.

GEAR

GEAR (http://gear.comp-sysbio.org/) [55] contains 1631 associ-
ations between 201 human drugs and 758 genes, 106 associ-
ations between 29 human drugs and 66 microRNAs (miRNAs)
and 44 associations between 17 human drugs and 22 single-nu-
cleotide polymorphisms (SNPs). GEAR can be used to predict
genomic elements that are responsible for drug resistance.

Table 1. Databases and Web servers for cancer drug resistance

Databases Data deposited Potential applications Year Web site Reference

CancerDR Pharmacological profiling information
of 148 anticancer drugs across 952
cancer cell lines

Identify genetic mutations in the drug
targets and the associated residues
responsible for drug resistance

2013 http://crdd.osdd.net/
raghava/cancerdr/

[51]

HerceptinR 2500 Herceptin assays performed to
test efficacy of Herceptin on various
breast cell lines (�30 unique cell
lines) with and without supplemen-
tary drugs (�100 unique drugs)

Assist to design Hercepting bio-
markers to test whether Herceptin
will work for a specific patient and
examine whether Herceptin with
supplementary drug can be used to
treat this patient

2014 http://crdd.osdd.net/
raghava/
herceptinr/

[52]

MACE Individual GI50 data of chemicals
against NCI60 cell lines with DNA
microarray data

Analyze mutation- or lineage-specific
chemical response and expression
signatures

2015 http://mace.sook
myung.ac.kr/

[53]

mutLBSgeneDB Over 2300 genes with �12 000 somatic
mutations at �10 000 ligand-binding
sites across 16 cancer types; 744
drug-targetable genes

Search gene summary, mutated infor-
mation, protein structure-related
information, differential gene ex-
pression and gene–gene network,
phenotype information, pharmaco-
logical information and conserva-
tion information

2017 http://zhaobioinfo.
org/
mutLBSgeneDB

[54]

GEAR 1781 associations between drugs and
genomic elements (e.g. genes,
miRNAs and SNPs)

Predict genomic elements that are re-
sponsible for drug resistance

2017 http://gear.comp-sys
bio.org/

[55]
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Mechanism-based mechanistic modeling
approaches

Many computational methods have been developed to quanti-
tatively model and simulate drug resistance based on biological

mechanisms, such as signaling networks or cellular dynamics,
or based on high-throughput data. Roughly speaking, there are
two types of computational methods in drug resistance studies:
(1) mechanism-based mechanistic modeling and (2) data-driven
prediction methods. We first introduce mechanism-based

Figure 2. Summary on mechanism-based mathematical modeling approaches.
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mechanistic modeling approaches in this section, and review
data-driven prediction methods in the following section. Figure
2 briefly summarizes various modeling approaches for cancer
drug resistance based on different resistance mechanisms. The
simulation tools, characteristics and typical references of these
approaches are also listed.

Molecular dynamics simulation

The interaction between the drug and the target is a dynamic
process that involves numerous atoms. MD simulation is
powerful in investigating drug resistance in silico because it can
provide information on the dynamic changes of the drug and
conformational changes of the target by analyzing the deviation
or fluctuation of many atoms. Using MD simulation, one can
examine how genetic mutation induces the occurrence of drug
resistance by exploring the difference between the molecular
bases of the wild-type target and mutated protein. In addition,
we can use MD simulation to examine whether the selected po-
tent inhibitors bind with a given target successfully and stably.

Giovanni et al. [60] used a GROMACS MD package [61] to per-
form MD simulation and analyzed the structural–dynamical be-
havior of the wild-type Thr729 and two mutants, Thr729Lys and
Thr729Pro. Their analysis demonstrated the essential role of
Thr729 in modulating the enzymatic function of human topo-
isomerase I, which was suggested to cause anticancer drug re-
sistance by altering protein domain communications. In
another example, Tang and Chen [62] used MD simulation to
analyze the difference in the molecular character or structural
variation between BRAF(V600E) and the wild-type BRAF protein,
which might aid our understanding of the molecular

mechanisms of drug resistance to BRAF inhibitors in cancers,
such as advanced or metastatic melanoma.

Kinetic models of the signaling network

As described above, rewiring of posttranslational signaling is an
important mechanism of acquired drug resistance. Therefore,
using kinetic models to simulate the dynamic changes of the
signaling network during drug treatment is a common method
to quantitatively study drug resistance. The kinetics of the sig-
naling network can be modeled using ordinary differential
equations (ODEs) based on the law of mass action [63] or
Michaelis–Menten kinetics [64] (Figure 3).

Based on the law of mass action, Faratian et al. [65] used a
kinetic model to simulate the temporal changes in the
heregulin-induced HER2/3 signaling network, involving the
MAPK and PI3K pathways. With this model, the authors studied
the role of PIK3CA activation in RTK inhibitor resistance. They
revealed that the ratio of PTEN to activated PIK3CA was corre-
lated with the resistance of cancer cells to anti-HER2 therapies,
which could therefore be used to predict the clinical response of
patients to RTK inhibitor treatment based on clinical measure-
ments of PTEN and PIK3CA levels. It also indicated that the
combination of PIK3CA inhibition with RTK inhibitors would be
beneficial to patients with tumors that had low PTEN levels.

Sun et al. [66] built an kinetic model of apoptosis regulation
based on Michaelis–Menten kinetics to investigate the molecu-
lar mechanisms underlying stress-induced therapy resistance.
Based on experimental studies of the epinephrine/beta2 adren-
ergic receptor/PKA/BAD pathway, which is critical in stress-
mediated anti-apoptosis in prostate cancer cells, the authors
could build and fit a network model of the signaling pathways

Figure 3. A typical flowchart of signaling network-based kinetic modeling of drug resistance. According to the law of mass action or Michaelis–Menten kinetics, ODE

models can be developed to describe the kinetics of signaling networks targeted by anticancer drugs. The drug efficacy can be evaluated based on quantitative model

analysis. The model can be used to, for instance, investigate the effect of network structure on drug resistance.
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that control BAD phosphorylation. Based on the experimentally
validated model, they found that elevated epinephrine signaling
could change the synergism pattern of the drug combination
and decrease the efficacy of the therapy. By analyzing the net-
work model of the signaling pathways affected by psychological
stress, they explored the molecular mechanisms responsible for
therapeutic resistance and the synergism pattern switch of
drug combinations.

The pharmacological efficacy of signaling network-targeted
drugs depends on the network topology. Therefore, it is import-
ant to investigate how variations in signaling network structure
affect drug resistance. Sun et al. [67] built a Michaelis–Menten
kinetics model for several small networks to investigate the
contribution of the architecture of the signaling cross talk to
induce drug resistance. Their results demonstrated that signal-
ing cross talk affects the relative sensitivity of the targeted
drugs and identified some typical cross talk modules that could
yield resistance to the targeted drugs. In addition, the role of the
strength of the cross talk in switching a module between drug
sensitivity and drug resistance was analyzed. This study pro-
vided mechanistic insights into signaling cross talk-mediated
drug resistance. Furthermore, their simulation results implied
how to design synergistic drug combinations to reduce drug
resistance.

Ordinary differential equation model of cellular
population dynamics

As early as two decades ago, some theoretical and mathemat-
ical models of drug resistance in the context of tumor cell het-
erogeneity were developed based on population dynamics. The
related literature has been reviewed by Michelson and Leith
[68]. These models considered drug-sensitive cancer cells and
drug-resistant cells as two different compartments. The growth
dynamics of the cell populations, along with the effects of
chemotherapy, were then modeled using a system of ODEs. The
analysis of the model can determine the critical parameters and
can help to design effective treatment strategies, such as com-
bination chemotherapy [69].

Some other studies considered kinetic resistance based on
the assumption that the cell division cycle could cause a reduc-
tion in the effectiveness of the drug, which is referred to as kin-
etic mutation. With this hypothesis, many drugs are assumed
to be mainly effective during only one specific phase of the cell
cycle. Therefore, the drug resistance is temporally changed.
Some mathematical models of kinetic resistance have been de-
veloped [70–72] using ODEs. For example, Tomasetti and Levy
[72] used a simple linear ODE model of kinetic resistance to ob-
tain results comparable with those from much more complex
mathematical techniques. The advantage of this simple deter-
ministic approach lies in that it enables the possibility of deter-
mining analytic results for resistance to any number of drugs in
such models. The authors further used this model to investigate
the relationship among the amount of resistance, the turnover
rate and the number of drugs used in the treatment.

Based on quantitative single-cell experimental measure-
ments, mathematical modeling with ODEs and the Markov state
transition model, Pisco et al. [73] investigated the contribution of
growth rate and transition rate in a tumor cell population at
steady state. Their model could explain the emergence of multi-
drug resistance in leukemia cells being treated with vincristine,
which agreed with Lamarckian induction rather than
Darwinian selection.

Recently, Mahasa et al. [74] developed a mathematical model
of drug resistance because of the KRAS mutation in CRC. A sys-
tem of ODEs was developed to model the dynamic interactions
between various immune cell populations and tumor cell popu-
lations. The model illustrated the inevitable development of
tumor cell immunoresistance and predicted natural killer (NK)
cell-based immunotherapeutic approaches to enhance tumor
immune surveillance.

Stochastic model

Stochastic models of drug resistance can be traced back to the
studies by Goldie and Coldman [75–77], who used stochastic
processes to describe the emergence and evolution of drug re-
sistance because of point mutations. These models incorpo-
rated drug-resistant mutants and their impacts on eventual
treatment outcome. They analyzed probabilities of the number
of drug-sensitive and drug-resistant cells, as well as the optimal
strategy of drug administration, by considering various treat-
ment protocols to overcome drug resistance. Later, following
these classical works, Komarova et al. [78–80] made further pro-
gress on the development of stochastic models of drug resist-
ance because of point mutations. For example, in [78],
Komarova developed a stochastic model with a nonzero death
rate of cancer cells for multidrug resistance. This model investi-
gated the dependence of treatment success on the initial tumor
size, the turnover rate and the number of drugs used in
combination therapy, where several drugs are administered
concurrently.

Michor and her colleagues [81–84] also developed stochastic
models describing the evolutionary dynamics of a tumor cell
population during anticancer therapy to quantify the probabil-
ity of resistance and to design optimal treatment strategies. For
instance, Iwasa et al. [85] used continuous-time branching proc-
esses to calculate the probability of resistance at the time of
cancer detection. Furthermore, Foo and Michor [86] developed a
stochastic mathematical model to calculate the probability of
drug resistance induced by a single (epi)genetic alteration. The
model was further used to optimize drug-dosing schedules to
minimize the risk of resistance emergence under the constrains
of drug toxicity and side effects.

Stochastic differential equations (SDEs) have also been used
to model the stochastic evolution of drug resistance. Taking
into account microenvironment adaptations, Sun et al. [45] de-
veloped a stochastic model using a set of SDEs to describe the
dynamics of drug-sensitive cells, drug-resistant cells and new
metastatic cells. Their model was validated with clinical data
and further predicted distinct patterns of dose-dependent syn-
ergy for two different sets of drug combinations in melanoma.
This approach was anticipated to facilitate the study design of
effective and robust cancer therapeutics. Furthermore, to inves-
tigate the functional role of noise in cancer drug response, Sun
et al. [87] developed a Chemical Langevin Equation model for
the signaling pathways involved in glioma differentiation ther-
apy, which considered that stochastic noise inherently exists in
signal transduction and phenotypic transition. The model simu-
lation demonstrated that noise could induce a heterogeneous
drug response in glioma differentiation therapy, thereby reduc-
ing the differentiation efficiency in drug-treated glioma cells.

Partial differential equation model

Considering the spatial heterogeneity of a tumor, partial differ-
ential equations (PDEs) are adequate tools to model the
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spatiotemporal dynamics of resistant tumor growth, along with
drug treatment. Jackson and Byrne [12] developed a mathemat-
ical model using a system of PDEs that governs intratumoral
drug concentration and cancer cell density to simulate the re-
sponse of a vascular tumor to specific chemotherapeutic ad-
ministration strategies. Two types of cancer cells with different
drug sensitivities were considered. Using analytical and numer-
ical techniques, the analysis of the model provided some in-
sights into the response of the tumor to therapy. In addition,
age-structured models in the form of PDEs were also used to
model drug resistance [88].

Agent-based model

In recent years, the agent-based modeling (ABM) approach has
been widely used to simulate various multiscale biological sys-
tems, such as cancer [9, 11, 89] and bone [90]. In ABMs, each cell
is viewed as an intelligent individual that is equipped with an
intracellular signaling network, which receives and responds to
signals from the extracellular microenvironment. The dynamic
changes of the signaling network can be modeled with ODEs,
and the spatiotemporal dynamics of the concentrations of
drugs or microenvironmental factors can be modeled using
PDEs. Cell activity or phenotype switch is updated according to
a series of rules on a two-dimensional or a three-dimensional
lattice. The effect of the targeted drugs can be incorporated into
the ODE model based on their mechanisms of action. ABMs can

be used to simulate dynamic drug response and to evaluate
drug efficacy (Figure 4).

Multiscale ABMs have been used to investigate drug resist-
ance at multiple levels, as several different intracellular and
microenvironmental factors are correlated with the emergence
of drug resistance. For example, Gevertz et al. [91] developed a
hybrid discrete-continuous ABM to examine the impact of the
tumor microenvironment on drug resistance. In this model,
cancer cells were simulated as individual agents through a
particle-spring approach, while the microenvironmental oxygen
and DNA-damaging drug concentrations were described using
PDEs. They compared two kinds of resistance (i.e. preexisting
and acquired resistance) and their influence on the spatial and
temporal dynamics of tumor growth.

In addition, Sun et al. [92] developed a multiscale ABM that
includes both angiogenesis and EGFR signaling networks to
study the brain cancer response to tyrosine kinase inhibitor
(TKI) treatment. Their simulations led to an interesting finding
that angiogenesis may have a dual effect on TKI treatment. On
the one hand, neovasculature can deliver TKIs to the tumor re-
gion and decrease tumor invasion. On the other hand, the
neovasculature can transport nutrients such as glucose and
oxygen to tumor cells to maintain their survival, which results
in an increase in the cell survival rate in the late simulation
stage. Therefore, these results indicated that angiogenesis
might contribute to the resistance of tumor cells to drug treat-
ment and thus induce tumor reoccurrence.

Figure 4. The flowchart of the ABM approach to predict and evaluate drug efficacy across multiple scales (e.g. molecular, cellular, microenvironment and tissue scales).

ODEs describing intracellular signaling pathways, PDEs describing drug distribution and microenvironment changes and the rule-based simulation of angiogenesis can

be integrated into an ABM. Collective behavior of the tumor cells and dynamic drug response can be simulated by the ABM. Based on a dynamic ABM model, drug effi-

cacy can be evaluated, and optimal treatment strategies can be suggested.
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Pharmacokinetic–pharmacodynamic model

The intracellular and/or extracellular pharmacokinetics of anti-
cancer drugs may play important roles in affecting drug effi-
cacy. Pharmacokinetic–pharmacodynamic (PK-PD) models have
been used to evaluate drug efficacy and to address the issues
associated with drug resistance [93] based on in vitro or in vivo
experimental data.

Zhang et al. [48] developed a cellular PK-PD model to investi-
gate the impact of cellular pharmacokinetic properties of adria-
mycin resistance on MCF-7/Adr breast cancer cells. The
parameters fitted from the quantitative experimental measure-
ments revealed that the drug accumulated less and more slowly
in resistant cells than in sensitive cells. The PK-PD model math-
ematically revealed the pharmacokinetic mechanisms of resist-
ance of breast cancer cells to adriamycin treatment and indicated
the potential action of 20(S)-Rh2 in improving drug efficacy.

Ji et al. [94] developed a PK-PD model by integrating the mod-
els for describing the phosphorylated EGFR (pEGFR) inhibitory
effects and EGFR-TKI resistance to investigate the resistance be-
havior of TM208 in a mouse model of breast cancer. A one-
compartment model with first-order absorption kinetics was
used to describe the PK properties of TM208, and a logistic
tumor growth/transit compartment model was fitted to charac-
terize the relationship between tumor pEGFR levels and tumor
growth inhibition. This integrated PK-PD model provides a bet-
ter understanding of the preclinical pharmacokinetic properties
of TM208 and can predict the possible occurrence of resistance
in breast cancer.

Other methods

In addition to the above modeling approaches, other methods
have also been used to theoretically study drug resistance.
Evolutionary game theory [95] has been used to study optimal
chemotherapy schedules for cancer patients. Using this theory,
cancer treatment is viewed as a game in which the oncologists
choose a therapy and the tumors ‘choose’ an adaptive strategy by
evolving drug resistance. Orlando et al. [95] developed an eco-
evolutionary model and formulated a control problem with the
objective of minimizing tumor size at the end of the planning
period. One conclusion is that both evolutionary trade-offs and
drug interactions can affect cancer cell fitness in response to mul-
tiple drugs, which should be considered when designing optimal
chemotherapy schedules for individual patients. In addition,
landscape theory [96] is also used to quantify cell fate transition
probabilities during the evolution of drug resistance [73, 97].

Data-driven prediction methods

In this section, we introduce several typical data-driven predic-
tion methods for identifying different types of biomarkers of
cancer drug resistance. These methods include omics data-
based conventional approach for screening node biomarker,
static network approach for identifying edge biomarkers and
module biomarkers and dynamic network approach for iden-
tifying dynamic network biomarkers and dynamic module net-
work biomarkers. A comprehensive illustration of these
methods is shown in Figure 5.

Omics data-based node biomarker screening

Fast generation and accumulation of a large amount of omics
data provides a possible way to mine information regarding
how pharmacological agents affect cancer systems at multiple

bio-regulatory levels. Based on genomic [98], mutational [99],
methylation [100], miRNA [101] and gene expression [102] data,
many methods for screening biomarkers or signatures of drug
resistance have been proposed. Conventional approach usually
selects a set of single biomarkers that can be referred to as
‘node biomarkers’. A typical schematic illustration for selection
and prediction of resistance signatures based on node bio-
markers is shown in Figure 6. Based on gene microarray data
and clinical information of a cancer patient cohort, the COX pro-
portional hazard (COX PH) regression model can be used to
screen candidate genes, and the optimal gene signature can be
selected through model selection. A risk score can be defined to
stratify patients into high-risk and low-risk groups, which can
evaluate the long-term drug effect. In addition, further validation
using independent and external data sets is indispensable in
such an analysis. Below, we describe some examples to illustrate
such methods based on various types of high-throughput data.

Aksoy et al. [98] proposed a computational method to screen
metabolic vulnerabilities in tumor samples from genomic
profiles. The authors analyzed and identified candidate sample-
specific metabolic vulnerabilities based on homozygous deletion
for genomic data in 16 The Cancer Genome Atlas (TCGA) public
cancer studies and 972 cancer cell lines. Furthermore, some can-
didate drugs were suggested to target these vulnerabilities.

Grasso et al. [103] proposed an exome-based method to pro-
file the mutational landscape of castrate-resistant prostate can-
cers. The authors identified novel deregulation mechanisms of
androgen receptor signaling in prostate cancer, which provided
insights into the molecular mechanisms that have evolved in
resistant tumors. In addition, this study identified several po-
tential driving mutations and copy number alterations, such as
FOXA1, which are candidates for future study. The genomics
data set provided in this study is useful for the study of deter-
minants of, and resistance mechanisms to, radiation and
chemotherapy in lethal prostate cancer.

Based on high-resolution methylation microarrays, a global
methylation profile of glioblastoma (GBM) samples was ana-
lyzed by Shukla et al. [100]. Survival analysis using a Cox regres-
sion model (Figure 6) was performed to identify methylation
signatures. A nine-gene methylation signature was identified,
and a methylation risk score was defined to predict survival in
GBM patients. The activation of the NFjB pathway was shown
to be associated with the high-risk group. Moreover, a risky
methylated gene, neuronal pentraxin II (NPTX2), the transcripts
of which were found to be low in the cells of glioma patients,
was found to be responsible for glioma chemoresistance.
Furthermore, it was revealed that targeting NFjB could prevent
glioma chemoresistance.

Chan et al. [104] conducted miRNA microarray expression
analysis and determined that miR-125b is involved in taxol re-
sistance in breast cancer, which was verified by experimental
procedures. Furthermore, the underlying mechanism of miR-
125b-mediated drug resistance was illustrated by exploring its
suppression regulation on proapoptotic Bcl-2 antagonist killer 1
(Bak1) expression.

Static network biomarker prediction

Biomolecules always achieve certain functions through exten-
sive interactions with other molecules, rather than independ-
ently. Therefore, biomolecular networks, such as the signaling
transduction network, metabolic network and gene regulatory
networks, are important in biological systems. Reconstruction
and analysis of biomolecular networks are thus anticipated to
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Figure 5. A comprehensive illustration of various data-driven prediction methods for identifying biomarkers of cancer drug resistance. These methods include omics

data-based conventional approach for screening node biomarkers, static network approach for identifying edge biomarkers and module biomarkers and dynamic net-

work approach for identifying dynamic network biomarkers and dynamic module network biomarkers.
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provide information in a more systematic manner at a higher
level than single molecules. In recent years, network-based
approaches [105–107] have been developed to study the mech-
anisms underlying various cancers and to predict therapy
responses [108]. The construction of biomolecular networks to-
gether with analysis using signaling pathways databases have
been used to uncover network mechanisms of drug resistance
and to suggest more complex treatments schemes. For ex-
ample, Basu et al. [109] created an interactive resource named
the Cancer Therapeutics Response Portal (http://www.broadin
stitute.org/ctrp) to correlate genetic features with sensitivity in
individual lineages targeted by small molecules. They analyzed
the b-catenin signaling network and associated its activating
mutations with the sensitivity of cancer cells to navitoclax, an
antagonist for the Bcl-2 family.

Network-based biomarkers for predicting cancer drug sensi-
tivity and resistance can be identified based on network ana-
lysis. Typically, edge biomarkers in a form of molecule pairs in
differential networks [110], and module biomarkers [111] based
on functional module network construction can be obtained
using static network analysis approach. Using a differential net-
work analysis approach, Warsow et al. [112] developed a soft-
ware tool ExprEssence to construct and analyze gene/protein
interaction networks underlying breast cancer chemotherapy
sensitivity and resistance. The authors integrated gene expres-
sion data into the interaction networks and used ExprEssence
to determine the link score for each interaction. The most dif-
ferentially regulated interactions were selected as edge bio-
markers for predicting drug sensitivity.

Edwin Wang’s group [113] developed a novel cancer
hallmark-based network analysis framework (Figure 5) to iden-
tify module network–based gene signatures, by constructing
combinatory cancer hallmark-based gene expression signature
sets (CSS sets) for accurately predicting the prognosis of pa-
tients with Stage II CRC. Cancer hallmark trait (tumor

recurrence) was represented by a molecular interaction network
that involves several biological processes according to gene
ontology (GO) terms. Each GO term associates to a set of genes,
and only a fraction of the associated genes are activated in a
single tumor sample. Then, Multiple Survival Screening (MSS)
algorithm [114] was used to identify a gene signature from a
hallmark GO term, which only represents a fraction of the
tumor samples. A combination of multiple such gene signatures
would improve the prediction of the prognoses of most of the
tumor samples. Using gene expression microarray data of about
1000 patients with Stage II CRC from 13 independent cohorts,
the authors showed that CSS sets successfully predicted the re-
currence and adjuvant therapeutic benefits in patients with
Stage II CRC. Furthermore, the cancer hallmark-based network
analysis was applied to investigate the network motifs in the
PIK3CA-mutated luminal A tumors [115]. It was found that
>70% of these tumors contain a positive regulatory loop (PDGF-
D/FLT1/SHC1) that has a predictive power for the survival of the
PIK3CA-mutated luminal A patients. In this sense, we can an-
ticipate that specific network motifs [116] might serve as signa-
tures for predicting cancer drug resistance.

Dynamic network biomarker prediction

In recent years, the concept of ‘dynamic network biomarkers’
[117] has been proposed to investigate the dynamic network-
based mechanisms of complex disease and to identify bio-
markers of the emergence or progression of these diseases. The
dynamic network approach has also been used to investigate
the underlying signaling mechanisms of cancer drug resistance.
Recently, Eduati et al. [118] used cell line-specific data and a dy-
namic logic network model to identify biomarkers of drug re-
sponse. The structure and dynamics of the signaling networks
were determined by estimating parameters in a logic ODEs
model using CellNOptR [119]. The authors investigated the asso-
ciation between cell-specific pathway dynamics represented by
model parameters and drug sensitivity for a panel of 27 drugs.
Specific parameters of signaling dynamics were identified as
biomarkers of drug sensitivity for 14 of the drugs, 9 of which
had no genomic biomarker. Based on one of these biomarkers,
the authors predicted and validated a drug combination that
could overcome resistance to MEK inhibitors by co-blockade of
GSK3. Notably, this drug combination was not discovered based
on associations with genomic data. This study suggested that
signaling network dynamics that cannot be inferred from static
genotypes might be used as novel biomarkers of cancer drug re-
sistance for personalized medicine.

Zeng et al. [120] developed a module network rewiring-
analysis method to identify ‘dynamic module network bio-
marker’ (Figure 7) of dynamic drug sensitivity and resistance
based on transcriptional data. Each consistent module com-
prised interactive genes was viewed as a node, and the inter-
action between two such modules was viewed as an edge.
Compared with a traditional static molecular network, such a
dynamic module network can be viewed as a macro-network
that represents a graphic model of higher-level molecular inter-
actions. Within each consistent module, the interactions be-
tween genes are robust and invariant with respect to time
evolution and external conditions, although the interaction
strength might change during drug treatment. The connections
between two modules might dynamically change along with
the time course, drug schedules, dosages and delivery
approaches. Therefore, a module network could be used to rep-
resent dynamic drug sensitivity and resistance.

Figure 6. A typical flowchart of gene signature selection for drug resistance

using survival analysis. Based on gene microarray data and the clinical informa-

tion of cancer patient cohort, the COX PH regression model can be used to

screen candidate genes, and the optimal gene signature can be selected through

model selection. A risk score can be defined to stratify patients into a high-risk

group and a low-risk group, which can evaluate long-term drug effects. In add-

ition, further validation using independent and external data sets is indispens-

able in such an analysis.

1392 | Sun and Hu

Deleted Text: 112
Deleted Text: 115
Deleted Text: A 
Deleted Text: 116
http://www.broadinstitute.org/ctrp
http://www.broadinstitute.org/ctrp
Deleted Text: -
Deleted Text: 117
Deleted Text: 118
Deleted Text: G 
Deleted Text: 119
Deleted Text: colorectal cancer (
Deleted Text: ) [120
Deleted Text: 113
Deleted Text: ]
Deleted Text: 122
Deleted Text: more than 
Deleted Text: 123
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: 124
Deleted Text: employed 
Deleted Text: F 
Deleted Text: 125
Deleted Text: line 
Deleted Text: ordinary differential equation
Deleted Text: 126
Deleted Text:  
Deleted Text: T 
Deleted Text: 127
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: See 
Deleted Text: of 


Discussion and conclusion

Increasing efforts in cancer research have been made to under-
stand and to conquer drug resistance. Although tremendous ex-
perimental studies have been conducted, mathematical and
computational approaches are indispensably important in
studying drug resistance. However, to the best of our know-
ledge, there are few systematic reviews in the literature of
mathematical modeling approaches and computational predic-
tion methods for cancer drug resistance. In this article, we
mainly introduced mechanisms-based modeling approaches
and data-driven prediction methods, focusing on their applica-
tions for cancer drug resistance. As described above, multiple
resistance mechanisms, including genetic, epigenetic,
posttranslational, cellular mechanisms, microenvironmental
adaptation mechanisms and pharmacokinetic mechanisms,
have been unraveled using in vitro and in vivo experiments.
Based on different mechanisms, appropriate modeling
approaches can be applied to simulate the drug response of can-
cers at different levels. Modeling can help to provide mechanis-
tic insights into drug resistance and to generate new
hypotheses for experimental tests. On the other hand, data-

driven computational methods, especially omics data-based
screening and static/dynamic network-based prediction, have
been developed to discover novel resistance mechanisms or to
guide drug treatment design that can be further experimentally
verified or potentially targeted.

Theoretical studies based on systems modeling have been
used to study the dynamics of molecular pathways, networks
and cellular populations in response to drug treatment. These
mathematical and computational models can provide interest-
ing insights into the biological mechanisms of drug response.
Furthermore, it is possible to infer dynamic behaviors of the
basic network building blocks such as network motifs in re-
sponse to drugs or inhibitors [121]. Feedback loops are typical
motifs of signaling network. Many theoretical studies have
demonstrated that positive feedback loops can generate emer-
gent properties, such as ultrasensitivity, bistability and switch-
like behavior and noise amplification, while negative feedback
loops can lead to adaptation, desensitization, homeostasis and
noise reduction [116, 121]. For instance, a cyclin D1 feedback
loop was shown to generate the bistable switch behavior during
drug-induced glioma differentiation [122]. Furthermore, a

Figure 7. A typical flowchart of a dynamic module network biomarker identification method. Based on gene expression data and prior knowledge (such as protein-pro-

tein interaction (PPI) databases), gene co-expression networks can be constructed. Then, consistent modules can be decomposed from the constructed molecular net-

work. Subsequently, a module network can be reconstructed where the node is each module. Functional annotation of consistent module and module network

rewiring analysis can be performed to predict drug resistance. The right panel of this figure is partially reproduced from [120].
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stochastic modeling suggested that the cyclin D1 feedback could
lead to the heterogeneous drug responses of glioma cells in the
noisy environment, which could, therefore, induce the emer-
gence of drug resistance [87]. In addition, it has been demon-
strated that coherent feedforward transcriptional regulatory
motifs could enhance drug resistance [123].

It should be emphasized that experimental evidence or val-
idation is indispensable for testing hypotheses and verifying
predictions of the mathematical models. For example, Deris
et al. [124] built a growth-mediated feedback model that showed
a bistable switch behavior and demonstrated a plateau-shaped
fitness landscape for antibiotic-resistant bacteria. Importantly,
their model prediction was consistent with experimental meas-
urements in antibiotic-resistant bacteria. Therefore, a combined
theoretical and experimental approach in this study well char-
acterized antibiotic resistance growth. In future studies, more
effort should be made to develop experimentally integrated
models to investigate and predict drug resistance.

As Box [125] indicated, ‘all models are wrong, but some are
useful’. Mathematical models of cancer drug resistance are by
their very nature simplifications and as such are not perfectly
accurate. Some models, for instance, PK-PD model, are simple,
while other models (e.g. multiscale ABM) are relatively compli-
cated. It is critical to consider the trade-off between simplicity
and accuracy in choosing and creating a model. Therefore, mod-
eling is not only a technical task but also an artistic work. Just
as Albert Einstein said, ‘everything should be made as simple as

possible, but not simpler’. For a specific scientific question we
are trying to answer, the best model should be adequately sim-
plified and specifically designed.

There are some limitations of mathematical models used
for studying cancer drug resistance. (1) Mechanism-based
mathematical models can quantitatively describe the cancer
drug response based on known mechanisms but fall short in
discovering novel molecules, biomarkers or targets for cancer
drug resistance. (2) The most mathematical models used for
cancer drug resistance, for instance, kinetic network model,
are based on the experimental data generated from cell lines
or animal models, rather than cancer patients. Furthermore,
the clinical information of cancer patients is important for pre-
dicting drug resistance, but the existing modeling approaches
rarely integrate such data. Therefore, this gap might limit the
clinical effectiveness of model-based predictions. (3) A lot of
mathematical models of cancer drug response involve many
parameters that need to be estimated from experimental or
clinical data. However, because of model complexity and data
sparsity, only a fraction of parameters can be estimated from
the available data, while the values of other parameters are al-
ways taken from previous literatures. A more comprehensive
and consistent parameter estimation is absent sometimes. (4)
The large-scale computation, for example, in MD simulation
and mutiscale modeling, is of intensive computing burden,
which might limit the speed of the prediction of cancer drug
resistance.

Table 2. Comparison among various data-driven prediction methods for studying cancer drug resistance

Approaches Biomarkers Data Methods Advantages Disadvantages References

Conventional
approach

Node biomarkers Various types of
omics data (e.g.
genomic, epige-
nomics, transcrip-
tomics, prote-
omics, etc.)

Differential expres-
sion analysis, gen-
omic analysis and
survival analysis

Simple and easy for
validation

The interactions
between mol-
ecules are not
considered

[98–104]

Static network
approach

Edge biomarkers Genomic, transcrip-
tomics, etc.

Correlation ap-
proach, linear re-
gression methods
and differential
network analysis

The functional asso-
ciations between
pairs of molecules
are considered

Edges might be
functionally
independent
and temporally
stationary

[110, 112]

Hallmark module
network-based
biomarkers

Genomic, transcrip-
tomics, etc.

GO term enrich-
ment, MSS algo-
rithm and survival
analysis

The hallmark-based
functional inter-
actions between
genes are con-
sidered. A combin-
ation of multiple
gene signatures
has more predict-
ive power

A large number of
samples are
required

[113–115]

Dynamic
network
approach

Dynamic network
biomarkers

Time course data of
proteomics or
transcriptomics

Boolean network,
fuzzy network,
differential equa-
tions, dynamic
Bayesian network,
etc.

Dynamic properties
of molecular net-
work are
considered

Time course data are
required

[118]

Dynamic module
network
biomarkers

Time course data or
stage-varying data
of transcriptomics

Correlation ap-
proach, module
discovery meth-
ods and functional
enrichment

Dynamic properties
and modular
interactions
within molecular
network are
considered

Multiple samples of
time course or
stage-varying data
are required

[120]
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The above limitations of mathematical models of drug re-
sistance might be potentially resolved through the following
strategies. (1) An integrative data-driven/mechanism-based
modeling approach might facilitate both the identification of
novel molecular mechanisms or drug targets and quantitative
prediction. (2) The developed models integrating the clinical
data might be more useful for predicting cancer drug resistance
for the clinical purpose, which might be achieved through col-
laborations with clinicians. (3) The development of more rigor-
ous parameter estimation procedures is expected to improve
the prediction of cancer drug resistance. Alternatively, a con-
vincing validation of the model prediction would also necessar-
ily remedy the defect of parameter estimation. (4) The improved
simulation algorithms and parallel computing as well as the
utilization of high-performance computer might be helpful to
improve the prediction efficiency.

Table 2 compares the characteristics (biomarker type, data
type and typical computational methods), advantages and dis-
advantages of various data-driven prediction methods for iden-
tifying biomarkers of cancer drug resistance. The conventional
node biomarker screening method using differential expression
analysis and/or survival analysis is practical and easy for valid-
ation, but it does not take molecular interactions into account.
The edge biomarker prediction method considers the functional
interactions between pairs of molecules, but different edges are
independent with each other. The hallmark-based network ana-
lysis framework constructs networks using information of
hallmark-based functional interactions between genes and can
identify a combination of multiple gene signatures that has
more predictive power, but a large number of samples are usu-
ally required. Considering the dynamic nature of molecular net-
works, resistance development and disease progression, the
dynamic network approach can identify dynamic (module) net-
work biomarkers, but it requires time course data that are usu-
ally not available, particularly, in clinical situations.

The most existing modeling studies of signaling pathways/
networks for drug resistance are based on the prior knowledge
of pathways that have been identified from experimental stud-
ies, which is sometimes referred to as a ‘bottom-up’ approach
[126]. An alternative ‘top-down’ approach [127] to inferring
drug-induced signaling network from high-throughput data,
such as proteomic data, is extremely important in the study of
drug resistance using a systems biology approach. Some data-
driven methods [128–132] have been developed to construct bio-
molecular networks. For instance, Mitsos et al. [129] developed
an integer linear program optimization method based on phos-
phoproteomic data to identify drug-induced topology alter-
ations of the signaling pathways. In this study, diverse
stimulations and numerous experimental conditions enabled
the researchers to build a cell-type-specific signaling pathway.
These methods are instructive for characterizing the signaling
networks of drug sensitivity and resistance, provided that the
data are of high quality, and the experimental procedure for
data acquisition (e.g. experimental conditions, sample numbers
and time points) is well designed.

As described above, genetic mutation of drug targets or their
upstream or downstream proteins is one of the major mechan-
isms of drug resistance. A critical question is how to bridge the
gap between mutation-induced structure changes in the protein
and signaling network alteration, which ultimately leads to drug
resistance evaluated at higher-level phenotypic markers or cellu-
lar populations. Therefore, a multiscale computational model
linking molecular mutations to signaling networks and even to
cellular populations is required to reconstruct this multilevel

system, which would provide deeper insights into drug resistance
mechanisms and drug treatment design. One feasible approach is
to integrate structural-based mutation analysis and MD simula-
tion of protein binding with ODE modeling of signaling network
remodeling. Exemplary work using this approach has been done
by Zhao et al. [133], who investigated mutation-induced apoptotic
signaling dynamics. Through linking structural-based mutation
analysis to protein-binding coefficients, which directly affect
network-based dynamics, the authors mapped cancer-related
gene mutations to network dynamics changes. In the future,
multiscale modeling studies of drug resistance may address the
issue of mapping target mutations or gene mutations to network
dynamics changes and then to drug-sensitivity alterations. Such
multiscale modeling might also be instructive for drug target
design and structure-based drug screening.

Combination therapy has been proposed as a promising ap-
proach to reduce drug resistance. Computational models can
not only provide insights into biological mechanisms of drug re-
sponse but also provide quantitative guidance to the design of
drug combinations [134]. Some computational prediction meth-
ods, such as network-based prediction methods [135, 136],
similarity-based methods [137, 138] and machine-learning
methods [139, 140], have been developed to predict effective or
synergistic drug combinations. For example, Huang et al. [136]
designed a computational tool that can be used to predict syner-
gistic drug combinations based on network analysis of genomic
profiles of both drugs and cancers. In addition, the scheduling
of drug administration in terms of timing and dose in the tem-
poral combination of drugs profoundly influences therapeutic
efficacy [141, 142]. In the future, computational modeling is
anticipated to facilitate the design of the temporal combination
of drugs and to optimize the scheduling of drug administration
for improving treatment efficacy.

The systems biology approach plays increasingly important
roles in studying the underlying mechanisms of cancer drug re-
sistance and in the optimal design of the treatment schedule,
dosing and timing. In the era of precision medicine and big
data, computational modeling that integrates bio-omics data
and the clinical information of cancer patients will improve the
identification of drug-sensitive or drug-resistant patients and
guide the design of appropriate therapy by quantitative predic-
tion of drug administration.

Key Points

• Many experimental studies have revealed various
types of underlying mechanisms of cancer drug resist-
ance, including genetic mechanisms, epigenetic
mechanisms, posttranslational mechanisms, cellular
mechanisms, microenvironmental mechanisms and
pharmacokinetic mechanisms, etc. In addition, several
databases and Web servers related to drug resistance
have been developed.

• Computational methods for studying cancer drug re-
sistance can be divided into two categories:
mechanisms-based mathematical modeling approaches
and data-driven prediction methods.

• Mechanisms-based modeling approaches include MD
simulation, kinetic modeling of molecular networks,
ODE models of cellular dynamics, stochastic models,
PDE models, ABMs and PK-PD models.

• Data-driven prediction methods include omics data-
based conventional screening approach for node
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biomarkers, static network approach for edge bio-
markers and module biomarkers and dynamic network
approach for dynamic network biomarkers and dy-
namic module network biomarkers.

• We discussed several further questions and future
directions for the use of computational methods,
including inferring drug-induced signaling networks,
multiscale modeling, drug combinations and precision
medicine for cancer drug resistance.
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