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Abstract: Frequent detection of mycotoxins ochratoxin A (OTA) and citrinin (CIT) in ruminant feed
and feedstuff can be a potential threat to feed safety, animal performance and health. Ineffective
biodegradation of these mycotoxins by rumen microflora following ingestion of contaminated feeds
can lead to their circulatory transport to tissues such as mammary gland as the result of their
biodistribution throughout the body. The bovine mammary epithelium plays a pivotal role in
maintaining milk yield and composition and contributes to innate immune defense of the udder.
The present study is the first to investigate individual effects of OTA and CIT on barrier and innate
immune functions of the bovine mammary epithelium using a bovine mammary epithelial cell line
(MAC-T). Results indicated that OTA and CIT exposure for 48 h significantly decreased cell viability
in a concentration-dependent manner (p < 0.05). A decrease in transepithelial electrical resistance and
increase in paracellular flux of FITC-40 kDa dextran was significantly induced by OTA treatment
(p < 0.05), but not by CIT after 48 h exposure. qPCR was performed for assessment of expression
of tight-junction proteins, Toll-like receptor 4 (TLR4) and cytokines after 4, 24 and 48 h of exposure.
Both OTA and CIT markedly downregulated expression of claudin 3 and occludin (p < 0.05), whereas
CIT did not affect zonula occludens-1 expression. Expression of TLR4 was significantly upregulated by
OTA (p < 0.001) but downregulated by CIT (p < 0.05) at 48 h. Expression of IL-6, TNF-a and TGF-β was
significantly upregulated by OTA (p < 0.05), whereas IL-6 and TGF-β expression was downregulated
by CIT (p < 0.01). These results suggest that OTA and CIT could potentially differentially modulate
barrier and innate immune functions of mammary epithelium. The present study not only throws
light on the individual toxicity of each mycotoxin on bovine mammary epithelium but also lays the
foundation for future studies on the combined effects of the two mycotoxins.

Keywords: bovine MAC-T cells; citrinin; epithelial paracellular permeability; in vitro cell culture;
mycotoxins; ochratoxin A

Key Contribution: The present study is the first in vitro study to investigate individual toxicity of the
frequently detected mycotoxins OTA and CIT on both paracellular permeability and innate immune
functions of the bovine mammary epithelium, which contributes to understanding their potential
toxicity on bovine mammary gland at the cellular and molecular level.

1. Introduction

Mycotoxins are naturally produced as toxic secondary metabolites by various fungal
species that grow on a variety of feed ingredients, therefore animal feeds under favorable
environmental conditions worldwide. Co-occurrence of different mycotoxins commonly
occurs in animal feed. Mycotoxin contamination challenges feed quality and safety, and
has become one of the most significant hazards to the global feed supply chain [1]. The
consumption of mycotoxin-contaminated feed by animals can lead to a variety of adverse
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effects on animal health and production, such as reduced productivity and fertility [2–4],
and increased susceptibility to infectious diseases due to mycotoxin-induced compromised
immune system [5,6]. Moreover, climate change has been predicted to increase the incidence
and patterns of mycotoxin contamination [7–9], which could further accentuate their impact
in agricultural production systems.

Ochratoxin A (OTA) is among the major mycotoxins that have aroused public concern
due to its high toxicity and agri-economic significance [1,10]. OTA has been reportedly
detected in cereal grains [11,12], silage [12,13], as well as livestock feeds for various species
including dairy cattle [10,14–16] with the highest concentration of 305.6 µg/kg in dairy
cattle feed in Turkey [15]. The mycotoxin citrinin (CIT) also deserves attention due to
its known toxic effects in various mammalian species [17] and its frequent occurrence
in agricultural commodities and animal feeds [17,18], commonly with OTA from the
same fungal species (e.g. Penicillium and Aspergillus) [17–19]. Kelman et al. [20] reported
maximum 81 µg/kg of CIT in the samples of Canadian forage for dairy cattle and goats.
Data regarding the toxicity and the occurrence of CIT in food and feed however, are
currently limited. The European Food Safety Authority [17] stated the need for more
relevant CIT toxicity data to further refine risk assessment due to uncertainties in the
current database. Neither of these two mycotoxins are currently regulated for ruminant
feeds or feedstuff by Canadian Food Inspection Agency in Canada where this study was
performed.

Ruminants are considered less sensitive to OTA than monogastric animals due to the
microbial biotransformation of OTA in the rumen to less toxic ochratoxin α [19]. Similarly,
CIT was also assumed to be highly degraded by rumen microflora, however, limited data
are available regarding its overall toxic effects on ruminants [17]. Several factors can influ-
ence the rumen ecosystem such as rumen pH, rumen dysbiosis and redox potential [21,22],
and these could compromise ruminal biodegradation of mycotoxins and thereby increasing
their bioavailability to the systemic circulation [23].

Other factors may also affect sensitivity to mycotoxins. Some mycotoxins possess
antimicrobial properties for example, which could affect microflora biotransformation
processes [17,24]. Sensitivity is also affected by animal production stages [25], heath
status [26–28] as well as their feed composition [29]. Mycotoxins that escape ruminal
degradation could be distributed to different tissues via systemic circulation where they
could possibly exert their toxic effects [27,30], and also partition into edible animal products
[17,19,31,32]. The mammary gland for example, is a likely site of action for several my-
cotoxins and their metabolites as mycotoxin residues including OTA has been reportedly
detected in ruminant milk [19,31,32].

Mammary epithelial cells (MECs) are one of the critical functional cellular components
of the mammary gland. They maintain and facilitate blood-milk barrier (BMB) function
and participate in innate immune defense against pathogen; as such, MECs function to
maintain tissue homeostasis in addition to secreting milk protein. Integrity of the BMB
formed by MECs is critical for sustaining optimal milk composition during lactation and in
preventing uncontrolled exchange of components between blood and milk via paracellular
transport [33,34]. Tight junction (TJ) proteins that connect adjacent MECs are determinants
of paracellular transport [35]. Thus, disrupted expression of MEC TJ proteins by mycotoxins
could lead to leakiness and changes in milk composition [34].

In addition to their role in BMB, MECs also play a critical role in the host innate
immune response. In response to microbial invasion of the teat canal [36,37], MECs first
recognize conserved pathogen-associated molecular patterns (PAMPs) via their pattern-
recognition receptors (PRRs) such as the Toll-like receptors, and subsequently secrete
cytokines and chemokines that initiate inflammation, an innate immune response that leads
to the influx of professional immune cells to clear the invading pathogens [38–41].

Despite previous in vitro studies showing the toxic effects of OTA on paracellular
permeability and immune function in various cell models [42–45], studies on the toxic effect
of OTA and CIT on the mammary epithelium are limited. In this study, individual effects
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of OTA and CIT on above-mentioned two important functions of MECs were investigated.
Cell viability was first assessed to determine the cytotoxic effects of OTA and CIT on
MECs. Transepithelial electrical resistance (TEER) and paracellular tracer flux were then
measured as indicators of altered paracellular permeability. Gene expression of various
TJ proteins, cytokines, and toll-like receptor 4 (TLR4) was also evaluated to assess the
immunomodulatory effects of these mycotoxins.

2. Results
2.1. Cytotoxic Effects of OTA and CIT

Cell viability of MAC-T cells upon 48 h exposure to mycotoxin treatments was first
measured to assess the cytotoxicity of mycotoxins. As shown in Figure 1, both OTA and
CIT reduced viability of MAC-T cells in a concentration-dependent manner within the
concentration range used in the present study. OTA and CIT significantly decreased cell
viability at concentrations greater than 9.6 µmol/L (p < 0.001) and 80 µmol/L (p < 0.01),
respectively. The calculated IC50 ± SE for OTA and CIT were 69.92 ± 18.35 µmol/L and
277.6 ± 44.56 µmol/L, respectively.
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Figure 1. Effects of (a) Ochratoxin A (OTA) and (b) Citrinin (CIT) on MAC-T cell viability after
48 h exposure, respectively. Results are presented as the percentage of viable cells compared to the
untreated control (0 µmol/L). Values are presented as the mean± SEM of 3 independent experiments.
Significant differences compared to control are indicated at p < 0.01 (**) and p < 0.001 (***).

2.2. Effects of OTA and CIT on Paracellular Permeability

Transepithelial electrical resistance (TEER) and paracellular tracer flux were performed
to assess the effects of OTA and CIT on paracellular permeability of MAC-T cell monolayer.
As shown in Figure 2a, exposure to OTA for 48 h reduced TEER of MAC-T cell monolayer
in a concentration-dependent manner. The TEER was not affected by 2 µmol/L OTA but
was significantly reduced by OTA at higher concentrations of 4.8 µmol/L (p < 0.01) and
9.6 µmol/L (p < 0.001). In contrast, exposure to CIT for 48 h did not alter the TEER of
MAC-T cell monolayer at any tested concentrations up to 80 µmol/L (p > 0.05) (Figure 2b).

With regards to paracellular flux (Figure 3), only the highest concentration of OTA
(9.6 µmol/L) resulted in a significant increase in FITC-40 kDa dextran flux across MAC-T
cell monolayer after 48 h exposure (p < 0.01), whereas 48 h exposure to CIT did not induce
any significant changes in the permeability of MAC-T cells to dextran flux (p > 0.05).
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Figure 2. Effects of (a) Ochratoxin A (OTA) and (b) Citrinin (CIT) on transepithelial electrical
resistance (TEER) of MAC-T cells after 48 h exposure, respectively. Results are presented as the
percentage of TEER compared to the initial TEER values prior to mycotoxin treatment and values are
presented as the mean ± SEM of 3 independent experiments. Significant differences compared to
control are indicated at p < 0.01 (**) and p < 0.001 (***).
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Figure 3. Effects of (a) Ochratoxin A (OTA) and (b) Citrinin (CIT) on paracellular flux of FITC-40 kDa
dextran in MAC-T cells after 48 h exposure. Results are presented as the percentage of FITC-dextran
flux compared to control groups (untreated) and values are the mean ± SEM of 3 independent.
Significant differences compared to control (untreated) at are indicated at p < 0.01 (**).

2.3. Gene Expression Analysis

The effects of mycotoxins on the relative mRNA expression of selected MAC-T cell
TJ proteins Zonula occludens-1 (ZO-1), claudin 3 and occludin were evaluated at three time
points (4, 24 and 48 h) of mycotoxin exposure by qPCR. The highest concentration for each
mycotoxin that did not exhibit cytotoxicity to MAC-T cells (9.6 µmol/L for OTA, 80 µmol/L
for CIT) were used in this experiment. As shown in Figure 4, ZO-1 was not significantly
affected by either OTA or CIT at any timepoints (p > 0.05). In contrast, expression of claudin
3 was significantly downregulated by OTA at all 3 timepoints (p < 0.05), and by CIT at
24 and 48 h (p < 0.05). The expression of occludin was also downregulated by OTA at 4 h
(p < 0.05) and by CIT at all 3 timepoints (p < 0.05).
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Figure 4. Effects of ochratoxin A at 9.6 µmol/L (OTA 9.6) and citrinin at 80 µmol/L (CIT 80) on
mRNA expression of tight junction proteins (a) Zonula Occludens-1 (ZO-1), (b) Occludin and (c) Claudin
3 in MAC-T cells after 4, 24 and 48 h exposure, respectively. Results are presented as fold change and
control groups (untreated) of each timepoint was used as calibrators; values are the mean ± SEM of
3 independent experiments. Significant differences compared to control (untreated) are indicated at
p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***), respectively.

Gene expression of immune-related genes was also quantified to assess the potential
immunomodulatory effects of OTA and CIT. The results showed that OTA and CIT exhib-
ited opposing immunomodulatory effects on MAC-T cells overall (Figure 5). Specifically,
expression of interleukin 6 (IL-6) (p < 0.001), tumour necrosis factor alpha (TNF-α) (p < 0.001)
and transforming growth factor beta (TGF-β) (p < 0.05) were all upregulated by OTA at 24
and 48 h, but not affected at 4 h (p > 0.05). OTA also upregulated TLR4 expression at 48 h
(p < 0.001). In contrast, expression of IL-6 was downregulated by CIT at all 3 timepoints
(p < 0.01), but CIT did not significantly alter TNF-α expression at any timepoints (p > 0.05).
Expression of TGF-β and TLR4 was also downregulated by CIT at 48 h (p < 0.05).
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expression of immune-related genes (a) Interleukin 6 (IL-6), (b) Tumour necrosis factor alpha (TNF-α),
(c) Toll-like receptor 4 (TLR4) and (d) Transforming growth factor beta (TGF-β) in MAC-T cells after
4, 24 and 48 h exposure, respectively. Results are presented as fold change and control groups
(untreated) of each timepoint were used as calibrators; values are the mean ± SEM of 3 independent
experiments. Significant differences compared to control (untreated) at p < 0.05 (*), p < 0.01 (**) and
p < 0.001 (***), respectively.

3. Discussion

Udder health is of importance to the high-yield production of high-quality milk. As
such, is required for profitability of dairy farmers, human food security and is a welfare
issue. Sufficient high-quality milk and colostrum is also important for providing balanced
nutrients and adequate passive immune protection to the newborn calves [46,47]. As a
pressing issue to feed and livestock industry worldwide, the effects of mycotoxin contami-
nation on bovine udder deserves more attention. Application of the MAC-T cell line has
been well-documented in the literature as in vitro model to help investigate basic questions
related to mammary gland physiology [48–51]. In vitro cell models have been widely
accepted as effective approaches for mycotoxicity testing [52–55]. To our knowledge, the
present study is the first parallel study to investigate individual toxicity of frequently de-
tected mycotoxins OTA and CIT on paracellular permeability and innate immune functions
of the bovine mammary epithelium.

Enhancing the production of high-quality milk is the ultimate goal of mammary gland
in lactating dairy cow. Milk production is partly influenced by the number of MECs, the
fundamental milk secretory units of mammary gland [56]. The integrity of BMB formed
by MECs represents an important barrier between the interstitium and blood, and it is
critical to milk production. Disruption of this barrier integrity has been associated with
altered milk composition during lactation [34]. The mammary epithelium barrier also
contributes to immunocompetence of the udder by protecting the mammary gland from
microbial invasion and involving an innate immune response during intramammary infec-
tion. A compromised epithelium barrier has been associated with increased susceptibility
of microbial translocation, reduced milk yield and quality [38,57–60].

In the current study, to assess the effects of OTA and CIT on cell viability, cell viability
assay was performed using Calcein AM, a cell-permeant dye that has been frequently
used to determine cell viability in eukaryotic cells [61–63]. We showed that OTA and CIT
treatments significantly reduced viability of MAC-T cells after 48 h in a concentration-
dependent manner. These findings are in line with previous in vitro studies reporting their
cytotoxicity on various epithelial cells [43,64–68]. We also demonstrated that OTA was more
toxic in reducing viability of MAC-T cells than CIT, as shown by the calculated IC50 of OTA
(69.92 µmol/L) and CIT (277.6 µmol/L), which was consistent with previously reported
toxicity differences between these two mycotoxins [65,69,70]. Collectively, our results
suggested that exposure to OTA and CIT at certain concentrations could potentially lead to
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the loss of milk secreting cells in the udder during lactation and resulting impairment of
BMBs by cell loss.

Blood-milk barrier function of MECs is critical to maternal lactogenesis, subsequent
galactopoiesis and milk secretion [35,71]. The integrity of this barrier is primarily deter-
mined by TJ. Tight junction becomes highly impermeable to prevent transport of ion and
small molecules via paracellular route during lactation in healthy cows [35,72], and open-
ing of TJ during lactation lead to permeable BMB and changes in milk composition [34].
We first assessed transepithelial electrical resistance and paracellular tracer flux, two pa-
rameters to indicate paracellular permeability and epithelial barrier integrity. Decreased
TEER or increased tracer flux is indicative of increased epithelial paracellular permeability.
In this study, non-toxic concentrations (9.6 µmol/L for OTA, 80 µmol/L for CIT) were
selected for each mycotoxin based on cell viability results in an attempt to exclude any
changes in paracellular permeability caused by the damage of cell monolayer. A significant
decrease in TEER of MAC-T cell monolayer was observed after 48 h of OTA treatment.
Our results were in agreement with previous studies where OTA-induced reduction in
TEER in human (Caco-2) and porcine (IPEC-J2) intestinal epithelial cell models has been
extensively reported [42,73–79]. In contrast, CIT treatment did not significantly alter TEER
values of MAC-T cell monolayer in this study. Among few studies on CIT- associated
effects of epithelial permeability, Nakayama et al. [45] reported an increase in TEER in
CMT93-II, a mouse rectum cell line induced by CIT at 125 µmol/L after 48 h exposure,
which was inconsistent with our results. The discrepancy could be explained by different
cell types originated from different species associated with species- and organ-specific
mechanisms, and mycotoxin concentrations used in experimental designs, which were the
contributing factors to variation in mycotoxin-induced effects on TEER reported in the
literature [42,76,77,80–83]. In correlation with the TEER results in the present study, CIT
did not affect paracellular flux of FITC-40 kDa across the MAC-T monolayer, suggesting
unaffected paracellular permeability, which could be attributed to the lower concentrations
used in the present study, as it was previously demonstrated that mycotoxin-induced effects
in paracellular flux of FITC-labeled dextran could be concentration-dependent [43,76,79,82].
Whereas, we observed an increase in paracellular flux of FITC-40 kDa dextran after 48 h
OTA treatment, which was in line with previously reported OTA-induced increase in
paracellular tracer flux [42,43,78,79]. Collectively, our study demonstrated that exposure to
OTA could disrupt barrier function of MECs by increasing its paracellular permeability,
and this could result in an increased amount of OTA in the milk potentially leading to food
safety issues.

We next investigated the mRNA expression of the TJ proteins (ZO-1, occludin and
claudin 3) to assess the effects of OTA and CIT on epithelial integrity at the transcriptional
level by performing qPCR analysis. Our results demonstrated that mRNA expression of
ZO-1, occludin and claudin 3 was differentially modulated in response to OTA and CIT
exposure, respectively; Claudin 3 and occludin was downregulated by both mycotoxin
treatments, whereas ZO-1 being unaffected. Such differential toxic effects observed on TJ
proteins have also been previously reported for OTA [42,78,84] and other mycotoxins [59,85].
Claudin 3 is one of the members of a large claudin protein family. Claudins along with
occludin are the two major transmembrane proteins that play a role in maintaining the
TJ barrier function, and they are linked to the actin cytoskeleton via scaffolding proteins,
such as ZO-1 [72]. Claudins have been considered as the key determinant of paracellular
characteristics. They form the backbone of TJ and contribute to the tightness of TJ by sealing
the paracellular pathway [45]. It is known that different claudins selectively modulate
paracellular pathway [86,87]. Wang et al. [82] for example, found that Claudin 4 was the
core TJ protein involved to Caco-2 cell permeability upon DON exposure. In contrast,
occludin contributes to TJ stabilization and optimal barrier function [88]. Our results
suggested that decreased expression of claudin 3 could be the potential primary contributor
to OTA-induced increase in paracellular permeability of MAC-T cells, whereas other claudin
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proteins might play a predominate role in responding to CIT treatment in MAC-T cells, as
indicated by the results from TEER and tracer flux.

A successful host immune response is generally the results of a dynamic balance be-
tween pro- and anti-inflammatory elements, with the ultimate goal of clearing the pathogen
and limiting host damage [89]. qPCR analysis of TLR4, IL-6, TNF-α and TGF-β was per-
formed to investigate the effects of OTA and CIT on the innate immune response of the
mammary epithelium. In the present study, we observed potential opposing effects of
OTA and CIT on innate immune function of MECs. Both effects suggested that OTA and
CIT could lead to aberrant immunity in mammary epithelium. Toll-like receptor 4 is of
importance to mammary gland defense in that it is capable of recognizing lipopolysac-
charide, the PAMP derived from Gram-negative mastitis-causing pathogens [90]. The
observed OTA-induced upregulation and CIT-induced downregulation of TLR4 expression
at 48 h suggested possible immunostimulatory effect of OTA whereas immunosuppressive
property of CIT. Consistent with our results, upregulated TLR4 expression were previously
reported in different cell models [91,92] as well as in duck liver [93]. However, studies on
immunomodulatory effects of CIT are limited. In an in vivo study, Islam et al. [94] reported
a downregulation of TLR3 induced by CIT in mice spleen, but no effect observed for TLR4,
suggesting CIT exposure may selectively affect toll-like receptors.

We next evaluated mRNA expression of cytokines given their important roles in
inflammatory response. Likewise, we observed possible immunostimulatory effect of
OTA and immunosuppressive property of CIT, as shown by OTA-induced upregulation of
IL-6, TNF-α and CIT-induced downregulation of IL-6. Consistently, previous studies also
reported OTA upregulated mRNA expression of IL-6 and TNF-α in cell models [44,92,95,96].
IL-6 and TNF-α are two well-known pro-inflammatory cytokines that can locally and
systemically initiate the immune response in the host [60,97]. Whereas TGF-β functions as
an anti-inflammatory cytokine to dampen the inflammation as part of host homeostatic
mechanisms [98–100], since an exaggerated or protracted dysfunctional mammary innate
immune response could have deleterious effects resulting in uncontrolled acute or chronic
mastitis [90]. Elevated levels of IL-6, TNF-α and TGF-β have been found to be associated
with experimentally-induced inflammation in the bovine mammary gland [98,101–103].
Taken together, our results suggested that OTA could potentially induce over-activated
innate immune system in mammary epithelium, which could lead to various negative
outcomes to the host [104]; whereas CIT exposure could potentially lead to a noninfectious
cause of immunosuppression in mammary gland, which could decrease resistance of
mammary gland to infection [105]. Such contradictory properties observed in the present
study could also suggest the potential antagonistic effects of combination of these two
mycotoxins, which has been reported previously [6,69,70].

4. Conclusions

Ochratoxin A and CIT have been frequently detected in ruminant feedstuff and feeds.
Inefficient degradation of mycotoxins resulting from disrupted rumen environments can
lead to mycotoxin encounter with mammary gland, where subsequently their toxic effects
may disrupt homeostasis of MECs. In the present study, OTA was found to increase paracel-
lular permeability of MAC-T cell monolayer accompanied with decreased gene expression
of certain TJ proteins at tested concentrations. Ochratoxin A could also potentially exert
stimulatory effect on innate immune function of MAC-T by elevating gene expression of
TLR4 and pro-inflammatory cytokines. Conversely, CIT exposure could potentially induce
immunosuppressive effects by suppressing expression of TLR4 and pro-inflammatory
cytokines but did not appear to affect paracellular permeability of MAC-T cells at tested
concentrations in this study. The present study not only throws light on the individual
toxicity of each mycotoxin on bovine mammary epithelium but also lays the foundation for
future studies on the combined effects of the two mycotoxins.
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5. Materials and Methods
5.1. Chemicals

Purified OTA and CIT (Sigma-Aldrich, St. Louis, MO, USA) were dissolved in dimethyl
sulfoxide (DMSO) to final stock concentrations of 5.0 mg/mL and stored at −20 ◦C until
further dilution in complete cell culture medium for subsequent experiments. The desig-
nated mycotoxin concentrations used for each subsequent experiment described below
were prepared by serial dilutions of the stock concentrations in cell culture medium.

5.2. Cell Culture

The bovine mammary epithelial cell line (MAC-T) was maintained in the cell culture
medium containing Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
4.0 mmol/L L-glutamine, 10% heat inactivated fetal bovine serum, 2.5% HEPES buffer
(Invitrogen), 1% Penicillin/Streptomycin (100 units/mL of Penicillin and 100 µg/mL
Streptomycin; Invitrogen) and 1 mM Sodium Pyruvate (Invitrogen) as previously described
with slight modifications [61]. Cells were maintained in T75 flasks in a humidified incubator
at 37 ◦C with 5% CO2 and passaged by trypsinization using TrypLE™ (Gibco # 12605036)
when reaching 80% confluency.

5.3. Cytotoxicity Assay

MAC-T cells were seeded at 2 × 104 cells per well in 96-well microplates. After
24 h of cell culture, OTA (0, 4.8, 9.6, 19.2 and 76.8 µmol/L) and CIT (0, 60, 80, 240 and
270 µmol/L) were administered to the cells for 48 h [43,65,106–108]. The range of exposure
concentrations were selected based on [42,63,64,109,110] and our preliminary studies (data
not shown). At the end of mycotoxin exposure, 200 µL of Calcein AM (Invitrogen, CA,
USA), a cell-permeant fluorescent dye was added to each well at a final concentration of
2 µmol/L, and the cells were incubated at room temperature for 45 min according to the
references with slight modifications [61,63]. The fluorescence intensity (FI) was measured
using a microplate reader (BioTek Instruments, VT, USA) at excitation 498/emission 528 nm.
The percentage of viable cells was calculated using the following formula:

% Cell viability = Mean (FI498 Treated cells − FI Blank)/Mean (FI498 Untreated cell − FI Blank) × 100 (1)

where FI498 Treated cells is the FI obtained from mycotoxin-treated groups; FI498 Untreated cells
is FI obtained from groups without any mycotoxin treatment; FI Blank is the background
signal resulting from Calcein AM treated wells without cells. Mean is the average FI of
three replicates.

The IC50 (the 50% inhibitory concentration) of each mycotoxin was also calculated by
fitting the data to non-linear Hill’s equation (Equation 1) using GraphPad Prism version
8.2.1 for Windows (GraphPad Software).

Ŷ = a +
b− a[

1 +
( c

X
)d
] (2)

where Ŷ is the expected response at dosage X, a is the minimum asymptote or the response
when dosage = 0, b = the maximum asymptote or the stabilized response for an infinite
dosage, c is the dosage at which 50% of the subjects are expected to show the desired
response (that is, the response halfway between the minimum response asymptote a and
the maximum response asymptote b), and d is the slope at the steepest part of the curve,
also known as the Hill slope [111]. According to these cell viability data, non-cytotoxic
concentrations were chosen for subsequent experiments in an attempt to exclude any
changes in experiment endpoints caused by the damage of cell monolayer [43].
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5.4. Transepithelial Electrical Resistance (TEER) Measurement

An insert-based MAC-T cell culture system was established as previously described
with slight modifications [50] to assess the paracellular permeability of MAC-T cell mono-
layer. MAC-T cells were seeded at 2.5 × 104 cells per Transwell®insert
(Corning®Transwell®#3470, 6.5 mm, 0.4 µm pore size) pre-coated with Type I collagen
at 10 µg/cm2 (C3867, Sigma-Aldrich) according to the manufacturer’s instruction and
grown for 33 days in the same medium described above to ensure stable transepithelial
electrical resistance (TEER) readings were yield according to our preliminary studies (data
not shown). Medium was refreshed for both apical (AP) and basal compartments (BL)
of the Transwell®inserts every other day [82]. On day 33, the cells were exposed to the
increasing non-cytotoxic concentrations of either OTA (0, 2, 4.8 and 9.6 µmol/L), or CIT
(0, 30, 60 and 80 µmol/L) in the AP compartment for 48 h. The TEER readings were
measured before the addition of mycotoxins (TEER0) and after 48 h mycotoxin exposure
(TEER48) using a Millicell ERS-2 Voltohmmeter (EMD Millipore Corporation) according to
the manufacturer’s instruction. The change in TEER was expressed as TEER48 to TEER0
ratio, which was calculated according to the following formula [112]:

% TEER = TEER48 (Ω • cm2)/TEER0(Ω • cm2) × 100 (3)

5.5. Permeability Tracer Flux Assay

The paracellular tracer fluorescein isothiocyanate (FITC)-40 kDa dextran (FD-40,
Sigma-Aldrich) was used in the tracer flux assay as another indicator of paracellular
permeability of MAC-T cell monolayer. A tracer working solution of a final concentration
of 1 mg/mL was prepared by dissolving FITC-40 kDa dextran powder in DMEM/Nutrient
Ham’s Mixture F-12 (F12). The insert-based cell culture system was established as described
above. On day 33, when stable TEER readings were achieved, the MAC-T cells were chal-
lenged with mycotoxin treatments as described above. After 48 h of mycotoxin exposure,
the tracer working solution was added to the AP compartment of the culture system with
DMEM/F12 added to the BL compartment. As previously described [43,113,114], after 2 h
incubation, the fluorescence intensity of FITC-40 kDa in the BL compartment was measured
by a microplate reader (Agilent Technologies formally BioTek Instruments, Winooski, VT,
USA) at 498/528 nm.

5.6. Quantitative Real-Time PCR Analysis

MAC-T cells were cultured in 24-well plates in triplicate at a density of 1 × 105 cells
per well. After 4 h, 24 h and 48 h exposure to OTA (0, 9.6 µmol/L) or CIT (0, 80 µmol/L)
at the highest non-cytotoxic concentrations, cells were lysed with TRIzol Reagent (Invit-
rogen) according to the manufacturer’s instructions and stored at −80 ◦C until further
RNA extraction. Total RNA was extracted and purified using RNeasy Mini Kit (Qiagen)
according to the manufacturer’s instructions. RNA samples with a A260 nm/A280 nm
ratio between 1.9 and 2.1 were reverse-transcribed into complementary DNA (cDNA) using
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the
manufacturer’s instructions. Quantitative real-time PCR (qPCR) was performed using
SsoAdvanced Universal SYBR Green Supermix (Bio-Rad) in a total reaction volume of
10 µL with a StepOne Plus instrument (Applied Biosystems). The polymerase was activated
at 95 ◦C for 10 min and the PCR was performed for 40 cycles (95 ◦C for 15 s and 60 ◦C for
1 min). The relative levels of gene expression were calculated using ∆∆Ct method [115].
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ubiquitously expressed pre-
foldin like chaperone (UXT) were used as reference genes to normalize the expression of
the target gene transcripts. The gene-specific primers are listed in Table 1.
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Table 1. Details of primer sequences, PCR efficiency, amplicon length, accession number of the target
and reference genes.

Gene 1 Primer Sequence 5′-3′ PCR Efficiency (%) Amplicon
Length (bp) 2 Accession No.

GAPDH: F GATGGTGAAGGTCGGAGTGAAC 101.711
100 NM_001034034.2GAPDH: R GTCATTGATGGCGACGATGT

UXT: F TTGACACAGTGGTCCCAGAC 96.603
143 NM_001037471.2UXT: R CTTGGTGAGGTTGTCGCTGA

ZO-1: F GCGAAATGAGAAACAAGCACC 97.78
121 XM_024982012.1ZO-1: R ATGAGTTGAGTTGGGCAGGAC

Claudin 3: F AGGGACTGTGGATGAACTGC 108.701
128 NM_205801.2Claudin 3: R CAGTAGGATGGCGATGACG

Occludin: F GCCAGCATATTCCTTCTACCC 103.487
139 NM_001082433.2Occludin: R AAGAGTGGAGGCAACACAGG

IL-6: F GGCTCCCATGATTGTGGTAGTT 105.691
523 NM_173923.2IL-6: R GCCCAGTGGACAGGTTTCTG

TNF-α: F CGGTGGTGGGACTCGTATG 103.751
352 NM_173923.2TNF-α: R CTGGTTGTCTTCCAGCTTCACA

TGF-β: F CCTGAGCCAGAGGCGGACTAC 99.181
130 NM_001166068.1TGF-β: R GCTCGGACGTGTTGAAGAAC

TLR4: F GAACAGGTAGCCCAGACAGC 99.35
151 NM_174198.6TLR4: R AGGCCATGATACGGTTGAAG

1 F = forward; R = reverse; 2 bp = base pair.

5.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 8.2.1 for Windows
(GraphPad Software). A one-way analysis of variance (ANOVA) was performed followed
by Dunnett’s post-hoc test for multiple mean comparisons for cell viability, TEER and
paracellular tracer flux. A two-way ANOVA followed by Dunnett’s post-hoc test for
multiple mean comparisons was performed for the qPCR analysis. The data are presented
as mean ± SEM of three independent experiments conducted in triplicate, and p < 0.05 was
considered statistically significant.
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