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Abstract
ALS is a fatal untreatable disease involving degeneration of motor neurons.
Μultiple causative genes encoding proteins with versatile functions have been
identified indicating that diverse biological pathways lead toALS. Chemical enti-
ties still represent a promising choice to delay ALS progression, attenuate symp-
toms and/or increase life expectancy, but also gene-based and stem cell-based
therapies are in the process of development, and some are tested in clinical trials.
Various compounds proved effective in transgenic models overexpressing dis-
tinct ALS causative genes unfortunately though, they showed no efficacy in clin-
ical trials. Notably, while animal models provide a uniform genetic background
for preclinical testing, ALS patients are not stratified, and the distinct genetic
forms of ALS are treated as one group, which could explain the observed discrep-
ancies between treating genetically homogeneousmice and quite heterogeneous
patient cohorts. We suggest that chemical entity-genotype correlation should be
exploited to guide patient stratification for pharmacotherapy, that is adminis-
tered drugs should be selected based on the ALS genetic background.
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1 INTRODUCTION

Amyotrophic lateral sclerosis (ALS) (Table 1) is a rare
but rapidly progressive neurodegenerative disease with an
estimated prevalence of 2:100 000. It is characterised by
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loss of motor neurons in the brain and spinal cord, uni-
formly leading to death within 3–5 years from diagnosis,
most frequently, due to respiratory paralysis.1 Two ALS
types can be distinguished, that is familial ALS (FALS)
that accounts for 5–10% of all ALS cases and sporadic ALS
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TABLE 1 Abbreviations related to genetic forms of ALS and experimental ALS models

Abbreviation Full term
ALS Amyotrophic lateral sclerosis
ALSFRS-R Amyotrophic lateral sclerosis functional rating system-revised
ALS-PDC Amyotrophic lateral sclerosis-parkinsonism-dementia complex
C9ORF72 Chromosome 9 open reading frame 72
DPRs Dipeptide repeat proteins
FALS Familial amyotrophic lateral sclerosis
FTD Frontotemporal dementia
FUS RNA-binding protein fused in sarcoma
RAN Repeat associated non-ATG
SALS Sporadic amyotrophic lateral sclerosis
SMA Spinal muscular atrophy
SOD1 Superoxide dismutase 1
TDP-43 Transactive response DNA binding protein 43
TBK1 Tank Binding Kinase 1
Tg Transgenic
Tg-C9ORF72 Tg mouse carrying C9ORF72 transgene with GGGGCC expansions
Tg-PFN1G118V Tg mouse carrying transgene encoding for PFNG118V

Tg-SOD1G93A Tg mouse carrying transgene encoding for SOD1G93A

Tg-SOD1G37R Tg mouse or zebrafish carrying transgene encoding for SOD1G37R

Tg-SOD1G93ATbk1+/– Tg-SOD1G93A mouse heterozygous for Tbk1 knockout
Tg-TDP-43A315T Tg mouse carrying transgene encoding for TDP-43A315T

Tg-TDP-43G348C Tg mouse carrying transgene encoding for TDP-43G348C

Tg-FUS(1-359) Tg mouse carrying transgene encoding for truncated FUS 1–359
Tg-FUSS57Δ Tg C. elegans carrying transgene encoding for FUS lacking S57
Tg-FUSR521H Tg zebrafish carrying transgene encoding for FUSR521H

Tg-EAAT2/Tg-SOD1G93A Tg-SOD1G93A mouse that also carries a transgene encoding for EAAT2
Tg-TDP-43ΔNLS Tg mouse carrying transgene encoding TPD-43 that lacks the nuclear localisation signal
Tg-TDP-43ΔNLSMmp9–/– Tg-TDP-43ΔNLS mouse knockout for Mmp9

(SALS) that accounts for the rest. Ηallmark of ALS is the
abnormal accumulation of intracellular protein aggregates
that vary in composition and could contain TDP-43, SOD1,
FUS or various poly-dipeptides encoded by pathogenic
GGGGCC expansions in theC9ORF72 gene. TDP-43 aggre-
gates in the cytoplasmof neuronal cells are a common find-
ing in ALS (especially SALS) patients except for patients
with pathogenic variants in SOD1.2 Intriguingly though,
pathogenic variants in >30 different genes have been
linked to ALS.3 In addition, disease modifier genes sig-
nificantly increase the heterogeneity of ALS.4 Most com-
monly, mutations in the C9ORF72, SOD1, TDP-43 and
FUS genes underlie respective FALS forms but mutations
in these genes are also found in many SALS cases.5 The
molecular complexity of SALS is further increased by vari-
ous environmental factors6 highlighted by studies of amy-
otrophic lateral sclerosis-parkinsonism-dementia complex
(ALS-PDC) prevalent in the pacific island of Guam, out-
lined below.

To address the vast heterogeneity of ALS, omics
approaches were exploited for molecular taxonomy, espe-
cially, of SALS.7 For example, current analysis of tran-
scriptomics data identified three distinct subtypes of
ALS: one linked to retrotransposon activation, another in
which oxidative stress is implicated, and a third charac-
terised by activated glia.8 Omics can also reveal new dis-
ease pathways and candidate targets for pharmacological
intervention.9
Riluzole (I) and edaravone (II) (Figure 1) are the

only drugs approved by the FDA for ALS; neverthe-
less, a very small improvement of disease or qual-
ity of life of ALS patients was observed by either of
these drugs.10 Specifically, riluzole increased the lifes-
pan by approximately 3 months, while edaravone could
delay disease progression at the early stages.10 Stem
cell therapies,11 gene therapies12 and vaccinations13 are
currently under development, and some have entered
clinical trials as for example the trials NCT00748501
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F IGURE 1 Chemical formulas of riluzole (I), edaravone (II) and β-methylamino-L-alanine (L-BMAA) (III)

and NCT01640067. Further, oligonucleotide-based ther-
apies for specific ALS subgroups have entered clinical
trials14 that is, tofersen (BIIB067), an antisense drug tar-
geting SOD1 (NCT02623699)15 and BIIB078 to be used
in C9ORF72-ALS patients (NCT03626012). Nevertheless,
there is still a pressing need for chemical entitieswith phar-
macological efficacy to attenuate disease symptoms and
improve quality of life of ALS victims.
Chemogenomics involve the systematic analysis of the

response(s) of a biological system to a chemical com-
pound. Forward chemogenomics aims to unravel drug-
gable targets by searching for molecules effecting a desir-
able phenotype, and reverse chemogenomics aims to iden-
tifymolecules that bind to a given target.16 The term is used
here to describe the use of a given chemical entity to treat
a certain ALS genetic background.

1.1 The need for stratification of ALS
patients

There are eight distinct clinical features in ALS that
include: classic (Charcot’s phenotype), bulbar, flail arm,
flail leg, pyramidal, respiratory and pure lower or upper
motor neuron.17 It is now understood that the patholog-
ical underpinnings of ALS are heterogenous18 and, most
likely, quite distinct biological pathways are involved, as
also indicated by the functional versatility of the proteins
encoded by pathogenetic variants of the identified familial
ALS genes. The frequent failure of candidate compounds
tested for ALS in clinical trials, which proved effective in
animal models, could be explained by the fact that ani-
mal models represent a given ALS genotype, while clini-
cal trials are conducted with non-stratified, thus, geneti-
cally heterogeneous patient populations. Interrogation of
the clinical trial database (http://clinicaltrials.gov) against
‘amyotrophic lateral sclerosis’ retrieved only nine recent
trials, in which patients were selected based on their
involved ALS pathogenic gene (Figure 2). In the era of
precision medicine, treatment decisions are guided by
genetic/molecular data according to which patients are
stratified into subgroups. Two anecdotal examples of envi-
ronmental exposure linked to ALS exemplify the benefit

F IGURE 2 Flowchart of search in clinical trials. Interrogation
of clinical trials (http://clinicaltrials.gov) against ‘amyotrophic
lateral sclerosis’ retrieved 715 hits for ALS and the rest were for
spinal muscular atrophy (SMA). Of ALS trials 146 involved the
administration of 50 small molecules and only nine trials involved
patients selected for the presence of a certain pathogenic variant.
The image was created with Biorender (http://biorender.com)

of ALS treatment and/or prevention from subgrouping of
patients.

1. ALS due to mercury intoxication. Incidentally,
an SALS patient was identified who suffered ALS
likely linked to mercury intoxication and was
treated with a combination of the chelator 2,3-
dimercaptopropanesulfate and α-lipoic acid for
mercury cleansing that was expected to ameliorate
symptoms. This case may turn out to be the first
reported ALS cure.19 This is reminiscent of the loss

http://clinicaltrials.gov
http://biorender.com
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of metal homeostasis reported in Alzheimer disease,
for which either Zn2+ supplementation or Fe3+/Al3+
chelation therapies have been suggested.20 Thus,
screening ALS patients for metal intoxication might
provide an alternative strategy to treat, using chelating
drugs, a subgroup of ALS patients in which ALS could
be related with metal intoxication. Notably, metallomic
analysis revealed uranium in the CSF of 47% of ALS
patients examined in a Scandinavian study,21 suggest-
ing that chelation treatment could be beneficial for this
subgroup.

2. The case of Guam – How changing diet can pre-
vent ALS. In Guam, the incidence of ALS was unex-
pectedly high, that is approximately 200/100 000, mak-
ing it a rather common neurodegenerative disease.
Neurotoxin β-methylamino-L-alanine (L-BMAA) (III),
a component of cycad seeds consumed in Guam was
identified as the ALS causing agent. Cycad seeds are
consumed and bioaccumulated by flying foxes (bats)
in the island which are popular food for locals. As a
result, they intake large quantities of L-BMAA.22 Intra-
venous injection of L-BMAA induces a disease in rats
that mimics ALS/PDC and is accompanied by appear-
ance of cytosolic TDP-43 aggregates.23 The incidence of
ALS-PDC is constantly declining in Guam, following
diet changes towards restricted bat consumption.24

2 THERAPEUTIC APPROACHES
BASED ON THE GENETIC BACKGROUND
OF ALS PATIENTS

2.1 Strategies to treat ALS caused by
SOD1 pathogenetic variants

Tg-SOD1G93Amice represent the first animalmodel forALS
and remains the most widely used rodent model of human
ALS.25 Chemicals that act on various biological pathways
have been tested in these mice to investigate their puta-
tive effect on disease progression and overall survival (Fig-
ure 3). It is plausible though that the biological pathways
in the ALS form recapitulated by Tg-SOD1G93A mice are
not implicated in all ALS subtypes.26 The chemical com-
pounds used to treat SOD1-ALS can be classified based on
their mechanism of action, as outlined below.

2.1.1 Mitigation of excitotoxicity

Excitotoxicity describes the neuronal damage caused by
excessive stimulation due to glutamate accumulation in
the synaptic cleft. ALS patients and mouse models show
decreased levels of the excitatory amino acid transporter

2 (EAAT2) that is responsible for synaptic glutamate
clearance.27,28 Overexpression of EAAT2 in Tg-SOD1G93A
mice significantly delays grip strength decline but does
not alter the onset of disease symptoms or the lifespan of
Tg-EAAT2/Tg-SOD1G93Amice compared to Tg-SOD1G93A,29
indicating that EAAT2 overexpression accompanied by
suppressed excitotoxicity is not the best option in this
model. This is corroborated by clinical and preclinical data.
For example, riluzole that mainly inhibits the release of
glutamate10 could extend the lifespan of ALS patients by
2–3 months, only, while it had a modest effect in delaying
disease progression.30 When administered at the onset of
symptoms, it does not have any effect on lifespan or motor
function of Tg-SOD1G93A, Tg-TDP43A315T and Tg-FUS(1-359)
mouse models.31 The efficacy of riluzole in patients may
also be compromised by its rapid metabolism by CYP1A2.
Thus, prodrugs that withstand CYP1A2 metabolism and
have increased in vivo stability were designed.32 Since
serum levels of administered riluzole in patients are deter-
mined by the expression of CYP1A2,32 another way to
increase the likelihood of response to riluzole could be to
select ALS patients with low CYP1A2 levels.
Ceftriaxone (IV), a cephalosporine antibiotic, that

increases the activity of the EAAT2 gene promoter result-
ing in elevated EAAT2 expression that, in turn, reduces
glutamate excitotoxicity,33 significantly improved the ALS
phenotype of Tg-SOD1G93A mice and extended their lifes-
pan by 10 days.34 Consistently, earlier case studies had
reported improvement of symptoms in some ALS patients
upon administration of ceftriaxone.35 A later clinical trial
(NCT00349622) showed no beneficial effect of ceftriax-
one in non-stratified ALS patients. Whether SOD1-ALS
patients were included in this trial is unknown as no
genetic data are available for retrospective analysis, to vali-
date whether ceftriaxonewas beneficial in this subgroup.33
Nonetheless, in these trials there was no effort to ascer-
tain target engagement (i.e. EAAT2 upregulation in peo-
ple who received ceftriaxone) or neuronal hyper excitabil-
ity (via TMS, for instance). Consequently, they should not
be interpreted as indicators of the ineffectiveness of thera-
pies targeting EAAT2.

2.1.2 Targeting inflammation

TNFα is a major pro-inflammatory cytokine with a wide
variety of biological responses including the apoptosis
of neuronal cells.36 Increased levels of TNFα and FasL
have been found in biopsy sections of lumbar spinal cord
from ALS patients (FALS-SOD1I113T and SALS) and Tg-
SOD1G93Amice.37 Thus, thalidomide (V) and lenalidomide
(VI), which inhibit TNFα production, were tested in Tg-
SOD1G93A mice. When administered pre-symptomatically,



PAMPALAKIS et al. 5 of 24

F IGURE 3 Chemical formulas of compounds used to treat SOD1-ALS in disease models

both compounds improved motor performance,
attenuated weight loss and extended the lifespan by
approximately 3 weeks (16% and 18.5% increase in mean
survival, respectively).37 When administered at the onset
of symptoms, lenalidomide improved motor performance,
attenuated weight loss and extended the lifespan of Tg-
SOD1G93A mice by approximately 19 days.38 A clinical trial
with non-stratified ALS patients found that thalidomide
does not improve the ALSFRS-R (ALS Functional Rating
System-Revised) score or the forced vital capacity (FVC).39
Thus, these compounds could be effective in SOD1-ALS
only, given their beneficial effect in Tg-SOD1G93A mice.
To this end, it is interesting to note that deletion of Tnfα
in Tg-SOD1G93A and Tg-SOD1G37R mice did not increase
the lifespan and did not inhibit the extent of neuronal
loss40 indicating that, besides than TNFα-inhibition,
thalidomide and lenalidomide, may have other (off-target)
functions in vivo probably linked to the extended lifespan
of Tg-SOD1G93A mice. Mapping the off-target effects in
mice may reveal novel targets for pharmacological inter-
vention. This endeavour could be accelerated or advanced
by use of drug-based activity-based probes (ABPs), as will
be described below. Nevertheless, well-known side-effects
of thalidomide and lenolidomide, as for example, the
sensory and motor axonal neuropathy41,42 could compli-
cate their use for ALS, a motor neuron disease, and could
account for their failure in clinical trials.

2.1.3 Mitochondria targeting

Mitochondria dysfunction is a characteristic feature of
ALS.6 Tg-SOD1G93A mice show decreased respiratory
capacity in astrocytes. Dichloroacetate (DCA) (VII) is
a pyruvate dehydrogenase kinase inhibitor that stimu-
lates mitochondrial metabolism.43 When administered in
drinking water of Tg-SOD1G93A mice, it extended survival
by 2 weeks in males and by 10 days in females, while it
improved grip strength.44
Olesoxime (VIII) is a mitochondrial pore modula-

tor that reduces neuronal cell death in Tg-SOD1G93A
mice45; nevertheless, a Phase II/III clinical trial did
not validate these positive effects in non-stratified ALS
patients.46
Coenzyme Q10, a compound that has been shown to

improve mitochondrial function in humans when admin-
istered orally,47 slightly increases the lifespan of Tg-
SOD1G93A mice,48 but a clinical trial with non-stratified
ALS patients (NCT00243932) could not validate signif-
icant improvement of ALS phenotype for a high dose
of coenzyme Q10.49 Other dietary changes to alleviate
ALS symptoms have also been tested. The Deana Pro-
tocol Supplement involves arginine α-ketoglutarate, γ-
aminobutyric acid (GABA), coenzyme Q10 and medium
chain triglycerides. When administered to 10-week-old
Tg-SOD1G93A mice, this supplement improved survival
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and motor functions.50 Similarly, caprylic triglyceride,
which was used in a recent clinical trial (NCT02716662),
enhanced motor performance in different tests, increased
mitochondrial respiration compared to controls, but could
not extend survival. Also, vitamin E delayed the onset
of disease symptoms in Tg-SOD1G93A mice but did not
increase the lifespan.51 In a large clinical trial, high
doses (5 g per day) of vitamin E did not have sig-
nificant beneficial effects on survival or alleviation of
symptoms.52 The SS31 antioxidant cell-permeable peptide
(D-Arg-dimethyltyrosine-Lys-Phe-NH2) that targets the
inner mitochondrial membrane, improved survival and
motor performance inTg-SOD1G93Amice and reduced neu-
ronal cell apoptosis induced by hydrogen peroxide53 but it
has not yet been validated in clinical trials. Since the afore-
mentioned supplements proved effective in Tg-SOD1G93A,
their therapeutic effect may be limited to SOD1-ALS
patients.
Rasagiline (IX), a MAO-B inhibitor that has antiox-

idant and anti-apoptotic functions,54 extends the lifes-
pan and improves the running wheel performance of Tg-
SOD1G93A mice. Co-administered with riluzole, rasagi-
line showed additive effects in Tg-SOD1G93A mice.55 Cur-
rently, rasagiline is being tested in ALS patients of
various disease genotypes (NCT01879241, NCT01786603),
with positive results in reducing oxidative stress in
mitochondria, and increasing the mitochondrial mem-
brane potential.56 Dexpramipexole (X), a low-affinity
binding compound for dopamine receptors, had pro-
tective effects in vitro manifested by improved mito-
chondrial function, prevented apoptosis and reduced
ROS,57 but it failed to exhibit any positive results in Tg-
SOD1G93A mice and, in a Phase III clinical trial in ALS
patients.58
Due to their anti-excitotoxicity, antioxidant and anti-

inflammatory actions, cannabinoids have been extensively
tested in Tg-SOD1G93A mice, and a recent meta-analysis
showed that they increase mice survival by 3.84 days.59
In one study, the cannabinoid CB2 selective agonist HU-
308 was administered in Tg-TDP-43A315T mice and was
found to improve rotarod performance but had no effect
on survival.60 A clinical trial with ALS patients treated
with cannabis oil is ongoing.61 On the other hand, Klotho
was demonstrated to delay the onset of disease symp-
toms and to increase the lifespan of both male and female
Tg-SOD1G93A mice, in which the beneficial effects were
more pronounced.62 Finally, GNX-4728, a cinnamic anilide
derivative that acts as inhibitor of the mitochondrial per-
meability transition pore has been tested in Tg-SOD1G37R
male mice and was found to increase their lifespan from
366 to 686 days (mean values) and to delay the onset of
symptoms.63

2.1.4 Targeting SOD1 aggregation

Formation of SOD1 aggregates can be suppressed either by
direct inhibition of SOD1 aggregation or by suppression of
SOD1 expression,32 as for example with pyrimethamine.
In SOD1-ALS patients, pyrimethamine lowers the levels of
SOD1 in CSF.64 A clinical trial was designed that solely
included SOD1-ALS patients, in which the levels of SOD1
in CSF were monitored (NCT01083667). The effect on dis-
ease progression has not been investigated.
Another strategy to diminish the formation of aggre-

gates involves the stabilisation of SOD1 dimers through
chemical crosslinking between adjacent Cys111 of two
SOD1 molecules with maleimide derivatives and thiol-
disulfide exchange approaches, for example, with 1,4-
bismaleimidobutane.65 A recent strategy targets the inter-
action between SOD1 and derlin-1, which plays a role
in the endoplasmic reticulum (ER) machinery.66 Disrupt-
ing this interaction alleviated ALS symptoms.67 High-
throughput screening (HTS) identified compound XI that
prevents the interaction of mutant SOD1 with derlin-1. A
series of analogues were synthesised and XII with bet-
ter physicochemical properties was tested as a candidate
drug. XII alleviated pathology of Tg-SOD1G93A mice and
of motor neurons derived from iPSCs of patients with
SOD1-ALS.67
Screening of 640 FDA-approved drugs found that

statins (simvastatin, lovastatin, mevastatin) and vitamin
D3 derivatives (alfacalcidol, calcidiol, calcitriol) inhib-
ited aggregation of apo-SOD1G37R.68 Unexpectedly, statins
accelerate disease progression, decrease the lifespan
of Tg-SOD1G93A mice69 and worsen the phenotype of
ALS patients manifested by increased rates of ALSFRS-
R decline and higher frequency of muscle cramps,
although the latter may associate with statin-induced
myopathy.70 These observations uncover the limitations
of HTS against pure components, like the SOD1 aggre-
gates, in the effort to identify new drugs, but vitamin
D3 supplementation in Tg-SOD1G93Amice improves motor
function.71 Nevertheless, although earlier studies showed
that patient intake of vitamin D3 slowed the rate of
ALSFRS-R decline,72 later studies did not replicate these
findings.73,74 These contradictory clinical evidencesmay be
due to the quite varying genetic background of recruited
patients.
Ebselen (XIII) is an organoselenium cysteine reactive

compound that promotes the formation of the intramolec-
ular disulfide bond of SOD1 and its correct folding.75
Thus, it enhances the formation of the functional SOD1
dimer instead of the toxic aggregates. In addition, ebse-
len has antioxidant activity.75 Although it only marginally
extended the lifespan of Tg-SOD1G93A mice, it significantly
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delayed the onset of disease symptoms.76 Thus, it may alle-
viate symptoms in SOD1-ALS patients.
In analogous manner, treatment with copper diacetyl-

di(N4-methyl)thiosemicarbazone (Cu(II)ASTM) (XIV)
improves symptoms and extends survival in Tg-SOD1G93A
mice77 and Tg-SOD1G37R mice.78 A mechanism that could
account for this function involves copper transfer to SOD1.
Thus, loading SOD1 with metal ions may provide a new
type of SOD1-ALS-specific therapy. A Phase I clinical trial
to assess the pharmacokinetics of Cu(II)ASTM in ALS
patients has been completed (NCT02870634) and another
study (NCT04082832) is ongoing to assess its efficacy
without; however, selecting for SOD1-ALS patients in
which drug efficacy has been proven in the respective
mouse model.
Finally, pyrazolone derivatives have been identified as

SOD1 aggregation inhibitors.79,80 PyrazoloneXV increased
the lifespan of Tg-SOD1G93A by 13%.81 In this case, an
activity-based probe (ABP) was designed to map its com-
plete interactome (i.e. biological targets and off-targets).
For this, a biotin moiety with a spacer was introduced onto
the one side of the molecule and the new derivative (XVI)
was immobilised on streptavidin beads. The beads were
incubated with cellular lysates and the precipitants were
analysed by mass spectrometry to identify the biological
targets.82 This assay revealed an unexpected function of
pyrazolones, which is proteosomal activation without heat
shock response.

2.1.5 Targeting proteolysis

Biochemical pathways involving proteases may provide
novel targets for ALS treatment. In this respect, the widely
studied metalloprotease MMP9 mediates the degenera-
tion of fast motor neurons in Tg-SOD1G93A mice through
enhancement of ER stress83 and/or regulation of Tnfα and
FasL expression.84 Deletion of one Mmp9 allele in Tg-
SOD1G93A increased the lifespan by 14% and deletion of
both Mmp9 alleles (Tg-SOD1G93AMmp9–/–) by 25%, which
is one of the longest prolongations of lifespan ever reported
for an intervention in any of ALSmousemodels. Intracere-
broventricular (icv) administration of an MMP9 inhibitor
in Tg-SOD1G93A mice delayed denervation and reduced
ER stress.83 Knockdown or knockout of MMP9 attenuates
the neuromuscular defects in rNLS8 (Tg-TDP-43ΔNLS)
mice. Intriguingly though, Tg-TDP-43ΔNLSMmp9–/– mice
have significantly shortened survival and run slower
than the rNLS8, despite their attenuated neuromuscular
defects.85 Thus, targeting MMP9 for inhibition may repre-
sent a beneficial therapeutic strategy only for SOD1-ALS
patients.

2.1.6 Maintenance of proteostasis

The dynamic regulation of a balanced, functional pro-
teome (proteostasis) orchestrates multiple cellular sys-
tems and functions like the ubiquitin proteasome system,
autophagy, ER stress/unfolded protein response, stress
granules and heat shock proteins, to provide ‘quality con-
trol’ for proteome maintenance. The proteostasis drug
methylene blue (XVII), that induces autophagy,86 could
rescue motor defects in Tg-TDP-43A315T and Tg-FUSS57Δ C.
elegans models and in Tg-TDP-43G348C and Tg-FUSR521H
D. rerio87 but not in Tg-TDP-43G348C88 and Tg-SOD1G93A
mice.89 These results indicate that selection of the appro-
priate animal model is essential for extrapolation of ani-
mal data to putative effective therapies in the clinic. The
scheme of administration, the time for initiation of treat-
ment should also be optimised, as indicated by the discrep-
ancies observed upon administration of methylene blue
in C. elegans and D. rerio in which it was administered
at hatching and proved effective, but not in Tg-SOD1G93A
mice, in which administration was initiated at 45 days
or at 90 days and after 6 months from birth in Tg-TDP-
43G348C.87–89
Sephin 1 (XVIII), a closely related guanabenz ana-

logue, is a selective inhibitor of the stress-induced phos-
phatase PPP1R15A that prolongs eIF2 phosphorylation
upon stress and protects cells from ER stress.90 In
Tg-SOD1G93A mice, sephin 1 prevents weight loss and
improves motor function.90 The original compound gua-
nabenz also inhibits PPP1R15A. Although it showed effi-
cacy in Tg-SOD1G93A mouse models,91,92 it has severe side-
effects, since it also binds to the α2-adrenergic receptor.93
Bis-guanyhydrazones that act as molecular chaperones,

such as the R55 (XIX), and affect proteostasis, have been
developed for the potential treatment of ALS.94 Further,
molecular optimisation of R55 led to the compound (XX)
that was shown to slow down the progression of motor
deficits, and to reduce the degeneration of nerve fibres and
SOD1G93A aggregation in Tg-SOD1G93A mice.95
Another approach to target SOD1-ALS involves the

activation of heat shock family chaperones that protect
cells from various stresses. Arimoclomol (XXI), a heat
shock protein inducer, delays the onset of symptoms,
extends the lifespan, promotes muscle function and pre-
vents the aggregation of SOD1 in Tg-SOD1G93A mice.96,97 In
the clinical trial NCT00706147, rapidly progressive SOD1-
mutant ALS patients were treated with up to 200 mg ari-
moclomol and this Phase II trial showed that arimoclo-
mol is safe and well-tolerated.98 A Phase III clinical trial
(NCT03836716) with 231 recruited patients aims to define
the long-term safety and efficacy of arimoclomol in SOD1-
ALS patients.
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2.2 Targeting G4C2 pathogenetic
expansions in C9ORF72

The GGGGCC large repeat expansions (from 250 up
to > 3000 repeats) present in the first intron of the
C9ORF72 gene and coding for poly-dipeptides [poly(GA),
poly(GP), poly(GR), poly(PR) and poly(PA)] have been
identified in patients suffering from ALS with or with-
out frontotemporal dementia (FTD).99,100 These hex-
anucleotide expansions are transcribed bidirectionally
and form either RNA foci in the nucleus, that binds
and sequesters RNA-binding proteins, or are translated
into dipeptide repeat proteins (DPRs) by an abnor-
mal translation process called repeat-associated non-ATG
(RAN) translation. This results in gain-of-function that
leads to neuronal cell toxicity.101–104 Loss-of-function due
to C9ORF72 repeat expansion mutations in ALS was
revealed in C9orf72–/– mice and included dysregulation of
autophagy and membrane trafficking and development of
inflammatory reactions.105
These GGGGCC repeats exhibit somatic instability;

thus, it is possible that repeat expansionmay not be present
in DNA from blood samples although present in CNS.
Therefore, a blood DNA test negative for GGGGCC expan-
sion does not necessarily indicate that the patient is not a
C9ORF72ExpGGGGCC carrier,106,107 and this should be taken
into consideration when classifying ALS patients. Evi-
dently, a combination of genetic analysis and determina-
tion of poly(GP) in CSF will be required for a definite clin-
ical diagnosis,106,107 with apparent clinical implications.
Approaches to alleviate symptoms or decelerate the course
of the disease include targeting the RNA transcribed from
GGGGCC-repeats or targeting the DPRs. These RNAs
adopt two folded states that are in equilibrium, a hairpin
structure and the G-quadruplex structure.108

2.2.1 Targeting RNA
G-quadruplexes/hairpins

HTS identified the structurally similar chemicals DB1246
(XXII), DB1247 (XXIII) and DB1273 (XXIV) (Figure 4)
that exhibit high-affinity binding on GGGGCC RNA G-
quadruplexes. These chemicals significantly reduced RNA
foci in vitro in human iPSC-motor and iPSC-cortical
neuron cell lines and decreased DPRs. Decreased lev-
els of DPRs and improved survival of larvae reaching
the pupal stage of development was observed in vivo,
in GGGGCC repeat-expressing Drosophilas treated with
DB1273.109
The cationic (5,10,15,20-tetra(N-methyl-4-pyridyl) por-

phyrin (TMPyP4) XXV binds to GGGGCC RNA G-
quadruplexes in a concentration-dependent manner and

causes a conformational change in their secondary struc-
tures conferring thermal instability of GGGGCC RNA G-
quadruplexes. Thus, TMPyP4 blocks the interaction of
GGGGCC RNA G-quadruplexes with RNA-binding pro-
teins, such as ASF/SF2 and hnRNPA1.110 Another group
developed three compounds (XXVI, XXVII, XXVIII) tar-
geting the hexanucleotide repeat region of RNAs and
tested them for binding to hairpin RNA and reducing
RAN translation in a cell-free model. XXVI and XXVII
reduced RNA foci and significantly decreased RAN trans-
lation in GGGGCC repeat-expressing neurons.108 Improv-
ing the selectivity of XXVI led to compound XXIX that
binds selectively in the internal loops of the hairpin form
of RNA. XXIX blocked polysome assembly and reduced
RNA foci and RAN translation in vitro.111 The in vivo
action of these compounds inC9ORF72-ALS remains to be
validated.

2.2.2 Targeting DPRs

RAN translation of C9ORF72 RNA GGGGCC-repeats in
all six-reading frames produces five repeated polypeptides
[poly(GA), poly(GP), poly(GR), poly(PR) and poly(PA)]
from which mainly the poly(GR), poly(PR) and poly(GA)
are toxic to cells through induction of nucleolar stress and
defects in mRNA splicing.103,104,112
Inhibition of PIKFYVE kinase that con-

verts phosphatidylinositol-3-phosphate (PI3P) to
phosphatidylinositol-3,5-biphosphate (PI(3,5)P2) leads
to increased PI3P levels that regulate autophagosome
formation and engulfment of proteins for degradation.
Therefore, it may be important for the destruction of DPRs.
Indeed, the PIKFYVE inhibitor apilimod (XXX) that was
originally identified as a therapeutic compound in iPSC
motor neurons derived from C9ORF72-ALS patients113
reduces DPRs in C9-BAC mice that harbour the human
C9ORF72 with 100–1000 GGGGCC repeats.114
Another way to reduce protein aggregates, including

DPRs, is through proteosome activation. Rolipram (XXXI)
is an antidepressant drug that acts via inhibition of
phosphodiesterase 4 (PDE4) and promotes proteasome
function.115 Rolipram decreased poly(GA) in primary hip-
pocampal neurons in vitro.116 DPRs induce integrated
stress response (ISR) through ER implicating TMX2.117 ISR
involves hyperphosphorylation of elf2a and increasedRAN
of C9ORF72 RNA GGGGCC-repeats.118 XXXII, a selec-
tive inhibitor of eIF2α dephosphorylation and taurour-
sodeoxycholate (TUDCA), a chemical chaperone, showed
protection against poly(GA)-induced stress and cell death
in vitro.119 In conclusion, many compounds that can tar-
get the DPRs are available, which could be further vali-
dated in clinical trials. DPR aggregation could be assessed
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F IGURE 4 Chemical formulas of compounds used to treat C9ORF72-ALS in disease models

in Tg-C9ORF72 mice, nevertheless, these mice display
no behavioural or survival differences compared to wt
mice.120

2.3 Targeting TDP-43 pathogenic
variants

Transactive response DNA binding protein 43 (TDP-43) is
primarily a nuclear protein that binds to UG/TG repeats
in the introns of pre-mRNA121 and regulates transcription
or RNA processing.122 Under stress conditions, TDP-43 is
thought to localised in stress granules,123 although other
studies have shown that TDP-43 forms cytoplasmic aggre-
gates that are distinct from stress granules in that they
do not contain RNA.124,125 These cytoplasmic aggregates
consist of full-length TDP-43 or of its C-terminal prote-
olytic fragments of 35 and 25 kDa.126 Further, cytoplas-
mic TDP-43 is mainly ubiquitinated and phosphorylated
in ALS patients.127 Recently, it was shown that loss of TDP-
43 results in unmasking of a cryptic exon and in introduc-
tion of a premature polyA tail in the STMN2 mRNA that
yields truncated stathmin-2. This truncated transcript is
absent in SOD1-ALS.128 The involvement of STMN2 in ALS
is also corroborated by the recent finding that a long CA
repeat polymorphism associates with increased risk and
early onset of ALS in North American population.129 TDP-
43 targeting for therapeutic intervention could be achieved

by the inhibition of phosphorylation or proteolytic cleav-
age or aggregation of TDP-43, alternatively, by induction
of autophagy and proteasome activation to clear the mis-
folded and/or aggregated TDP-43.130

2.3.1 Targeting autophagy or proteasome

TDP-43 regulates the production of ATG7, an autophagy
mediator, by stabilising the ATG7mRNA. Thus, depletion
of TDP-43 causes loss of ATG7 and impaired autophagy.131
Furthermore, loss of TDP-43 increases TFEB nuclear
translocation and enhances autophagosomal and lysoso-
mal biogenesis but it impairs fusion of autophagosomes
with lysosomes.132 Consequently, TDP-43 aggregation
observed in ALS could lead to dysregulation of autophagy.
In addition, the 25 kDaTDP-43 fragment causes severe cog-
nitive and behavioural deficits in mice, and suppression of
autophagy and proteasome activation.133
Inhibitors of mTOR act as activators of autophagy

through induction of autophagosome formation.134
Administration of the autophagy activators rapamycin,
spermidine, carbamazepine and tamoxifen in a mouse
model of ALS/FTD with TDP-43 aggregates decreased
the loss of motor neurons and TDP-43 aggregates.135
Rapamycin also increased the lifespan of a Drosophila
ALS/FTD model.136 In contrast, in Tg-SOD1G93A mice,
rapamycin decreased survival and induced mitochondrial
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F IGURE 5 Chemical formulas of compounds used to treat TDP-43-ALS in disease models

dysfunction and cell death in cultured motor neurons
isolated from these animals.137 The above data further
support the hypothesis that different therapies should be
used for different ALS subtypes.
A HTS study found fluphenazine (FPZ),

methotrimeprazine (MTM) and 10-(4′-(N-diethyl
amino)butyl)-2-chlorophenoxazine (NCP) as the most
potent autophagy activators. When neuronal and astrocyte
ALS cell models were treated with these chemicals, the
levels of TDP-43 aggregates were reduced, the cell survival
was improved and cytoplasmic mislocalisation of TDP-43
was prevented.138

2.3.2 Phosphorylation of TDP-43

Casein kinase 1 (CK-1), cell division cycle 7 (CDC7),
tau and tubulin kinase 1 and 2 (TTBK1 and TTBK2,
respectively) and mitogen-activated protein kinases
(MAPK/ERK) phosphorylate TDP-43 that in turn pro-
motes the aggregation in the cytoplasm.139 Nilotinib
(XXXIII) and bosutinib (XXXIV) (Figure 5), two tyro-
sine kinase inhibitors (TKI), altered glutamate synaptic
signalling and showed neuroprotective effects in Tg-
TDP-43wt mice.140 Also, nilotinib reversed mitochondrial
dysfunction caused by TDP-43 aggregates.140 In addi-
tion, bosutinib increased survival of iPSC-derived motor
neurons from patients with SALS or FALS caused
by mutations in TDP-43 or GGGGCC repeat expan-
sions in C9ORF72 while it delayed disease onset in
Tg-SOD1G93A for 11 days and moderately increased sur-
vival by 8 days.141 Since Tg-SOD1G93A mice do not show

TDP-43 pathology, the latter finding also indicates that
these compounds could have additional effects besides
inhibiting TDP-43 phosphorylation.141 Thus, TKIs could
represent a broad therapeutic strategy for ALS since
they showed clinical efficacy in genetically diverse ALS
models.
A series ofN-(benzothiazolyl)-2-phenyl-acetamide com-

pounds were developed and optimised for CK-1δ inhi-
bition. The compound XXXV exhibited the lowest IC50
of 23 nM, while the XXXVI had an IC50 of 47 nM and
both could penetrate the blood brain barrier (BBB).XXXV
decreased phosphorylation of TDP-43 and increased the
lifespan of the Tg-TDP-43 Drosophila.142 Both XXXV
and XXXVI prevented TDP-43 phosphorylation and mis-
localisation shuttling in PGRN-(progranulin) deficient
lymphoblasts143 and in lymphoblasts from SALS patients
(negative for SOD1 pathogenetic variants and one posi-
tive for expansions in C9ORF72).144 The CDC7 selective
inhibitor PHA767491 (XXXVII) abolished phosphorylated
forms of TDP-43 in vitro and in vivo in C. elegans,145 indi-
cating a possible target against pathological phosphoryla-
tion of TDP-43.

2.3.3 Targeting cytoplasmic aggregates

Screening of 35 kinase inhibitors against paraquat-treated
SH-SY5Y cells identified inhibitors of cyclin-dependent
kinases (CDKs) and glycogen synthase kinase 3 (GSK3) to
block cytoplasmic TDP-43 accumulation, thus alleviating
intracellular cell stress.146 Another chemical discovered by
HTS, the LDN-0130436 (XXXVIII), improved the motor
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behavioural deficits of Tg-TDP-43wt and Tg-TDP-43A315T C.
elegans.147

2.3.4 Other compounds

Various attempts aimed to identify compounds that may
display therapeutic effect in TDP-43-ALS. In a screening
of 1200 FDA-approved drugs, the PPARγ agonist piogli-
tazone was identified to improve the locomotor function
of Tg-TDP-43wt or Tg-TDP-43G298S Drosophilas, yet it did
not improve the survival of flies.148 Unfortunately, when
pioglitazone was used in an ALS clinical trial in combi-
nation with riluzole (NCT00690118), it did not increase
patient survival neither it improved any of the clinical
symptoms.149 Failure of pioglitazone may be related to
the fact that it either acts on certain ALS subtypes or the
above-mentioned Drosophila models do not recapitulate
the corresponding human ALS subtypes. This resembles
the alreadymentioned case ofmethylene blue that displays
pharmacological activity in C. elegans models of ALS but
not in mouse models.
Anacardic acid (XXXIX) acts as a histone acetyltrans-

ferase inhibitor and decreases TDP-43mRNA and protein
levels in human iPSCs derived from ALS patients carrying
TDP-43 pathogenetic variants.150 A different strategy for
treating TDP-43 associated ALS involves targeting nuclear
exportins that control TDP-43 mislocalisation. TDP-43 has
a putative nuclear export signal (NES) recognised byXPO1.
Although some studies have refuted it,151–153 the selective
inhibitor of nuclear export (SINE) that targets XPO1, KPT-
350 (XL) partially rescues the motor deficits in a rat model
of ALS/FTD generated by adenoviral delivery ofTDP-43.151
Recently, overexpression of the chaperone Sigma-1

receptor in Drosophila models of C9-ALS significantly
reduced the neurodegenerative symptoms manifested by
necrotic spots in the eyes bymore than 12-fold compared to
controls.154 Deletion of Sigma-1 receptor encoding gene in
Tg-SOD1G93Amice exacerbated disease and shortened their
life expectancy by approximately 30%.155 In the future, acti-
vators of Sigma-1 receptor could be exploited for treatment
of SOD1-ALS and C9-ALS.

2.4 FUS mutations

Patients with FUSmutations are characterised by absence
of TDP-43 aggregates.156 The treatment of the subpopu-
lation of patients with FUS-ALS is currently based on
autophagy induction and alleviation of oxidative stress.
Torkinib (XLI) (Figure 6) inhibition of mTOR induces
autophagy more potently than rapamycin and reduces
TDP-43P525L aggregates in engineered iPSC-derived spinal

neurons induced by arsenite. Torkinib improved dose-
dependently the motor neuron dysfunction in three FUS
Drosophilamodels (FUSwt, FUSR521C, FUSP525L) measured
with the climbing assay.157 Mutant FUS-aggregates are
localised in stress granules and stimulating autophagy
with rapamycin decreases FUS in these granules.158 Fur-
thermore, mutant FUS is implicated in the first stages
of autophagosome formation and Rab1 overexpression
restores autophagy function.159 In a controlled ongoing
clinical trial (NCT03707795), betamethasone is used inALS
patients with FUS mutations to alleviate oxidative stress
and improve symptoms.

2.5 The role of TBK1 in ALS

Pathogenic variants in Tank Binding Kinase 1 (TBK1)
gene implicated in autophagy regulation have been
linked with FALS.160 Interestingly, co-occurrence of TBK1
mutations with variants in other ALS genes has been
detected in single ALS patients.161 Deletion of Tbk1 in
mice leads to embryonic lethality but Tbk1+/– mice are
viable.162 To investigate the effect of Tbk1 loss in the
presence of other ALS-related genes, mouse models of
ALS have been generated on the Tbk1+/– background,
like Tg-TDP-43G298STbk1+/–, that developed more severe
pathology although life expectancy was not significantly
altered.163 Despite the fact that symptoms developed ear-
lier in Tg-SOD1G93ATbk1+/– than in Tg-SOD1G93A, the
Tg-SOD1G93ATbk1+/– had longer life expectancy, which
may indicate differential effects of Tbk1 in early and
late stages of ALS.164 TBK1 is an endogenous inhibitor
of receptor-interacting Ser/Thr protein kinase 1 (RIPK1)
and an age-related activation of RIPK1 is observed in
TBK1-ALS patients that leads neuroinflammation and
neurodegeneration.165 RIPK1 inhibitors, specifically the
DNL474 (the chemical formula has not been disclosed),
are in clinical trials for ALS (NCT03757351).166 In addi-
tion, RIPK1 may be implicated in various ALS subtypes
that are due to pathogenic SOD1, andOPTN (optineurin)
variants.167

3 PHARMACOLOGICAL
MODULATION OF GENEMODIFIERS

Modifier gene alleles either exacerbate or attenuate the
clinical presentation of ALS (Table 2). The identifica-
tion and characterisation of modifier genes is an ongoing
endeavour that could provide new therapeutic options for
certain ALS subgroups.168 Ephrin A4 (EPHA4) is a well-
established ALS gene modifier.169 Loss-of-function muta-
tions in EPHA4 associate with longer survival of ALS
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F IGURE 6 Chemical formulas of compounds target FUS-ALS or gene modifiers

TABLE 2 Gene modifiers for ALS

Gene Effect on ALS Method/model Subtype of ALS Reference
EPHA4 Loss of function increases survival

in mice, zebrafish, patients
TDP-43A315T zebrafish TDP-43, SOD1 169

Pharmacological inhibition
increases survival

SOD1A4V, SOD1G93A, SOD1G37R

zebrafish
Tg-SOD1G93AEphA+/– mice
Pharmacological targeting in
Tg-SOD1G93A– rat

EPHA4 Extends survival Pharmacological targeting in
Tg-SOD1G93A mice

SOD1 171

EPHA4 Delays onset Tg-PFN1G118V mice PFN 173

CX3CR1 249I/I and 249V/I genotypes
associate with shorter survival

Patients 175

CX3CR1 Knockout reduces survival TgSOD1G93A Cx3cr1–/– mice SOD1 176

IL6R C variant Asp358Ala Increased rate
of progression

Patients 177

KCNJ11 Rs5219 increased survival in bulbar
ALS, patients with T/T survived
longer

Patients 202

ABCC8 Rs4148646 increased survival in
bulbar ALS patients with G/G
survived longer, Rs4148642

Patients 202

In spinal ALS patients with C/C
have increased progression rate

UNC13A Rs12608932 associates with shorter
survival

Patients 203
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patients in different ALS animal models (Table 2). Thus,
pharmacological inhibition of EPHA4 could provide a new
way to treat ALS. In this direction, the 4-(2,5-dimethyl-
1H-pyrrol-1-yl)-2-hydroxy benzoic acid (XLII), a pharma-
cological inhibitor of EphA4,170 rescues mutant SOD1-
induced axonopathy in zebrafish.169 The compound 123C4
(XLIII) is an EphA4 receptor binding agent that prolongs
survival of Tg-SOD1G93A mice by 8.5 days.171 EPHA4 can
be considered a ‘universal’ ALS gene modifier since it acts
as modulator for both SOD1 and TDP-43 associated ALS.
However, administration of antisense oligonucleotides tar-
geting EphA4 did not affect motor function or survival
of Tg-SOD1G93A or Tg-PFN1G118V mice, although it signif-
icantly delayed (from 154 to 199 days) the onset of symp-
toms in Tg-PFN1G118V.172 It should be mentioned that Tg-
PFN1G118V mice carry a transgene encoding for the G118V
variant of profilin 1 gene (PFN1) that has been associated
with rare cases of FALS.173 The success of chemical target-
ing of EphA4 to prolong survival in animal models over
oligonucleotide targeting could be related to the fact that it
targets Eph4 both to the CNS and to the periphery, while
oligonucleotides administered icv target only the CNS.
Lithiumcarbonate (Li2CO3) increased the 12-month sur-

vival probability of ALS patients bearing the UCN13A C/C
polymorphism. Thus, lithium carbonate may be used only
for this patient subgroup.174 Another well-described ALS
gene modifier is CX3CR1.175 Deletion of Cx3cr1 in Tg-
SOD1G93A mice reduced lifespan, increased neuronal loss
and SOD1 aggregation.176
Another ALS gene modifier with potential pharmaco-

logical application is the IL6R C allele that results in the
substitution D358A in the interleukin 6 receptor. IL6R C
ALS carriers have increased levels of IL6 and soluble IL6R
in serum and CSF and accelerated disease progression
rates;177 nevertheless, deletion of Il6 in Tg-SOD1G93A did
not alter the lifespan.178 Administration of tocilizumab, a
humanised monoclonal antibody against IL6R, in SALS
patients displaying strong expression of inflammatory
genes in peripheral blood mononuclear cells (PBMCs),
attenuated clinical symptoms. In contrast, administration
of tocilizumab in SALS patients with weak inflammatory
gene expression upregulated the inflammatory reaction.179
Whether anti-IL6R therapiesmay bemore effective in IL6R
C carriers with no SOD1 mutations remains to be investi-
gated.

4 ANTIRETROVIRALS THERAPY
FOR ALS

In the 1990s, antibodies against foamy viruses were
detected in serum of SALS patients180 and a clinical study
was initiated to treat SALS patients positive for anti-

bodies against the foamy virus human spuma retrovirus
(HSRV), with zidovudine, though it showed no clinical
benefit.181 Later, the implication of HSRV in ALS patients
was challenged182 and currently foamy viruses are not con-
sidered to participate in ALS.180
Human endogenous retroviruses (HERV) represent

approximately 8% of the human genome. They are divided
into three classes, I, II and III, based on tRNA-primer
binding site. HERV-K elements belong to class II carry-
ing a complete ORF for gag, pol and env and can produce
virus-like particles.183 Expression of HERV-K was found
in a subgroup of ALS patients.184,185 TDP-43 regulates the
expression of HERV-K through binding to the long ter-
minal repeats of the retrovirus.186 The env viral protein is
probably responsible for ALS symptoms since transgenic
mice expressing the env gene under a neuronal specific
promoter show loss of upper and lower motor neurons.186
Approved anti-HIV reverse transcriptase inhibitors block
the replication of HERV-K viral particles by inhibiting the
HERV-K reverse transcriptase,187,188 while the integrase
inhibitor raltegravir could also blockHERV-K viral particle
replication.188 Based on these data, in terms of the ongo-
ing clinical trial (NCT02437110), ALS patients with ele-
vated (> 1000 copies/ml) HERV-K levels are treated with a
combination of four anti-HIV drugs, darunavir, ritonavir,
dolutegravir and tenofovir alafenamide. Thus, this study
has been designed based on molecular analysis of ALS
patients and its completion will define the role of endoge-
nous retroviruses in ALS. The presented ALS subgroups
and the compounds that can be directed for their specific
treatment are summarised in Figure 7 and Table 3.

5 DESIGN OF NEW CLINICAL TRIALS

The genetic backgroundofALSpatients has not been taken
into consideration when designing clinical trials, except of
those trials which involved oligonucleotide drugs that by
default target mutated genes; thus DNA analysis is indis-
pensably required for patient selection. Specifically, the
clinical trial NCT02623688 with the antisense drug tar-
geting SOD1 tofersen (BIIB067) enrols only patients with
confirmed SOD1 mutations, while the NCT03626012 that
involves the BIIB078 targeting C9ORF72 will enrol only
C9ORF72-ALS patients. However, few recent clinical tri-
als with synthetic drug compounds have been designed to
enrol ALS patients of a specific genetic background. Ari-
moclomol (XXI) was found to improve muscle strength
and prolong survival of Tg-SOD1G93A mice by increasing
the expression of heat shock protein 70.96,189 The clin-
ical trial NCT00706147 with arimoclomol included only
patients with confirmed SOD1 mutations. Arimoclomol
was safe and well-tolerated and further studies are needed
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TABLE 3 Therapeutic approaches for ALS

Drug name Mechanism
of action

Preclinical
model

Effect Replicated in
humans

Limitations Ref/clinical trial

Riluzole Anti-
excitotoxic,
glutamate
release
inhibitor

Tg-SOD1G93A

Tg-
TDP43A315T

Tg-
FUS(1-359)

mice

No statistically
significant effect
in lifespan or
motor function

Lifespan
extension by
2–3 months

Limited efficacy 30–32

No effect in
disease

progression

Palliative use

Ceftriaxone Anti-
excitotoxic,
increases
EAAT2

expression

Tg-SOD1G93A

mice
Improvement of
ALS phenotype

No effect in
non-stratified
by genotype
ALS patients

Potential mutation
dependent

therapeutic effect

33,34

Lifespan extension
by 10 days

No effect in
non-stratified
by genotype
ALS patients

Efficacy potentially
limited to
SOD1-ALS
patients

NCT00349622

Thalidomide Inhibitors of
TNFα

production

Improvement of
motor function
and body weight

37–39

Lenalidomide Lifespan extension
by 3 weeks

Dichloroacetate
Pyruvate
dehydroge-
nase kinase
inhibitor

Improvement of
grip strength

44

Lifespan extension
by 2 weeks in

male and 10 days
in female mice

Olesoxime
Mitochondrial

pore
modulator

Neuronal cell death
reduction

No effect in
non-stratified
by genotype
ALS patients

45,46

Coenzyme Q10 Antioxidant Lifespan extension No effect in
non-stratified
ALS patients

48,49 NTC00243932

Vitamin E Antioxidant Delay of disease
onset

No statistically
significant
effect

51,52

Rasagiline MAO-B
inhibitor,
antioxidant
and anti-
apoptotic
functions

Improvement of
running wheel
performance

Reduction of
oxidative stress

Results should be
confirmed

55 NCT01879241 NCT01786603

Potential
modifier of
disease

progression
No effect in

survival
(Continues)
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TABLE 3 (Continued)

Pyrimethamine Suppressor of
SOD1

aggregates
formation

Reduction of
SOD1 in CSF of
SOD1-ALS
patients

Long-term clinical
studies should be

conducted

64 NTC01083667

Advantage: safe
and

well-tolerated
Ebselen Suppressor of

SOD1 toxic
aggregates
formation

Tg-SOD1G93A

mice
Delay of disease

onset

76

Cu(II)ASTM Suppressor of
SOD1 toxic
aggregates
formation

Tg-SOD1G93A

and Tg-
SOD1G37R

mice

Improvement of
ALS symptoms

Ongoing clinical
trial

No genotype
selection for
SOD1-ALS
patients

77–78 NCT02870634

Lifespan extension NCT04082832
Sephin 1 Selective

inhibitor of
PPP1R15A

Tg-SOD1G93A

mice
Improvement of
motor function
and body weight

90

Arimoclomol Heat shock
protein
inducer

Tg-SOD1G93A

mice
Delay of symptoms

onset Lifespan
extension

No important
therapeutic
effect in

SOD1-mutant
ALS

96–98 NCT00706147

Improvement of
muscle function

Advantage: safe
and

well-tolerated
Prevention of SOD1

aggregation
DB1246 (XX) Exhibit high-

affinity
binding on
GGGGCC
RNA G-

quadruplexes

Human iPSC-
motor and
iPSC-
cortical

neuron cell
lines

Reduction of RNA
foci and decrease

of DPRs

Not validated in
ALS patients

109

DB1247 (XXI) GGGGCC
repeat-

expressing
Drosophi-

las

Decrease of DPRs

DB1273 (XXII) Improvement of
survival of larvae

Apilimod PIKFYVE
inhibitor

C9-BAC mice Reduction of DPRs 114

Rolipram PDE4
inhibitor

Primary hip-
pocampal
neurons

Decreased
poly(GA)

116

Rapamycin Autophagy
activator

Drosophila
ALS/FTD
model

Lifespan extension Different ALS
subtypes

136

Tg-SOD1G93A

mice
Decrease of

survival

137

Nilotinib Tyrosine
kinase
inhibitor

Tg-TDP-43wt

mice
Neuroprotective

effect

140

(Continues)
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TABLE 3 (Continued)

Bosutinib Tg-TDP-43wt

mice
Neuroprotective

effect
iPSC-derived

motor
neurons
from TDP-
43-ALS or
C90RF72-
ALS

Increase survival 141

Tg-SOD1G93A

mice
Delay of disease

onset and
increase survival

Pioglitazone PPARγ
agonist

Tg-TDP-43wt

and
Tg-TDP-
43G298S

Drosophi-
las

Improvement of
the locomotor
function

No effect in
combination
with riluzole

Drosophilamodels
do not

recapitulate the
corresponding
human ALS
subtypes or

therapeutic effect
is mutation
dependent

148–149 NCT00690118

Betamethasone Antioxidant Genotype
selection for
FUS-ALS
patients

NTC03707795

to evaluate the therapeutic benefit.98 In the same con-
text, a clinical trial with pyrimethamine (XLIV) for FALS
with SOD1 mutations to determine the safety and tolera-
bilitywas performed (NCT01083667). Further, ametformin
(XLV) clinical trial for treatment ofC9ORF72ALS patients
(NCT04220021) is now recruiting patients. This was based
on the fact that although metformin has no beneficial
effect in the phenotype of Tg-SOD1G93A mice,190 in C9-
ALS/FTD mice it mitigated disease symptoms.191

5.1 Colchicine – an example of genetic
analysis to exclude FALS patients

Colchicine is an antiinflammatory drug that can also
induce the expression of heat shock protein B8 (HSPB8)
that enhances autophagy to remove TDP-43 of SOD1
misfolded proteins or C9ORF72-related aggregated poly-
dipeptides.192,193 An ongoing clinical trial for SALSpatients
(NCT03693781) excludes patients with mutations in SOD1,
TDP-43, FUS and C9ORF72.192

5.2 Retrospective analysis of outcomes
of clinical trials

These studies could reveal relations between chemical
treatment and genetic background. In some new clini-

cal trials, ALS patients are screened for certain muta-
tions byDNA sequencing. In certain clinical trials, patients
have provided blood samples for future DNA analysis that
could be exploited in retrospective studies. Creatine is a
representative example. Initially creatine administration
to ALS patients did not show any improvement of clin-
ical symptoms.194 However, post hoc analysis of clinical
data and genetic background of patients showed that ALS
patients with A/A and A/C polymorphisms inMOBP gene
will benefit for creatine treatment.195 In the samedirection,
a meta-analysis of clinical trials that used lithium carbon-
ate in ALS showed that lithium carbonate increased the 12-
month survival probability from40% to 70% in patients that
carry the C/C polymorphism inUNC13A, while no effect in
C9ORF72 carriers.174 The basis for this effect is unknown
but it appears that pathways involving UCN13A are also
regulated by lithium.196

5.3 Drug combinations

Targeting of multiple ALS pathways can potentially be
achieved by administration of drug combinations. In this
direction, a combination of ciprofloxacin and celecoxib
resulted in significant improvement of motor activity
as assessed by swimming distance and velocity in Tg-
SOD1G93R zebrafish and in zebrafish generated after injec-
tion of an mRNA encoding for TDP-43G348C in one-cell
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F IGURE 7 Genotype-based classification of described ALS subtypes and representative targets and compounds for corresponding
patient subtypes. The image was created with Biorender (http://biorender.com)

zygote.197 A clinical trial to assess the efficacy of this drug
combination in ALS has been initiated (NCT04090684).
It is expected that the therapeutic efficacy of drug cock-
tails administered in stratified patient groups may further
improve efficacy.

6 TARGET IDENTIFICATION USING
GENETICALLY ENGINEEREDMODELS
AND iPSCs

Genetic ablation or transgenic studies on the Tg-SOD1G93A
background may unravel new targets for ALS treatment
but may not always be of direct clinical relevance since
geneticmodification has already taken place at the embryo
stage and well-before disease symptoms appear. Drugs are
administered when diagnosis has been made, that for ALS
may take up to 12 months after the appearance of symp-
toms. In this sense, a marginal effect on symptoms or life
extension after deletion of a gene in an ALS mouse model
could indicate that pharmacological targeting of the gene-
encoded protein will not be effective in patients. Inducible
knockout models or inducible transgenic models on an
ALS background (e.g. Tg-SOD1G93A) will provide a more
sophisticated practice to search for relevant pharmacolog-

ical targets since it will allow genetic modification to take
place after the appearance of symptoms. In this direction, it
has been demonstrated that reduction of EPHA4 in adult-
hooddoes not affect survival of Tg-SOD1G93Amice.198 Thus,
chemical targeting of EPHA4 after the onset of symptoms
may not delay disease progression. Finally, extrapolation
of animal data to humans should be made in a very cau-
tious manner since mouse models may not recapitulate
human ALS, thus some compounds that were found effec-
tive in treating mice may not be beneficial to patients.
Nevertheless, this problem may be more pronounced
when extrapolating data frommore distant drosophila and
zebrafish.
Testing of new chemical entities for ALS is now boosted

by the use of iPSCs generated from patient cells that can
recapitulate in vitro the mechanisms of ALS pathology.
Indeed, iPSCs have been generated mainly from fibrob-
lasts isolated from FALS and SALS patients. These cells
can differentiate to motor neurons but also oligodendro-
cytes, astrocytes etc. iPSCs can be manipulated geneti-
cally to correct the mutated gene and generate isogenic
control cell lines. The usefulness of iPSCs in the study
of ALS but also their limitations as they are in vitro
models, and their relatively high cost were reviewed
elsewhere.199,200

http://biorender.com
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7 CONCLUSION

Current clinical and experimental data cumulatively sug-
gest that it is unlikely that a ‘universal’ ALS drug will
be effective in ALS patients. In contrast, different sub-
types of ALS patients will require different drug treat-
ment strategies according to the suggested chemogenomic
approach. In this direction, the use of animal models for
testing drugs against a certain genetic background or the
re-evaluation of already completed animal and/or clin-
ical studies is of great importance. As elaborated here,
the extrapolation of preclinical data to patients should be
performed cautiously since evolutionary distant models
such as drosophila and C. elegans may provide false find-
ings regarding the efficacy of a drug, in contrast to mice.
It is known that the genome and the networks of func-
tional connectivity are significantly different between the
more evolutionary distant animals and these could sig-
nificantly affect the biological outcome of pharmacolog-
ical treatment. Other factors should also be taken into
consideration when evaluating preclinical data, for exam-
ple, in many preclinical studies, treatment was initiated
before the onset of symptoms, which cannot be applied to
ALS patients. Currently, diagnosis of ALS takes almost a
year since it relies only on the assessment of the clinical
status, the electrophysiological examination and progres-
sive exclusion of other pathologies. Nonetheless, the clin-
ical benefit of riluzole is higher when administered early
in the course of the disease.201 Thus, early diagnosis will
enhance therapeutic efficacy. For this, molecular diagno-
sis of ALS is urgently needed in clinics.4 If early drug treat-
ment is combined with patient subgrouping/stratification,
it is expected to further extend the clinical benefits of
the tested compounds. To this end, it is noted that next-
generation sequencing is important for patient stratifica-
tion, since it can screen not only for variants in known
ALS genes but also in other ALS related genes, such as
gene modifiers or drug metabolism-related genes like the
CYP1A2.
Finally, it should be noted that there are potential lim-

itations in stratifying ALS patients for treatment given
that most ALS cases are sporadic. For SALS, we already
know that genetic testing may identify the presence of
pathogenic variants in knownALS-associated genes. How-
ever, there will be a large percentage of SALS patients
that will lack such variants consequently, these patients
cannot be subgrouped. Given that the disease is rare,
it may be difficult to recruit large enough cohorts of
stratified ALS patients to derive statistically significant
conclusions. Further, ethical issues must be considered
when stratifying patients based on personalised genetic
background.
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