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SUMMARY
Genomic structural variation (SV) affects genetic and phenotypic characteristics in diverse organisms, but
the lack of reliable methods to detect SV has hindered genetic analysis. We developed a computational al-
gorithm (MOPline) that includes missing call recovery combined with high-confidence SV call selection
and genotyping using short-read whole-genome sequencing (WGS) data. Using 3,672 high-coverage WGS
datasets, MOPline stably detected �16,000 SVs per individual, which is over �1.7–3.3-fold higher than pre-
vious large-scale projects while exhibiting a comparable level of statistical quality metrics. We imputed SVs
from 181,622 Japanese individuals for 42 diseases and 60 quantitative traits. A genome-wide association
study with the imputed SVs revealed 41 top-ranked or nearly top-ranked genome-wide significant SVs,
including 8 exonic SVs with 5 novel associations and enriched mobile element insertions. This study demon-
strates that short-read WGS data can be used to identify rare and common SVs associated with a variety of
traits.
INTRODUCTION

Structural variation (SV) is generally defined as amutation at least

50 bp larger than a short insertion or deletion (indel) and consists

of deletions (DELs), insertions (INSs), duplications (DUPs), inver-

sions (INVs), and translocations (TRA). SVs are the primary deter-

minants of genomic variation at the species and individual

level.1–3 Because of the large size of SVs compared with SNVs

and indels, SVs have much greater potential to alter gene func-

tion and gene regulation and modify coding regions, cis-regula-

tory regions, or stretches of topologically related domain se-

quences.4–7 Thus, SVs have been implicated in many human

diseases, including neurodevelopmental disorders and cancer,

as well as in differences in gene expression between

individuals.8–11

Although effective detection of SVs remains challenging

because of their large size and variety,1,12 sequencing-based

and array-based-methods have been developed. Sequencing-

basedmethods aremore sensitive to detect SVs and have higher

resolution to determine breakpoints (BPs) compared with
This is an open access article under the CC BY-N
array-based methods. Recent advances in single-molecule

sequencing and linked-read sequencing technologies that

generate long reads (LRs) have enabled more efficient detection

of SVs than sequencing of short reads (SRs) because LRs can

span more SVs and repeat genomic regions than SRs.13–15

Comprehensive SV detection has been performed on several

pilot human samples using multiple sequencing platforms,

including SR or LR whole-genome sequencing (WGS), as repre-

sented by the Genome in a Bottle (GIAB) consortium and the Hu-

man Genome Structural Variation Consortium (HGSVC).16–21 SV

detection with LR WGS data generates approximately about

three times as many SVs per individual (�24,000) as detection

with short-lead WGS data (�7,500). However, the high cost of

LR sequencing and the high demands on the quality and quantity

of input DNA make SR-based SV detection an effective method,

especially for multiple samples. Large-scale SV identification

with 1,000–10,000 SR WGS datasets has been reported on a

population scale in the 1000 Genomes (1KG) Project,2 the gno-

mAD project,22 the NHGRI Centers,23 the Human Genome

Diversity Project (HGDP),16 and the HGSVC.24
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The computational algorithm for SV detection based on SRs

employs a basic method with multiple alignment signals, such

as read pair (RP), split read (SP), read depth (RD), and assembly

(AS).1,13,25,26 These indirect alignment signals depend on SV

detection algorithms, SR preparation, and read alignment

methods and often lead tomisassignment to SVs and false nega-

tive calls because of ambiguous and imprecise alignment of

SRs.27 Thus, current computational methods are hampered

from stable and accurate detection of SVs, and no single algo-

rithm can accurately and sensitively detect all types of

SVs.28,29 Many projects use multiple algorithms to call SVs and

then merge the output to increase accuracy and/or

recall.2,14–16,22,23,30–37 In our previous systematic evaluation of

overlapping SV calls, some specific pairs of algorithms, but not

combinations of methods used in the algorithm (i.e., RP, SP,

RD, or AS), showed higher accuracy with specific SV types

and size ranges compared with other pairs.29 Therefore, careful

selection of overlap calls is necessary to improve SV detection

accuracy.

We developed MOPline, a computational algorithm that iter-

atively merges optimized overlapping calls from multiple algo-

rithms in each SV category to increase precision and genotype

reference alleles of all samples at SV sites to increase recall.

We detected �16,000 SVs per individual from 414 high-

coverage 1KG WGS data and 3,258 BioBank Japan (BBJ)

WGS data (Figure 1A). A method called supplementing missing

calls (SMC), which restores missing variants, increased high

reliability variants by 42%. The SR-based SVs detected

included many LR-based SVs in non-repeat regions despite

depleting many LR-based SVs detected in repeat regions.

BBJ SVs include many rare coding SVs that disrupt known

and potential novel disease risk genes and common SVs in

high linkage disequilibrium with published disease genome-

wide association study (GWAS) variants. SV genotypes of

BBJ 181,622 individuals were imputed using a reference panel

containing the BBJ SVs (Figure 1B). GWASs for binary and

quantitative traits using these imputed genotypes showed

that many genome-wide significant loci contained SVs, some

of which were likely causal variants.

DESIGN

Overlap calls between multiple SV detection algorithms show

overall high accuracy, but the degree of precision and recall of

overlap calls depends on the combination of algorithms, as in

our previous study.29 Using WGS data from NA12878, the preci-

sion and recall of overlap calls were systematically determined

with various combinations of SV detection algorithms (STAR

Methods). The precision and recall of overlap calls varied signif-

icantly between pairs from four or six randomly selected algo-

rithms for each type of SV (Figures S1 andS2). These results indi-

cate that selecting the appropriate pairs and number of

algorithms is necessary to achieve a good balance between pre-

cision and recall for SV. We expected that repeated merging of

overlapping calls obtained only from ‘‘good’’ pairs of algorithms

that exhibited high precision would yield a highly reliable set of

SV calls. We named this merging method MOP (merging overlap

calls from selected pairs of algorithms).
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Using the MOP merging method and a recovery method for

variants missed through MOP-based selection, we developed

a computational algorithm (MOPline) for efficient detection and

genotyping of SVswith high reliability. MOPline is flexible enough

to incorporate user-specified algorithms, but here we use a

version of MOPline (MOPline-7t) that uses seven existing algo-

rithms. An overview of MOPline-7t is given in Figure 1A (see

Table S1 for the algorithms used in the other MOPline deriva-

tives). MOPline uses single and multiple WGS datasets from hu-

man and non-human species, and the process consists of five

steps: (1) selecting and merging overlap calls from pre-selected

pairs of algorithms, (2) joint calling of multiple SV call sets, (3)

genotyping, (4) SMC, and (5) adding annotation and filtering.

The first step selects high-confidence SV calls for each sample,

and the fourth step recovers missing calls from joint-called SV

data. The SMC step is coupled with SV genotyping, which is

based on multinominal logistic regression with alignment statis-

tics of RD and split reads. SMC increased the median number of

SV calls per sample by about 1.4–2.3 times, although the total

number of SV sites did not change. See STAR Methods for a

more detailed explanation of the MOPline algorithm.

RESULTS

The MOPline algorithm efficiently detects and
genotypes reliable SVs from single or multiple SR WGS
datasets
To evaluate the performance ofMOPline, we determined the pre-

cision and recall of the SV calls detected with MOPline using

multiple real WGS datasets and reference SV datasets (STAR

Methods; see Table S2 for reference SV sets) and compared

them with those determined for 32 existing SR-based SV detec-

tion algorithms, which showed high precision and recall in a pre-

vious study.29 MOPline achieved superior performances in

almost all categories except INV (see Figure 2 for NA12878, Fig-

ure S3 for all datasets, and Figures S4–S7 for DELs and DUPs in

three size ranges). Note that the lower recall value for NA19240

than for NA12878 is due to the difference in the number of refer-

ence SVs for each (Table S2). The simplemergemethod (Simple-

merge-7t; simple merging of SV call sets from 7 tools), in

contrast, showed a significantly lower level of precision despite

a high level of recall (Figure 2). MOPline with other combinations

of 4–14 algorithms also showed similarly high levels of precision

and recall in almost all cases (Figures S3–S7). These results sug-

gest that six to nine algorithms are required for high-quality

detection of all types and sizes of SVs with MOPline. In the eval-

uation of SV genotyping, the accuracy of the MOPline genotyp-

ing for DELs, INSs, and INVs were shown to be among the best

among the existing SR-based SV genotyping algorithms (Fig-

ure S8). In particular, the superiority of MOPline over INS geno-

typing seems high because graph-based genotyping algorithms,

such as BayesTyper, GraphTyper2, and Paragraph, require INS

sequences for INS genotyping. In addition, the SMC function

increased true positive (TP) calls by 42%, as explained in the

next section.

The ensemble SV detection pipelines GATK-SV and sv-pipe-

line (svtools), which combine the results of five SV detection al-

gorithms and three SV detection algorithms, respectively, have
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Figure 1. Overview of the framework for SV detection and SV imputation

(A) Overview of MOPline-7t. MOPline-7t is a derivative of MOPline and uses seven SV detection algorithms, six for DEL and DUP and four for INS and INV, as

indicated. The algorithm used can be selected flexibly according to the research purpose and environment. The SV call sets for each SV type are simply merged

without redundancy (merged SV calls). Then, from the merged SV calls, overlap calls from pre-selected algorithm pairs are selected for each SV type and size

(legend continued on next page)
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been used in large-scale SV detection projects.22,24,36 To fairly

compare the SV calling performance of these pipelines and MO-

Pline, we detected SVs with these tools using 100 high-coverage

WGS datasets from the 1KG project (see STAR Methods for de-

tails). MOPline outperformed the other two pipelines in number

of calls per sample and TP calls for NA12878 while maintaining

almost 95% precision (Figures S9A, S9J, and S9K). The sv-pipe-

line had many DELs, DUPs, and INSs that were not shared with

the other pipelines (Figures S9F–S9H), likely because of the high

number of false-positive DEL/DUP calls and low-frequency INSs

(Figures S9A, S9I, and S9K). For DELs/INSs specific to each

pipeline in NA12878, many were located in the simple tandem

repeat (STR) region, and there were significantly more SVs spe-

cific to MOPline compared with the SVs of the other pipelines

(Figure S9I). The run time of the MOPline SV calling step, which

runs seven external SV detection algorithms, was 29 h/sample

using 2 CPU cores, while the run time of GATK-SV was 20

h/sample, consuming a large amount of memory (146 GB) and

CPU (80 cores) (Figure S9L). The run time and memory usage

for the MOPline merging and post-merging steps were signifi-

cantly less than those of the sv-pipeline (Figures S9M and S9N).

SV detection from high-coverage 1KG WGS data with
MOPline
We then evaluated MOPline’s performance with 414 multiethnic

high-coverage (303) WGS datasets from 1KG. The total number

of SVs detected was 98,393, and the median number of SVs per

individual (14,575) was approximately 1.6–3.3 times higher than

previous results using WGS data from diverse populations22–24

(Table 1). Comparison between MOPline 1KG-SVs, gnomAD-

SVs, and HGSVC-SVs (data corresponding to the same 1KG

samples used in this study) indicated that SVs unique to this

study were abundant in the STR region (Figure S10). Because

of the higher mutation rate of STR,38 the average AF of SVs in

STRs was significantly higher than in non-repeat regions

(Figures S10D and S10E), and the higher number of SVs per in-

dividual in this study may be in part due to the enhanced detec-

tion of SVs in STRs.

Consistent with the previous observations,2,22 the total num-

ber of SVs detected in Yoruba in Ibadan, Nigeria (YRI) was the

highest of any SV type (Figure S11A), reflecting the high number

of SVs specific to YRI (Figure S11B). Allele frequencies at each

SV site showed moderate variation among populations, with

the highest agreement between Han Chinese in Beijing, China

(CHB) and Japanese in Tokyo, Japan (JPT) (mean, 0.99) and

lower agreement between YRI and other populations (0.82–

0.83) (Figures S11C and S11D). Principal-component analysis

(PCA) using the detected SVs clustered the four populations
range. The calls selected for each SV category aremerged into one SV call set for e

each SV site are added to the vcf file. SV call sets frommultiple samples aremerge

multinominal logistic regression with the read alignment statistics. Reference allel

Finally, DELs/DUPs with inconsistent characteristics related to read coverage

overlapping genes.

(B) Overview of SV imputation for GWASs performed in this study. To create ref

datasets using MOPline-7t was integrated with SNVs/indels detected from the

converted to pseudo-SNP genotypes at the first BP of SV. Two different referenc

Beagle 5. Array-based SNP genotype data of 181,622 BBJ samples were imputed

score of 0.3 or higher were used for GWAS.
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into three structures overlapping CHB-JPT (Figure S11E),

consistent with the results using tag SNPs (Figure S11F). These

results indicate thatMOPline faithfully captures the differences in

genetic architecture composed of SVs in multiple populations. In

addition, compared with the result of single sample calls for

NA12878, NA12878 included in Utah residents with ancestry

from northern and western Europe (CEU) had 42%more TP calls

and less loss of precision (Figures S11G and S11H), indicating

high efficacy of the MOPline SMC function in SV call recovery.

We were interested in high-frequency (HF) SVs observed in

any population that should be integrated into future human refer-

ences. We found 3,068 SVs with site frequencies greater than or

equal to 0.9 in any population (Table S3). Over 70% of INSs and

DUPs overlapped with repeat regions including STRs and

segmental DUPs. These SVs were validated with NA12878

PacBio CCS LR alignment data and the IGV viewer and showed

a high validation rate of 93%; for HF DELs, 252 were homozy-

gous DELs in S90% of 414 individuals. Many of the HF SVs

found in GRCh37 were also observed in GRCh38. Approximately

64% of these 252 homozygous DELs matched the Alu elements

annotated in the GRCh37 reference, with a size of approximately

300 bp. Reducing the proportion of homozygotes in 414 individ-

uals decreased the Alu content but not the content of other types

of retroelements (Figure S12). These results suggest that the hu-

man reference sequence (i.e., GRCh37) contains low-frequency

INSs, including Alu INSs, which have recently been transposed in

some individuals derived from the reference, resulting in detec-

tion of HF DELs in many individual genomes.

The SR-based MOPline results (SR-SVs) were compared with

LR-basedSVcallingdata (LR-SVs) from the recently reportedLR-

based, haplotype-resolved HGSVC SV set.17 Approximately

35% of the 1KG SR-SVs overlapped with repeat regions,

including STRs and segmental DUPs (Figure S13A). In contrast,

more than 70% of LR-SVs overlapped with repeat regions (Fig-

ure S13B). About 40% of the total number of SR-SVs and LR-

SVs were shared with each other (Figures S13C and S13E), and

the shared proportion of SR-SVs increased to 75% when AF

was limited to S 0.05 (Figure S13D). For SVs specific to SR-

SVs, approximately 60%were located in non-repeat regions (Fig-

ure S13C). In contrast, only 6%–8% of LR-SV-specific SVs were

located in non-repeat regions (Figure S13E). These results indi-

cate that most of LR-SVs located in non-repeat regions are com-

mon to SR-SVs. In addition, SR-DELs tend to contain more SVs

that are S 10 kb in length than LR-DELs (Figure S13G), which

is consistent with the results detected with the NA12878 LR

data (Figures S13H–S13L), although some of the large DELs we

confirmed may contain false positives because of ambiguous

alignments in segmental DUPs.
ach sample, and SR alignment statistics on coverage and soft-clipped ends for

d into a single vcf file (joint call). SVs from each sample are genotyped based on

es for missing calls are regenotyped by the genotyping-coupled SMC function.

or other read alignment signals are filtered, and SVs are annotated for their

erence panels for imputation, the BBJ-SV dataset detected from 3,258 WGS

same WGS data. In the integrated data, SV genotypes, except INVs, were

e panels with S 0.01 AF and S 0.0003 AF were generated after phasing with

with the reference panels using Impute 5, and imputed genotypeswith an INFO
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Figure 2. MOPline achieves higher accuracy in SV detection than existing SV detection algorithms

Using five NA12878 WGS datasets (data1–data5), we called DELs (A), INSs (B), DUPs (C), and INVs (D) with the indicated SV detection algorithms, including

MOPline-7t. F-measures were determined for each SV type. The mean values of the F-measures are indicated by blue bars. Error bars represent standard error.
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Robust and reliable detection of SVs from 3,258 BBJ
WGS datasets with MOPline
SVswere calledwithMOPline-7t using 3,258 high-coverageWGS

datasets fromBBJ project participants.We detected a total num-

ber of 133,841 SVs, including 55,284 DELs, 15,222 DUPs, 61,750

INSs, and 1,585 INVs (Table 1; hereafter, these SVs are called

BBJ-SVs), ofwhich 51,087 (38%)were singletonSVs. Themedian

number of SVs per individual was 16,122, which is approximately

1.7- to 3.7-fold higher than previous results with SR WGS

data from various populations. Statistical evaluation using auto-

somal common BBJ-SVs (AFS 0.01, excluding SVs in repeat re-

gions) showed statistics similar to the gnomAD-SV study22

(Figures 3A–3D). The median peak r2 of linkage disequilibrium

(LD; 0.81) was comparable with 0.85, a value reported in the gno-

mAD-SV study. The commonSVs thatmatched the gnomAD-SVs

showedamedianpeakLD r2of 0.93 (Figure3B). 91%of theSVs in

the BBJ were in Hardy- Weinberg equilibrium (HWE) (Figure 3C),

which is slightly higher than the reported value (86%) in the gno-

mAD-SV study. The overall AF concordance for the same East

Asian (EAS) population between the two studies was 0.94 (Pear-

soncorrelation coefficient) (Figure3D). About 80%of thecommon

EAS gnomAD-SVsmatched the commonBBJ-SVs,whereas only
54% of the common BBJ-SVs were shared with the EAS gno-

mAD-SVs. Validation in the 1KG-SVs using NA12878 PacBio

CCS LR alignment data showed 93%–98% precision for any SV

types except for INVs (Figure 3E). In the analysis of HWE and

LD, thegenotypingquality ofDUPswas lower than the other types

of SVs, mainly because of the inefficient ability to determine the

copy number allele state of DUPs. However, the presence of de-

tected DUPs was confirmed with high precision by validation

with LR data. These results indicate that MOPline provides high-

quality detection and genotyping of SVs.

ThedistributionofAFofSVsdetected in the3,258 sampleswas

similar to the distribution of the SNVs/indels detected in the same

datasets (Figures 3F and 3G). DELs, DUPs, and INVs tended to

increase in size with lower AF (Figure S14), consistent with previ-

ous studies.22,23 The numbers of SVs detected per sample devi-

ated considerably less between samples than with a single algo-

rithm despite theWGS data having been generatedwith different

sequencing libraries and platforms (Figures S15 and S16), indi-

cating robustly stable SV detection by MOPline. MOPline de-

tected DELs derived from Alu and LINE1mobile elements, corre-

sponding to anHFpeak around300bpand a low-frequency peak

of �5–6 kb, respectively (Figure 3H). The proportion of SVs,
Cell Genomics 3, 100328, June 14, 2023 5



Table 1. SVs detected using SR WGS data in current and previous studies

Study Sample size Coveragea
Total/per

individualb Total SVs DELs DUPs INVs INSs (MEIs)

Other

typesc

This study 414 (1KG) 37.63 total 98,393 41,406 12,606 1,590 42,791 (21,344) 0

per individual 14,575 5,244 1,714 133 7,484 (1,741) 0

3,258 (BBJ) 27.93 total 133,841 55,284 15,222 1,585 61,750 (20,919) 0

per individual 16,122 5,511 2,160 108 8,343 (1,544) 0

gnomADd 12,653 323 total 335,470 172,637 47,463 788 109,278 (77,582) 5,304

per individual 7,439 3,725 1,051 14 2,612 37

CCDGe 17,795 >203 total 241,031 N/A N/A N/A N/A N/A

per individual 4,442 (35%) (11%) N/A (27%) N/A

HGSVC/

1KG cf
3,202 343 total 173,355 90,259 28,242 920 49,693 (34,828) 4,241

per individual 9,452 4,075 1,184 68 3,530 (1,194) 595

414g 37.63 total 71,110 33,929 10,714 471 24,047 (14,356) 1,949

per individual 9,019 3,931 1,089 65 3,449 (1,169) 485
aMean coverage per sample.
bMedian of SVs per individual.
cTRA, CNV, or complex SV.
dCollins et al.22

eAbel et al.23

fByrska-Bishop et al.24

gGRCh37-based data for 414 samples matching the 1KG data used in this study.
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except for INSs, overlapping exons of protein-coding genes was

higher than SNVs/indels (Figure 3I). The number of SVs per

individual overlapping exon of protein-coding genes was

30%–40% of the sum of loss-of-function (LoF) SNVs and indels

(Figure 3J), comparable with the gnomAD-SV study.22 We exam-

ined the pLI scores39 of the SV-overlapping genes. DEL- and

DUP-overlapping genes with pLI S 0.9 per individual were rare

and comparable with S 0.9 pLI genes with LOFTEE LoF SNVs

(Figure 3K). SVs overlapping with S 0.99 pLI genes were rich in

rare variants with AF < 0.001 (odds ratio [OR] = 2.1, p = 4 3

10�9, Fisher’s exact test) (Figure 3L). In addition, four and two

knockoutsofprotein-codinggenescausedbycompoundhetero-

zygous exonic SVs and SVs-SNVs, respectively, were detected

(Table S4). We further examined the constraint of the BBJ DELs

and DUPs on annotated coding and noncoding regions. In

DELs and DUPs, the phastCons super-conserved regions, the

VISTAexperimentally determinedenhancer regions, and thecod-

ing and the proximal 50-flanking regions (& 1 kb upstream of the

first exon) of the high-pLI genes were highly constrained (Fig-

ure 3M; Figure S17), in agreement with previous studies.22,23

For DELs/DUPs, protein-coding genes and noncoding genes

were constrained at a similar level, suggesting that noncoding

genes also play an important role in evolution.

BBJ-SVs include rare and common SVs for disease risk
The BBJ WGS data used were obtained from patients with any of

seven diseases, including four cancers, and with different Illumina

sequencing platforms between some sample sets (STAR

Methods). These were individuals with coronary artery disease

(CAD; n = 1,964), drug eruption (n = 189), colorectal cancer (n =

196),breast cancer (n=237),prostatecancer (n=215),gastriccan-

cer (n = 257), and dementia (n = 200). Despite possible bias

because of differences in sequencing platforms and small sample
6 Cell Genomics 3, 100328, June 14, 2023
sizes, we performed a gene-based burden test and searched the

ClinVar database for known disease risk genes with overlapping

exonswith SV.As controls, 2,353 non-cancer samples (361 female

samples forbreast cancer [BrCa] and1,992male samples for pros-

tate cancer [PrCa])wereused, and3,058controls fordementia.We

found that 17 known cancer risk genes deposited in ClinVar,

includingMLH1,MSH2, APC, ATM, and BRCA1, overlapped SVs

with coding exons in the corresponding cancer patient samples

(Table 2). These exonic SVs included all six pathogenic SVs found

in the cancer gene panel in our previous study40 and five additional

pathogenic SVs not found in that study. Two dementia samples

contained a 16-kb coding DEL at chr5:88114001 that overlapped

theexons of thepsychiatric diseasegeneMEF2C. All of these cod-

ing risk SVs were rare SVs with AF & 0.002 and heterozygous

except for the 173-kb DUP of the RNF43 gene. Rare exonic SVs

overlapping the known disease risk genes were enriched in case

samples (21:3; OR, 7.7; p = 1.9 3 10�4, Fisher’s exact test).

Somegenesnotdeposited inClinVardidnot showstatistical signif-

icance for many SVs because of limited sample size and low fre-

quency of associated SVs but, in certain disease groups, had en-

riched coding SVs (Table S5). Of the 16 SVs observed in multiple

samples, 10 were also found in gnomAD-SVs, most of which

were rare SVs with less than 0.001 AF, and 2 SVs were specific

to EAS populations (Table S5). Overall, all the SVs found were

rare SVs that were enriched in the corresponding disease case

samples, although they did not reach the Bonferroni-corrected

threshold because of small sample sizes. We also found the com-

mon SVs, including 12 DELs and 8 INSs that were in a strong LD

with published GWAS signals, to be associated with these dis-

eases (Table S6). The 6.8-kb DEL in strong LD with the PrCa

GWASSNPwasacodingSVoverlapping theLILR3exon, suggest-

ing that this SV is a candidate for a causal variant. The associated

INSs were enriched for Alu INSs (7/8, 87.5%), compared with Alu
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Figure 3. Quality and characteristics of SVs detected by MOPline from 3,258 BBJ WGS datasets

(A) Linkage disequilibrium (LD) between the BBJ-SVs and their neighboring SNVs or indels. The top LD correlation coefficients (r2) of each autosomal common

(AF S 0.01) SV site are plotted for the indicated SV type, with median values indicated by dots and blue text. A total of 14,310 SVs were tested, excluding SVs

overlapping with repeat regions (see STAR Methods for details).

(B) LD between BBJ-gnomAD SVs and their neighboring SNVs or indels. We selected 7,440 BBJ-SVs overlapping with the common (AF S 0.01) gnomAD-SVs

found in both European and African populations, excluding those overlapping with repeat regions. The plot is the same as in (A).

(C) Hardy-Weinberg equilibrium (HWE) of the BBJ-SVs. p values obtained by HWE test for all autosomal BBJ-SVs are plotted for the indicated SV types. Themean

p values are indicated by dots. HWE (percent) represents the percentage of SVs for which the HWE p value is greater than the Bonferroni-corrected p value.

(D) Correlation of AF of SVs between BBJ-SVs and gnomAD-SVs.We selected common SVs (AFS 0.01, excluding SVs that overlap repeat regions) that matched

between BBJ-SVs and the gnomAD-SVs. Matched SVs were selected based on a BP distance of& 200 bp for INSs andS 50% reciprocal overlap for the other

types. Pearson correlation coefficients between AF of BBJ SVs and EAS-AF of gnomAD-SVs were calculated for all SVs and for each SV type. SV counts for each

SV type are indicated on each bar.

(E) Confirmation rate of NA12878 SVs detected with MOPline. The SVs (N = 11,851) of NA12878 contained in the 1KG CEU SVs were evaluated using two

reference datasets of NA12878 (the DGV-based and LR-based SV sets). The false-positive calls evaluated were further confirmed with alignment bam files

(legend continued on next page)
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INSs (34.3%) in INSs with AFS 0.01 (OR = 13.4, 95% confidence

interval [CI] = 1.7–109, p = 3.1310�3, Fisher’s exact test; 34.3%of

INSs were estimated to be Alu; see STAR Methods for details).

Taken together, these results indicate that BBJ-SVs can identify

disease risk SVs, including coding rare SVs and noncoding com-

mon SVs tagged with GWAS-significant SNVs.

SV imputation using BBJ-SVs
Because SVs and SNVs are associated with complex traits and

show genetic linkages, we were motivated to construct an impu-

tation reference panel for SVs, combining BBJ-SVs and SNVs/

indels (Figure 1B). Using this reference panel, we imputed array

genotype data for 181,622 BBJ samples (see details in STAR

Methods), which included the genotype data used in our recent

study.41 SVs had a lower imputation quality than SNVs in the

lower AF range, but almost 90% were imputed across all AF

ranges (Figure 4). To examine how faithfully SVs are imputed,

we used the 200 test samples randomly selected from 3,258

WGS samples for which the reference panel was created and

imputed the array genotype data of the selected test samples us-

ing the reference panel of the remaining 3,058 samples to calcu-

late precision and recall. We achieved overall precision (86%)

and recall (72%) of SV imputation (Figures S18A–S18E). We

then validated the false positives of imputed SVs from a selected

single sample using the IGV viewer with the bam alignment file of

the sample because MOPline could insufficiently genotype for

some samples to generate false-negative calls. This validation

confirmed the alignment signals associated with SVs in about

70% of the false positives, leading to overall precision (95%)

and recall (80%) of SV imputation (Figure S18F).

GWAS with imputed SVs identifies a number of
associated genes
GWAS was performed using the imputed data containing SVs

from BBJ 181,622 samples related to 42 diseases and 60 quan-

titative traits.42–45 We were interested in whether imputed SVs
generated with NA12878 CCS PacBio LRs and Illumina SRs using IGV viewer. SV

for all SVs and each SV type is shown with bars and blue letters.

(F) Percentage of total variants stratified by AF for each type of variant. The percen

(%) with AF ranges of >0.5, 0.05–0.5, 0.01–0.05, 0.001–0.01, and <0.001 are sho

(G) Percentage of variants per individual stratified by AF. The color bars corresp

(H)Size ranges forDELs. ThenumberofDELs in thesize ranges indicatedon thexax

exons of 20,268 protein-coding genes is indicated by gray lines on the right y axis.

(I) Percentage of variants located in the gene regions. The percentage of variant

according to the type of variant: DEL, DUP, INS, INV, SNV, and indel are indicated

indicates the gene-flanking regions located within 5 kb of the terminal exon.

(J) Mean number of LoF variants per individual. The LoF SVs include only variants

with snpEff, followed by LOFTEE, annotated as ‘‘high confidence’’ or ‘‘high impa

(K) pLI-stratified percentage of protein-coding genes with LoF variants per indivi

pLI-annotated genes are shown for each type of variant. For SNVs and indels, LoF

0.1–0.9, S0.9, and S0.99 are indicated by blue, light blue, yellow, and orange b

(L) Distribution of SVs overlapping with exons of pLI genes with pLI S 0.99 acros

BBJ-SV data is indicated by blue bars for the indicated AF range. The average p

(M) DELs and DUPs overlapping with specific genomic regions are constrained. G

(conserve), VISTA enhancers (enhancer), exons of protein-coding genes (coding

(promoter1K) and 10 kb (promoter10K) upstream of the transcriptional start sites

to genes with pLIS 0.9. Regions excluding the above regions and intron regions w

each region against those located in the intergenic regions was expressed as the

and orange bars, respectively, with CIs.
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could be identified as causal variants of previously identified or

novel GWAS loci. We identified 360 and 1,796 genome-wide sig-

nificantSVassociations for 26diseases and55quantitative traits,

respectively (Table S7). For the binary disease traits, 11 loci con-

tained significant SVs with p values comparable with the top

SNPs (Figures 5A and S19; Table S8). The DEL of 253 bp for

hyperlipidemia (DPL) was more significant than the top SNP in

p value and effect size (Figure 5B). The DEL of 30 kb for BrCa

was the previously reported common risk DEL for BrCa (Fig-

ure 5C), which deletes the N-terminal region of the APOBEC3B

protein and the C-terminal region of the APOBEC3A protein.46

The Alu INS for type 2 diabetes (T2D) was also associated with

body mass index (BMI) (Figure 5D) in the known locus47 and re-

ported to increase expression by 1.7-fold in an ectopic luciferase

reporter assay.48 Another Alu INS for PrCa (Figure 5E) was also a

previously reported Alu INS associated with PrCa,49 which

showed a 2.7-fold increase in expression in a reporter assay.48

Because the genetic component of PrCa, which is highly herita-

ble, would be useful in predicting future mortality (C.T., unpub-

lished data), we conducted survival analysis focusing on the Alu

INS of PrCa. We found that homozygous carriers of this PrCa-

associated INS who had not developed cancer at enrollment

had a highermortality fromPrCa than non-carriers (hazard ratio =

2.43, 95% CI = 1.27–4.65, p = 0.0074, in the Cox proportional

hazards model) (Figure 5M).

For quantitative traits, we found a total of 21 top and 29 nearly

top associations with 22 traits (Figures 5 and S20; Table S8).

Many of the top-ranked GWAS SVs colocalized with array SNPs

thatare inhighLDwith theSVsandhavestrongassociationsignals

similar to those of the SNPs (Table S9). Themean effect size (0.72,

N = 6) of the top GWAS SVs in the rare/low-frequency range

(AF < 0.01) were larger than the effect size (0.34, N = 227) for the

top SNVs/indels in the same AF range. Notably, six DELs and

one DUP were in exons, probably causal LoF SVs (Figures 5I, 5J,

and 5L; Table S8). The associations with height, hemoglobin A1c

(HbA1c), mean corpuscular hemoglobin concentration (MCHC),
calls with alignment evidence were judged as TPs. The percentage of TP calls

tage of variants in the indicated AF ranges is shown in each color bar. Variants

wn as orange, yellow, gray, light blue, and blue bars, respectively.

onding to the indicated AF ranges are the same as in (F).

is is indicatedbybluebarson the left y axis. ThenumberofDELsoverlappingwith

The ranges of SV size (base pairs) are indicated using a log10 scale on the x axis.

s located in a given region of a protein-coding gene is indicated by color bars

by blue, orange, gray, yellow, light blue, and green bars, respectively. ‘‘FLANK’’

overlapping exons. The LoF SNVs or indels are disruptive variants annotated

ct.’’ Error bars represent standard errors.

dual. The percentages of genes in the indicated range of pLI scores among all

variants annotated with LOFTEE were used. Genes (percent) with pLI of <0.1,

ars, respectively.

s AF ranges. The number of SVs overlapping exons of S 0.99 pLI genes in the

ercentage of heterozygous SVs is indicated with blue letters on each bar.

enomic regions analyzed include phastCons evolutionarily conserved regions

_exon) and noncoding genes (noncoding_exon), and promoter regions 1 kb

of all genes. coding_pLI, promoter1K_pLI, and promoter10K_pLI are restricted

ere designated intergenic regions. The constrained degree of SVs overlapping

inverse of the odds ratio (OR). Inverse ORs of DEL and DUP are shown as blue



Table 2. Known disease risk genes with rare exonic SVs in the BBJ WGS data

Disease Gene Sourcea Regionb SV type

SV size

(kb) Chr:pos Case Control OR p Value

Colorectal cancer

(CoCa) (n = 196)

MLH1 ClinVar exon DEL 109 3:36940070 2 0 60.3 5.9E�3

1.2 3:37048066

APC ClinVar exon-A DEL 2760 5:109469013 2 0 60.3 5.9E�3

825 5:111446233

MSH2 ClinVar exon DEL 31.0 2:47605652 2 0 60.3 5.9E�3

11.2 2:47636876

NTHL1 ClinVar exon-A DUP 80.0 16:2068893 1 0 36.1 7.7E�2

EPCAM ClinVar exon DEL 31.0 2:47605652 1 1 12.0 0.15

SASH1 ClinVar-c exon DEL 84.3 6:148683204 1 0 36.1 7.7E�2

SDHD ClinVar-c exon DEL 2.1 11:111963575 1 0 36.1 7.7E�2

Breast cancer

(BrCa) (n = 237)

APC ClinVar exon-A DUP 977 5:111695439 1 0 4.6c (29.8) 0.4c (9.2E�2)

MLH1 ClinVar intron DEL 4.6 3:37076354 1 0 4.6 0.4

PPM1D ClinVar exon-A DUP 179 17:58589824 1 0 4.6 0.4

MSMB ClinVar-c exon-A DEL 135 10:51470001 1 0 4.6 0.4

Prostate cancer

(PrCa) (n = 215)

RNASEL ClinVar exon-A DEL 170 1:182442803 4 10 3.7 4.0E�2

ATM ClinVar-c exon INV 7.3 11:108137195 1 1 9.3 0.19

RECQL ClinVar-c exon DEL 3.0 12:21623979 1 0 27.8 9.7E�2

BRCA1 ClinVar-c exon-A DUP 411 17:41202158 1 2 4.6 0.26

Gastric cancer

(GaCa) (n = 257)

RAF1 ClinVar exon DEL 12.1 3:12657398 1 0 27.5 9.9E�2

IDH1 ClinVar-c exon-A DUP 169 2:209041733 1 0 27.5 9.9E�2

SDHD ClinVar-c exon DUP 145 11:111968279 1 0 27.5 9.9E�2

RNF43 ClinVar-c exon-A DUP 173 17:56409879 1 0 27.5 9.9E�2

ATM ClinVar-c exon DEL 4.4 11:108094086 1 0 27.5 9.9E�2

Dementia (n = 200) MEF2C ClinVar exon DEL 16.0 5:88114001 2 0 76.7 3.8E�3
aClinVar, risk genes with ‘‘pathogenic’’ germline mutations for the corresponding disease in ClinVar; ClinVar-c, risk genes with ‘‘pathigenic’’ germline

mutations for all cancer diseases in ClinVar in exons, introns, or UTRs.
bExon-A, all exons of the corresponding genes overlap the SV.
cValues in parentheses indicate ORs and p values determined with control samples, including male samples.
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alkalinephosphatase (ALP), andalbumin/globulin ratio (A/G) found

in four exonic SVs of theMUC22,GYPA/GYPB, FUT2, and RP11-

219A15.2geneswere novel. A 4-kb low-frequencyDELwas asso-

ciated with 4 hemoglobin-related traits (Red blood cell count

[RBC], MCV, MCH, and MCHC) and overlaps the exons of the

HBA1 gene encoding hemoglobin subunit alpha (Figure 5I), which

reflects loss ofHBA1 gene function. A 119-kb low-frequency DUP

overlapping GYPA/GYPB genes was associated with HbA1c and

MCHC (Table S8).GYPA/GYPB encode glycophorin A/B, the ma-

jor and minor glycosylated membrane proteins of the erythrocyte,

respectively, suggesting association of an extra copy of GYPA or

GYPBwith theHbA1c andMCHC traits. Another 1.6-kbDELasso-

ciated with LDL-C and triglyceride (TG) overlaps an exon of the

APOC1gene,whichencodesamemberof theapolipoprotein fam-

ily known to have an association with these traits. The association

strength of this DEL is considerably lower than those of the over-

lapping SNPs at this locus, but this low-frequency DEL is not in

LD with other associated common SNPs/indels (Figure 5L). The

exonicSVsof theGYPA/GYPB,RP11-219A15.2, andHBA1genes

overlappedwith segmental DUPs, raising suspicion of a false pos-

itive,butmanualvisual inspectionwith20caseand20control sam-

ples showed clear differences in read alignment between cases
and controls. In addition, the 4-kb DEL overlapping the HBA1

gene has been reported by previous studies,50 and the 119-kb

DUP overlapping the GYPA/GYPB genes was also observed in

gnomAD-SVs, supporting the validity of our findings. Of the top-

ranked 30 SVs for the binary and quantitative traits that matched

with gnomAD-SVs, 7 SVs (23%) were rare or low-frequency SVs

with AFs 5-fold lower in the European population than in the Japa-

nese population (Table S8), indicating a high population-specific

association of SVs.

To infer the causality of the GWAS variants on the traits, we

used the transcription factor (TF)-binding footprints responsible

for gene regulation in noncoding regions.51 Of the 41 top-ranked

GWAS SVs, 13 DELs (59% of the 22 top-ranked DELs) overlap-

pedwith the TF-binding footprints, most of whichwere footprints

from tissues relevant to the corresponding traits (Table S8). To

determine the empirical p value based on random expectation,

we estimated howmany randomly selected non-repeat genomic

regions corresponding to top-ranked GWAS DELs can overlap

with TF footprints. After 1,000 iterations of this simulation, an

average of 5.8 of the 21 DELs tested (SD = 1.59) overlapped

with the TF footprint, indicating that the top GWAS DELs

found in this study were enriched in the TF footprint (11/21,
Cell Genomics 3, 100328, June 14, 2023 9
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Figure 4. Imputation efficiency and quality of

array genotype data from 181,622 samples

(A) Imputation efficiency of DELs, INSs, DUPs,

SNVs, and indels in the AF range. The bars indicate

the percentage of variants imputed with the array

data of 181,622 samples using the 13 M SNP-indel-

SV reference panel withS AF 0.0003 (22,806,626 of

SNVs, 901,910 of indels, 31,380 of DELs, 8,852 of

DUPs, 36,518 of INSs) for a given variant type and

AF range. DELs, INSs, DUPs, SNVs, and indels are

shown in blue, orange, yellow, gray, and pale blue,

respectively.

(B) Imputation quality for each variant type in the AF

range. The bars indicate the average INFO score for

a given variant type and a given AF range. Error bars

represent standard errors.

(C) Imputed variants fractionated by imputation

quality. The percentage of variants with a given

quality among all imputed variants of the corre-

sponding type is indicated by colored bars (blue,

<0.3; light blue, 0.3–0.5; gray, 0.5–0.7; yellow,

0.7–0.9; orange, S 0.9).
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p = 5.43 10�4). Notably, for the top-ranked GWAS INSs, mobile

element INSs, including Alu, L1, and SVA INSs, were significantly

enriched (14/18; OR = 5.2, CI = 1.7–15.8; p = 1.53 10�3, Fisher’s

exact test; p = 2.3 3 10�4, hypergeometric distribution test;

40.2% of INSs were estimated to be mobile element INSs

[MEIs]; see STAR Methods for details). This was also observed

for the INSs associated with published GWAS signals in the pre-

vious section. Collectively, our results show that understudied

SVs likely play a significant role in diseases and traits.

DISCUSSION

This study demonstrates efficient detection of high-quality SVs us-

ing SRWGS data from thousands of samples. The fully genotyped
10 Cell Genomics 3, 100328, June 14, 2023
SV set generated with MOPline enabled us

to detect trait-associated SVs, including

population-specific ones, by burden tests

and GWAS with imputed SVs. The quality

of the detected SVs is comparable with

that of gnomAD-SVs, which provides high-

quality SVs for reference,22whereas theme-

dian number of SVs per individual reaches

about 16,000, more than twice the number

of gnomAD-SVs. The high quality of SVs is

attributed to the strategy of selecting high-

quality SVs that are overlap calls from

selected pairs of SV detection algorithms.

The strategy of selecting overlap calls from

multiple SV call sets has been often used,

but because overlap calls from many algo-

rithm pairs do not have high accuracy,29 it

is important to select specific algorithmpairs

thathavehighaccuracy foroverlapcalls. The

high per-individual SV recovery rate can be

attributed to the SMC function employed

for joint-called SVs from multiple samples.

In the evaluation using the SV call set of
NA12878, SMC was able to increase the SV TP calls by 42% of

the initially selected overlap calls while achieving approximately

95% accuracy. SMC recovers missing calls, which has been

initially definedasa referenceallele for samples at anSV site, using

the original SV calls from the algorithms used and re-genotyping

with SR alignment signals. Because the overlap-based SV selec-

tion in the first step generates only high-quality SVs to remove

low-quality ones, SVs have often been lost in a fraction of samples

because SV calls often vary among WGS data and among SV

detectionalgorithmsused.Overlap-basedselectionof high-quality

SVs followedby recoveringmissingcallswith theSMC function en-

ables accurate andsensitivedetectionof SVs. Inaddition,MOPline

can buffer unstable calls from a single algorithm to call a constant

number of SVs per sample (Figures S15 and S16).
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The LR WGS data yielded more than 24,000 SV calls per in-

dividual, which is 1.5 times the number of SVs detected in this

study. Many of the SVs unique to the LR data are located in

highly polymorphic short tandem repeats/STRs, where the

copy number of the repeat unit increases or decreases among

individuals. Because LRs can resolve the structure of repeat

units, the LR-based SV detection strategy can detect more

copy number alleles in STRs than the SR-based one. Howev-

er, even with LRs, it is difficult to precisely assign the position

and size of SVs within the repeat regions, so many frag-

mented DELs and INSs observed in the STR region may

seemingly increase the number of SV calls in the current

LR-based SV call data. Despite the disadvantage of SRs to

resolve repeat regions, it is likely that SR-based SV detection

can more effectively detect large (S 10 kb) DELs than LR-

based ones; comparisons for the other SV types could not

be made because of limited data. This difference is attributed

to the coverage-, split read-, and RP-based methods for SRs.

LR-based SV detection is likely to have difficulty detecting

such indirect signals of large SVs that fail to be aligned within

an LR, especially for low-coverage data or reads that are not

error corrected.

On average, approximately 2.7 SVs (AF & 0.001) and 7.4 SVs

(AF& 0.01) per individual in the BBJ-SVs overlapped with exons

of protein-coding genes. These numbers are equivalent to 27%

and 39%of the LoF SNV/indels annotated with LOFTEE, respec-

tively (Figure 3J), although all exon-overlapping DUPs and INVs

on gene function may not be necessarily LoF variants, and we

did not consider the effects of the SVs located in the intron re-

gions on splicing. SVs could have a higher potential for affecting

the function of noncoding genes and the transcriptional or

splicing function in noncoding regulatory regions because of

their large size than SNVs and indels. In fact, SVs of noncoding

genes and promoter regions are more constrained than SVs of

intergenic regions, as observed in this study. Furthermore, for

haploinsufficiency genes (i.e., pLIS 0.9), SVs of coding and pro-

moter regions are more constrained. Specifically, DELs have a

greater impact on disrupting regulatory elements, as observed

in GWAS DELs, and have a higher frequency of overlapping TF

footprints than GWAS SNVs/indels. Given that DELs and DUPs

in regulatory regions are constrained by negative selection,

such SVs are less frequent and may be less likely to participate

as causal variants in polygenic common diseases. However,

our GWAS identifies potentially causal SVs for several traits,

which include common exonic SVs, such as a GSTM1 LoF

DEL for the platelet count (Plt) and AST traits, FUT2 LoF DEL
Figure 5. GWASs for binary and quantitative traits identified a number

(A) Top-rankedGWASSVs for quantitative and binary traits. Effect sizes for the top

SV effect sizes are log10-transformed absolute values of the beta coefficient whi

orange, and gray circles, with different sizes reflecting different p value ranges, a

bottom, and SV-overlapping genes and their gene regions are indicated in blue l

(B–L) Regional association plots for DPL (hyperlipidemia; B), BrCa (breast cancer; C

height (G), ALP (alkalinephosphatase;H), RBC (redbloodcell count; I), Plt (platelet c

by purple diamonds and arrows indicate the top-ranked p valueswithin the 1-Mb re

ALP-associatedDELs andWBC-associated INSs are also top-ranked variants asso

(Neutro) traits, respectively. The 4-kb DEL at chr16:223674 (I) is the low-frequency

(M) Survival analysis of PrCa-associated INSs. Survival rates for homozygous car

12 years. The mortality data were obtained from 140,000 subjects in the BBJ fol
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for the ALP trait, and an APOBEC3 LoF DEL for BrCa. Further-

more, a significant enrichment of MEIs in the GWAS INSs sug-

gests that INSs, particularly MEIs, alter expression of the sur-

rounding or distant genes through regulatory elements within

INS sequences, as shown in a recent study,48 or throughmethyl-

ation induced by the mobile elements. These observations sug-

gest that many rare and common SVs in noncoding and coding

regions should be involved in the causality of common diseases

and traits. Thus, incorporating SVs into association studies using

traditional SNPs and indels would increase the potential for iden-

tifying the cause of a disease or trait. In addition, our observation

that at least 23%of the BBJGWASSVs aremuch less frequent in

the European population illustrates the importance of performing

association analyses of SV in many populations.

This study demonstrates a framework for detecting high-

quality SVs and for identifying SVs associated with diseases

and traits using multiple datasets, including imputed SVs. MO-

Pline can detect SVs from SR sequencing data for single and

tens of thousands of samples and can also handle non-human

samples. This paper also shows pseudo-DELs and INVs that

are prone to misidentification because of interspersed DUP sig-

nals in SR data and presents thousands of HF SVs common to

different populations as useful insights for further SV call

improvement. The methodology and the SV datasets created

in this study provide a valuable resource for SV analyses in

diverse research areas.

Limitations of the study
MOPline has several limitations; it cannot detect TRAs, genotyp-

ing DUPs is incomplete, and there are false positive calls. The

first problem is the limited number of TRA detection algorithms

and the lack of reference TRA information to evaluate the calling

accuracy. The second is due to the difficulty of resolving the

number of copies of DUPs for each haplotype in SR data. For

the last problem, MOPline is still imperfect in its accuracy. In

addition, most short-read-based SV detection algorithms,

including MOPline, cannot accurately determine the length of

INSs at many sites and often only detect their BPs. Thus, some

of MOPline’s SV calls would contain INSs shorter than 50 bp.

Many of the false calls in MOPline are due to incorrect coverage

caused by misaligned reads or split reads caused by short in-

dels. GWASs with imputed SVs would produce some false sig-

nals because of incomplete SV imputation. Therefore, identified

SVs, such as trait-associated SVs, need to be verified by align-

ment views or PCR to confirm that the identified SVs are indeed

correct.
of genome-wide significant SVs

-ranked or nearly top-ranked SVs identified for each trait are plotted. For clarity,

le keeping the direction of beta. DELs, INSs, and DUPs are indicated by blue,

s shown in the right panel. Trait abbreviations are shown in black letters at the

etters.

), T2D (type 2 diabetes; D), PrCa (prostate cancer; E), BMI (bodymass index; F),

ount; J),WBC (white bloodcell count; K), andTG (triglyceride; L). SVshighlighted

gion, and the gene regions overlapping the SVs are indicated in blue letters. The

ciatedwith the low-density-lipoprotein cholesterol (LDL-C) and neutrophil count

top variant common to all 4 traits (RBC, MCV, MCH, and MCHC).

riers and others of the PrCa-associated INS (chr8:128119620) are plotted over

low-up study.
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KEY RESOURCES TABLE
REAGENT or RESOURCES SOURCE IDENTIFIER

Deposited data

SV vcf file from the 414 1KG WGS data This paper http://jenger.riken.jp/en/data (1KG-SV)

SV vcf file from the 3,258 BBJ WGS data This paper http://jenger.riken.jp/en/data (BBJ-SV)

GWAS summary statistics of

SV for the binary traits

This paper http://jenger.riken.jp/en/result

(Case-control GWAS ID: 107-133)

GWAS summary statistics of

SV for the quantitative traits

This paper http://jenger.riken.jp/en/result

(QTL GWAS ID: 140-199)

NA12878 (data1) WGS data Illumina platinum

genomes

https://www.ebi.ac.uk/ena/browser/v

iew/PRJEB3246 (ERR174336–ERR174340)

NA12878 (data2) WGS data Illumina https://www.ebi.ac.uk/ena/browser/view/

ERX069505 (ERR091571–ERR091573)

NA12878 (data3) WGS data Genome in a Bottle

Consortium

https://www.ebi.ac.uk/ena/browser/view/

PRJNA200694 (SRR2052337–SRR2052352)

NA12878 (data4) WGS data Broad Institute https://www.ebi.ac.uk/ena/browser/

view/SRR1910373

NA12878 (data5) WGS data 1000 Genomes project ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/

1000G_2504_high_coverage/data (ERR3239334)

NA12878 (PacBio CCS) WGS data Pacific Biosciences https://www.ebi.ac.uk/ena/browser/

view/PRJNA540705 (SRR9001768–SRR9001773)

NA19240 (data1) WGS data Genome Institute at

Washington University

School of Medicine

https://www.ebi.ac.uk/ena/browser/view/SRR3189761

NA19240 (data2) WGS data Genome Institute at

Washington University

School of Medicine

https://www.ebi.ac.uk/ena/browser/view/SRR7782669

Simulated WGS data (Sim-A) Kosugi et al.29 https://drive.google.com/file/d/1xtan87fLd966RPuL360w8HU_

saUO-bYy/view?usp=sharing

3,258 BBJ WGS data BBJ Project:

Okada et al.,52

Koyama et al.53

BBJ Project samples: coronary artery disease (n = 1,964),

drug eruption (n = 189), colorectal cancer (n = 196),

breast cancer (n = 237), prostate cancer (n = 215),

gastric cancer (n = 257), dementia (n = 200)

414 1KG WGS data 1000 Genomes project ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/

1000G_2504_high_coverage/data

NA12878 reference SV set Kosugi et al.29 https://github.com/stat-lab/EvalSVcallers/tree/master/Ref_SV

NA19240 reference SV set This paper https://github.com/stat-lab/EvalSVcallers/tree/master/Ref_SV

Sim-A reference SV set Kosugi et al.29 https://github.com/stat-lab/EvalSVcallers/tree/master/Ref_SV

gnomAD-SV vcf file Collins et al.22 https://gnomad.broadinstitute.org/

downloads#v2-structural-variants

HGSVC long read-based SV vcf file Ebert et al.17 http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

data_collections/HGSVC2/release/v2.0/integrated_callset/

variants_freeze4_sv_insdel_alt.vcf.gz

Simple/short tandem repeat (STR) data UCSC Genome Browser https://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database/simpleRepeat.txt.gz

Segmental duplication data UCSC Genome Browser https://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database/genomicSuperDups.txt.gz

Reference gap data UCSC Genome Browser https://hgdownload.soe.ucsc.edu/goldenPath/hg19/

database/gad.txt.gz

Gene annotation gff3 file Ensembl ftp://ftp.ensembl.org/pub/grch37/release-87/gff3/

homo_sapiens/Homo_sapiens.GRCh37.87.gff3

(Continued on next page)
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pLI data Lek et al.39 https://static-content.springer.com/esm/art

%3A10.1038%2Fnature19057/MediaObjects/

41586_2016_BFnature19057_MOESM241_ESM.zip

phastCons evolutionarily

conserved data

Felsenstein and Churchill54 https://bds.mpi-cbg.de/hillerlab/120MammalAlignment/

Human120way/data/conservation/

phastConsElements_hg38_multiz120Mammals.bed.gz

Vista enhancer data VISTA enhancer browser https://enhancer.lbl.gov

TF footprints data Vierstra et al.51 https://www.vierstra.org/resources/dgf/consensus_

footprints_and_collapsed_motifs_hg38.bed,/

consensus_index_matrix_full_hg38.txt

ClinVar data NCBI https://www.ncbi.nlm.nih.gov/clinvar

GWAS catalog NHGRI-EBI GWAS Catalog https://www.ebi.ac.uk/gwas/download/

gwas_catalog_v1.0.2-associations.tsv

dbSNP NCBI ftp://ftp.ncbi.nih.gov/snp/.redesign/pre_build152/

organisms/human_9606_b151_GRCh37p13/BED

Software and algorithms

SV detection/genotyping algorithms

MOPline This paper https://github.com/stat-lab/MOPline

(https://doi.org/10.5281/zenodo.7820277)

1-2-3-SV Unpublished https://github.com/Vityay/1-2-3-SV

BASIL-ANISE Holtgrewe et al.55 https://github.com/seqan/anise_basil

BICseq2 Xi et al.56 https://github.com/ding-lab/BICSEQ2

BreakDancer Chen et al.57 https://github.com/genome/breakdancer

CLEVER Marschall et al.58 http://clever-sv.googlecode.com

(currently unavailable)

CNVnator Abyzov et al.59 https://github.com/abyzovlab/CNVnator

DELLY Rausch et al.60 https://github.com/dellytools/delly

ERDS Zhu et al.61 https://github.com/igm-team/ERDS

FermiKit Li62 https://github.com/lh3/fermikit

forestSV Michaelson and Sebat63 https://sebatlab.org/data-software/

GATK-SV Collins et al.22 https://github.com/broadinstitute/gatk-sv

GenomeSTRiP Handsaker et al.64 https://software.broadinstitute.org/

software/genomestrip

GRIDSS Cameron et al.65 https://github.com/PapenfussLab/gridss

iCopyDAV Dharanipragada et al.66 https://github.com/vogetihrsh/icopydav

inGAP-sv Qi and Zhao67 http://ingap.sourceforge.net

Lumpy Layer et al.68 https://github.com/arq5x/lumpy-sv

Manta Chen et al.69 https://github.com/Illumina/manta

MATCHCLIP Wu et al.70 https://github.com/yhwu/matchclips

Meerkat Yang et al.71 http://compbio.med.harvard.edu/Meerkat

MELT Gardner et al.72 https://melt.igs.umaryland.edu

MetaSV Mohiyuddin et al.73 https://github.com/bioinform/metasv

Mobster Thung et al.74 https://jyhehir.github.io/mobster

PennCNV-Seq de Araujo Lima and

Wang 201775
https://github.com/WGLab/PennCNV-Seq

Pindel Ye et al.76 https://github.com/genome/pindel

PopIns Kehr et al.77 https://github.com/bkehr/popins

readDepth Miller et al.78 https://github.com/chrisamiller/readDepth

SoftSV Bartenhagen and Dugas79 https://sourceforge.net/projects/softsv/

Sprites Zhang et al.80 https://github.com/zhangzhen/sprites

(Continued on next page)
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SvABA Wala et al.81 https://github.com/walaj/svaba

SVelter Zhao et al.82 https://github.com/mills-lab/svelter

SVSeq2 Zhang et al.83 https://sourceforge.net/projects/

svseq2/files/SVseq2_2

Ulysses Gillet-Markowska et al.84 https://github.com/gillet/ulysses

Wham Kronenberg et al.85 https://github.com/zeeev/wham

cuteSV Jiang et al.86 https://github.com/tjiangHIT/cuteSV

NanoVar Tham et al.87 https://github.com/benoukraflab/NanoVar

Sniffles Sedlazeck et al.88 https://github.com/fritzsedlazeck/Sniffles

SVIM Heller and Vingron89 https://github.com/eldariont/svim

BayesTyper Sibbesen et al.90 https://github.com/bioinformatics-centre/BayesTyper

GrapghTyper2 Eggertsson et al.91 https://github.com/DecodeGenetics/graphtyper

Paragraph Chen et al.92 https://github.com/Illumina/paragraph

SV2 Antaki et al.93 https://github.com/dantaki/SV2

sv-pipeline Larson et al.94 https://github.com/hall-lab/sv-pipeline

svtools Larson et al.94 https://github.com/hall-lab/svtools

SVtyper Chiang et al.95 https://github.com/hall-lab/svtyper

Other software

BWA Li and Durbin96 http://bio-bwa.sourceforge.net/

Cromwell Broad Institute https://github.com/broadinstitute/cromwell

Minimap2 Li97 https://github.com/lh3/minimap2

NGM-LR Sedlazeck et al.88 https://github.com/philres/ngmlr

vcftools Danecek et al.98 https://vcftools.github.io/index.html

GATK HaplotypeCaller DePristo et al.99 https://software.broadinstitute.org/gatk/

liftOver UCSC Genome Browser http://genome.ucsc.edu/cgi-bin/hgLiftOver

SnpEff Cingolani et al.100 http://pcingola.github.io/SnpEff/

LOFTEE Karczewski et al.101 https://registry.opendata.aws/hail-vep-pipeline/

nnet CRAN https://cran.r-project.org/web/packages/

nnet/index.html

SNPRelate Zheng et al.102 https://github.com/zhengxwen/SNPRelate

Beagle 5 Browning et al.103 http://faculty.washington.edu/browning/

beagle/beagle.html

IMPUTE 5 Howie et al.104 https://innovation.ox.ac.uk/licence-details/impute-5/

SAIGE Zhou et al.105 https://github.com/weizhouUMICH/SAIGE

REGENIE Mbatchou et al.106 https://rgcgithub.github.io/regenie/

Homer2 Heinz et al.107 http://homer.ucsd.edu/homer/download.html

yass Noe and Kucherov108 https://bioinfo.lifl.fr/yass/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Chikashi

Terao (chikashi.terao@riken.jp).

Materials availability
This study did not generate new unique reagents.

Data and code availability
SV vcf files generated using MOPline with the 414 1KG and the 3,258 BBJ WGS data, as well as GWAS summary statistics of SV for

the binary and quantitative traits, are available at the JENGER website (http://jenger.riken.jp/en/).
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TheMOPline code and related data used inMOPline are available at https://github.com/stat-lab/MOPline (https://doi.org/10.5281/

zenodo.7820277). The detailed protocol of MOPline can be found in Data S1 and at https://github.com/stat-lab/MOPline. A sample

dataset for testing the execution of MOPline is available at http://jenger.riken.jp/en/data. The BBJ WGS data is available at https://

humandbs.biosciencedbc.jp/hum0014-v19 and https://gr-sharingdbs.biosciencedbc.jp/agd0008-v1 through registration and re-

view process in accordance with the database’s policies.

METHOD DETAILS

WGS datasets
WGS datasets used in this study are summarized in the key resources table. The real short-read WGS datasets of NA12878 and

NA19240 were used for the evaluation of SV detection algorithms. The NA12878 datasets, including Illumina HiSeq and NovaSeq,

were downloaded from the European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena/browser/home), DDBJ (http://www.

ddbj.nig.ac.jp) or the 1000 Genomes Project (1KGP) (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/1000G_2504_high_coverage/

data). The NA12878 datasets included five (data1 to data5) datasets derived from different sources or libraries. The NA12878

data1 to data4 were the same as those used in our previous study,29 and NA12878 data5 was obtained from 1KGP, which had

been generated with the Illumina NovaSeq platform. Two independent read datasets (data1 and data2) of NA19240 and the

PacBio CCS long read set of NA12878 were obtained from the European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena/

browser/home), and were aligned to the hs37d5 reference or the GRCh38 reference (GRCh38_full_analysis_set_plus_decoy_hla.fa

from 1KGP) using NGMLR v0.2.7 (https://github.com/philres/ngmlr) and Minimap2 v2.24 (https://github.com/lh3/minimap2).

The simulated WGS dataset Sim-A was also used to evaluate SV detection algorithms including MOPline, as used in our previous

study29 (available at https://github.com/stat-lab/EvalSVcallers). The Sim-A diploid genome contained a total of 8,310 SVs (3,526

DELs, 1,656 DUPs, 2,819 INSs, and 309 INVs) ranging in size from 50 bp to 1 Mb, and the Sim-A WGS dataset consisted of

125 bp of paired-end reads with 303 coverage.

BBJ high coverage WGS datasets were obtained from 3,258 individuals with any of seven different diseases, that were enrolled in

the BioBank Japan Project, as described in previous study.52,53 For the dementia samples and 1,764 CAD samples, WGS was con-

ducted on the Illumina HiSeq X Five platform using the Illumina TruSeq DNA PCR-Free Library Preparation Kit to generate 23 150-bp

paired-end reads with approximately 433 coverage for dementia and 233 coverage for CAD. For the other samples, WGS was con-

ducted on the Illumina HiSeq2500 platform using the Illumina TruSeq Nano DNA Library Preparation Kit to generate 2 3 160-bp

paired-end reads (2 3 125-bp paired-end reads for the gastric cancer samples) with 29�353 coverage.

1KGWGS data were downloaded from the 1KGP ftp site. 1KGWGS data were composed of 99 CEU (Utah residents with Northern

andWestern European ancestry), 103CHB (HanChinese in Beijing, China), 104 JPT (Japanese in Tokyo, Japan), and 108YRI (Yoruba

in Ibadan, Nigeria) WGS data, which were generated on the Illumina NovaSeq platform. Because the provided data were CRAM files

aligned to GRCh38, paired-end reads were extracted from the CRAM files and were aligned back to the hs37d5 reference.

Reference SV dataset for real data
The reference SV dataset corresponding to NA12878 was generated as previously described.29 Briefly, the NA12878 reference SV

set was generated mainly by combining the DGV variant data (the 2016-05-15 version for GRCh37 and the 2020-02-25 versions for

GRCh38) obtained from the Database of Genomic Variants (http://dgv.tcag.ca/dgv/app/home) with the PacBio SV data identified

from the NA12878 assembly generated with long reads109 for GRCh37 or NA12878 SV set extracted from the long read-

based, haplotype-resolved HGSVC SV call set17 for GRCh38 (Table S2). The HGSVC assembly-based SV call set (variants_

freeze4_sv_insdel_alt.vcf.gz) was obtained at http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGSVC2/release/v2.0/

integrated_callset/, which contained 68,180 INSs and 43,150DELs from a diverse population of 35 individuals. For the build37-based

SV set, the coordinates of this SV set were converted to build37 using liftOver with the hg38ToHg19.over.chain file (downloaded at

UCSC: https://genome.ucsc.edu). Long read assembly-based SVs of NA12878 were extracted from the build37-based and the

build38-based vcf files, and calls with undefined genotypes were removed. Merging between different datasets was conducted

based on a BP distance of & 125 bp for INS and S 70% reciprocal overlap for the other types, and only one of the overlaps (i.e.,

long read-based variants) was incorporated. Another NA12878 reference based on long reads was used for the evaluation of SVs

called with MOPline and several other tools. This reference SV data was created by calling the NA12878 PacBio CCS long read

data using Sniffles.88 The reference SVs of NA19240 was derived from the study of the Human Genome Structural Variation Con-

sortium, where SVs had been detected with multiple short and long read sets110 (Table S2). A minimal 30 bp of NA19240 variants

were extracted from nstd152.GRCh37.variant_call.vcf.gz, which was obtained at the NCBI dbVar site (ftp://ftp-trace.ncbi.nlm.nih.

gov//pub/dbVar/data/Homo_sapiens/by_study/vcf). The NA19240 DGV variants (the 2016-05-15 version for GRCh37), including

2,045 DELs, 4,147 DUPs, 990 INSs, and 78 INVs, were integratedwith the HGSV variants to generate a nonredundant NA19240 refer-

ence SV dataset, as in the NA12878 reference SVs. The reference SVs for NA19240 (38,562) contained 1.5-fold more SVs than the

reference SVs for NA12878 (25,736), probably due to the remaining redundant SVs in the HGSV data (Table S2). Therefore, the recall

value for SV detection using the NA19240 data would be lower than that of NA12878. A gnomAD-SV vcf file was downloaded from

https://gnomad.broadinstitute.org/downloads#v2-structural-variants.
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SV calling with simulated and real datasets
The simulated and real WGS datasets were aligned with the hs37d5 reference using BWA-MEM v0.7.5a (http://bio-bwa.sourceforge.

net/) to generate bam files. For Meerkat andMobster, bam files weremodified by adding XA tags and removing hard-clipped reads to

mimic bam files generated with bwa aln. Using these bam files, we performed SV calls with various short-read-based SV detection

algorithms, includingMOPline, as described in the previous study.29 SV call sets were converted toMOPline-compatible vcf files with

algorithm-specific conversion scripts, which were included in the available resource packages in this study or in the previous study.29

Because many short read-based SV detection algorithms, including MOPline, cannot determine the length of INSs at many sites, the

length of the INS was recorded as 0 or 1 at sites where only BPs were called. Overlap calls from two SV detection algorithms were

selected with the criteria; a BP distance of& 200 bp for INS andS 60% reciprocal overlap for the other types. SV calling of MOPline

were performed with different combinations of algorithms; MOPline derivatives with different algorithm combinations were named

MOPline-4t, -6t, 6t(G), -7t, -9t, -11t, and -14t (Table S1). SV detection algorithms used in MOPline-7t included CNVnator v0.3.2,59

GRIDSS v2.10.2,111 inGAP-sv v3.1.1,67 Manta v0.29.6,69 MATCHCLIP v2,70 MELT v2.0.1,72 and Wham v1.8.85 For the 3,258 high-

coverage BBJ WGS dataset and the 414 high-coverage 1KG WGS dataset, SVs were called for each sample with MOPline-7t

(v1.7). After the addition of read alignment statistics, regarding read coverage and soft-clipped read ends, to each SV site, all the

SV call sets from the BBJ samples or the 1KG samples were merged (joint called) and genotyped based on multinominal logistic

regression with the short read alignment signals supporting SVs. Finally, SVs were filtered and annotated for SVs overlapping

with genes.

SV calling using GATK-SV and sv-pipeline
A total of 100 WGS data from 1KG CEU (n = 99) in addition to 1KG NA18525 were used for SV calling with GATK-SV (https://github.

com/broadinstitute/gatk-sv), sv-pipeline (https://github.com/hall-lab/sv-pipeline), and MOPline-7t. These data were included in the

1KGWGS dataset used in this study, but GATK-SV used GRCh38-based data due to its limitations. GATK-SV is an ensemble tool of

Manta, MELT,72 Wham,85 cn.MOPS,112 and GATK gCNV, and all of these tools, except MELT, were executed using the provided

Docker images. GATK-SV is intended to run on the Google Cloud. We continued to run GATK-SV of the 100 sample set in the cohort

mode with a Cromwell server on the Google Cloud over one month while dealing with occasional errors, but the run was not

completed. We then executed GATK-SV locally in the single sample mode for each sample. The docker image of GATK-SV was

created with build_docker.py (https://github.com/broadinstitute/gatk-sv) and converted to a singularity image. A singularity image

of MELT was also created for inclusion in the pipeline. WDL files containing GATKSVPipelineSingleSample.wdl were modified for

local execution and the reference panel data were copied to the local server. The json files (GATKPipelineSingleSample.tmp.json

and cromwell_config.json) for runningwith Cromwell and singularity in the single samplemodewere created according to the instruc-

tions (https://github.com/broadinstitute/gatk-sv#quickstart). A Cromwell server was used to submit jobs for each sample as follows:

cromshell submit GATKSVPipelineSingleSample.wdl JOBS/GATKPipelineSingleSample.${sampleID}.json cromwell_config.json

dep.zip. The final SV calling set (*.annotated.final_cleanup.vcf.gz) of the 100-sample set and another set (GATK-SK (pass)) containing

‘PASS’ in the PASS field of the vcf files were joint-called using the truvari collapse command of Truvari,113 with the options, -p 0 -S

50000000 -O 0.5 -P 0.5. BND type variants indicating the break-ends of undefined variants were removed from the final vcf file of

GATK-SV.

sv-pipeline is an ensemble tool of Lumpy,68 Manta,69 and CNVnator,59 based on the svtools algorithm.94 sv-pipeline is also imple-

mented in a wdl-based workflow consisting of the steps of pre-merge (SV discovery with Lumy and Manta), merge, and post-merge

(per-sample genotyping with SVTyper and copy number estimation with CNVnator). Since the provided WDL scripts could not

achieve full execution in our computing environment, we converted them to standard scripts so that they could be executed sequen-

tially. The output files of the 100-sample set generated with Manta (v1.6.0) and Lumpy (v0.2.13) in the pre-merge step were filtered,

sorted, and merged using svtools (v0.5.1) and associated scripts to produce a single merged vcf file. In the post-merge step, the

merged vcf file was split into three vcf files, corresponding to DEL, INS, and other types (DUP and INV), and BND variants were

removed. For DEL and other types, genotypes were determined for each sample using SVTyper (v0.7.1) and sample bam files.

This step was the most time-consuming step, taking more than one hour per sample and per type. INS genotypes were obtained

fromManta output files based on the sample information specified with the SNAME tag in themerged INS vcf, and the INS genotypes

for each sample were joint-called across the coordinates of the merged INS vcf file. Copy number annotations were added to the

genotyped vcf files, except INS vcfs, using CNVnator (v0.4.1) and svtools. The vcf files generated after genotype-pasting and sv-

pruning were filtered for SVs less than 50 bp, and redundant overlapping SVs with a BP distance of & 150 bp for INSs and with

S 50% reciprocal overlap for the other types were merged. Finally, the vcf files for each SV type were merged to obtain a single

vcf file.

To examine overlap calls between the pipelines, the coordinates of GATK-SV calls were converted to the build37-based ones using

liftOver. The overlap calls between the two or three pipelines were determined based on a BP distance of & 150 bp for INS and S

50% reciprocal size overlap for the other types. SV calling accuracy of NA12878, which was contained in the 100-sample set, was

determined by manual visual inspection using the alignment data of NA12878 PacBio CCS long read and Illumina short reads after

evaluation with the NA12878 reference SVs. The size of NA12878 INSs specific to each pipeline was determined using INSs called

using Sniffles with the NA12878 PacBio CCS long reads, followed by manual measurements using the PacBio CCS long read align-

ment data and the IGV viewer for the remaining INSs with undetermined length.
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Analysis of SVs overlapping genomic elements
To examine the overlap with repeat regions, we used the simple/short tandem repeat data (simpleRepeat.txt.gz) and the segmental

duplication data (genomicSuperDups.txt.gz), which were obtained from the UCSC Genome Browser site (https://hgdownload.soe.

ucsc.edu/goldenPath/hg19/database/). Additional repeats of retroelements, including long interspersed nuclear element (LINE),

short interspersed nuclear element (SINE), and long terminal repeat (LTR) were extracted from a hg19-based RepeatMasker file,

which was obtained from the UCSC Genome Browser site. We counted as overlaps the DELs or DUPs that have at least 30% of their

size overlap with a repeat or the INSs within the repeat. A phastCons evolutionarily conserved region file (phastConsEle-

ments_hg38_multiz120Mammals.bed.gz) was downloaded from https://bds.mpi-cbg.de/hillerlab/120MammalAlignment/

Human120way/data/conservation/, and converted to hg19 coordinates with liftOver. The Vista enhancer sequences were down-

loaded from https://enhancer.lbl.gov. The information for protein coding genes and non-coding genes was obtained from

GRCh37-based gene annotation file (Homo_sapiens.GRCh37.87.gff3), which was downloaded from the Ensembl site (ftp://ftp.

ensembl.org/pub/grch37/release-87/gff3/homo_sapiens). Overlaps between SVs and these non-coding elements were counted if

they occupiedS 50% of the size of either the SV or the genomic element. The constrained degree of SVs overlapping the functional

elements against those located in the intergenic regions was determined using ORs with confidence intervals or mean AFs.

SNV and short indel calling
SNVs and short indels were called with the bam files of the 3,258 high coverage BBJ WGS dataset using HaplotypeCaller of GATK

ver. 3.8 according to the GATK best practice with a minor modification (https://software.broadinstitute.org/gatk/). Variant calls from

all the individuals were joint-called usingGATK tomerge them into a single vcf file. From joint-called variants, variants with DP < 5 and

GQ < 20 or with DP > 60 and GQ < 95 were filtered out. Base quality score calibration of the filtered joint-called variant data was

conducted again using GATK. The resulting variant vcf file was annotated using SnpEff v4.3m (http://pcingola.github.io/SnpEff/).

LoF variants were annotated based on the SnpEff-annotation ‘Effect’, describing any of the terms ‘stop_gained’, ‘stop_lost’, ‘disrup-

tive_inframe_insertion’, ‘disruptive_inframe_deletion’, ‘frameshift_variant’, and ‘splice’. A VEP plugin, LOFTEE (https://registry.

opendata.aws/hail-vep-pipeline/), was used for further LoF annotation, in which the annotated variants with LoF=HC or

IMPACT=HIGH were selected as LoF variants. Variant sites with multiple alleles, containing both SNVs and indels, were excluded

from the downstream analyses. For the 1KG SNVs, genotyped short variant vcf files were downloaded from ftp://ftp.

1000genomes.ebi.ac.uk//vol1/ftp/release/20130502. SNVs corresponding to the 1KG-SV 414 sample set or 1KG 100 sample set

were extracted from the vcf files.

Compound heterozygous variants
Compound heterozygous SVs and SNVs/indels were searched using LoF SVs and LOFTEE LoF SNVs/indels for protein coding

genes. In samples with heterozygous LoF SVs and/or LoF SNVs/indels pairs in a gene, we checked whether they were in different

alleles using an integrated vcf file of SVs and SNVs/indels that was phased with Beagle 5,103 as described below. Finally, these var-

iants were verified by manual visual inspection using the IGV viewer.

Evaluation of SV detection algorithms
The evaluation of SV calling accuracy was performed as described.29 Briefly, DELs and DUPs were divided into three fractions each

according to their size, and precision and recall were calculated for each SV type and size range (S, M, and L). Translocations were

not evaluated because there are few known translocations in the databases. For INVs, the SV reference datasets does not contain

enough INVs, which may make it difficult to make a reliable evaluation. Precision was calculated by dividing the number of true pos-

itive (TP) calls by the total number of calls, and recall was calculated by dividing the number of TP calls with the total number of refer-

ence SVs of the corresponding types or size-range. The TP calls were judged when the called DELs, DUPs, and INVs had S 50%

reciprocal overlaps with the reference SVs, or when the BPs of the called INSs were placed within 200 bp of the reference INS

BPs. Because INSs and DUPs are sometimes complementary and could be confusedly invoked by several different algorithms.

Thus, when the called INSs had nomatched INS references, we also searched them against the BPs of the reference DUPs. Similarly,

called DUPs were also searched against the reference INSs when the called DUPs had no matched DUP references. In this case, a

second BP of the reference INS was given at the upstream and the downstream of the INS length from the INS BP so that the refer-

ence INSs could be regarded as a provisional DUP. The precision and recall values for many algorithms varied depending on

threshold values of the RSS (a minimum number of Reads Supporting an SV) or related scores.29 To determine the best preci-

sion/recall points for each algorithm and each SV category, we selected an RSS threshold at which the numbers of calls for an

SV type approximates but does not exceed 90% of the expected SV number in an individual (DEL: 3500, DUP: 550, INS: 3000,

and INV: 100, estimated from the previous studies). The simple merging method (Simple-merge-7t) is a non-redundant simple merge

of the SV call set from the seven algorithms used in MOPline-7t, filtered by RSSS 3. SV genotyping was evaluated using the Sim-A

data, as in our previous study,29 because real SV genotypes suitable for evaluation were not available.

To determine true positive (TP) calls from NA12878 SVs detected with MOPline, GATK-SV, and sv-pipeline, false positive (FP) calls

evaluated using the NA12878 reference SV set were further evaluated using the second NA12878 reference set created using the

NA12878 PacBio CCS long reads and Sniffles. The calls evaluated as FP were further validated with visual inspection with the

IGV viewer using alignment data of the NA12878 PacBio CCS long reads and the NA12878 short reads. The visual validation was
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determined by the presence or absence of evidence of alignments, including secondary alignments, indicating the presence of SV.

Large DELs and DUPs with multiple long read split ends at the BPs or clear change in short and long lead depth were judged TP. For

INS, only when the BPs of the test INS and the long-read alignment-derived INS were placed within 200 bp and the size of the align-

ment INS wasS10 bp, it was determined to be a TP. The visual inspection for NA12878 MOPline calls revealed that a few percent of

the total INS TP calls appeared to be smaller than 50 bp. For the other SV types, test SVs were determined as TPwhenmore than half

of the lengths of either the test SV or the long-lead alignment-derived SV overlapped and the ratio of the lengths of the SVs was be-

tween 0.5 and 2.0. If the long read alignment region corresponding to the test DEL was highly polymorphic with clustered SNVs and

short indels, and the short-read alignment region corresponding to the test DEL was low coverage, the test DEL was determined as a

TP although such a DEL could be an INV or a complex SV. For INVs and complex SVs, TP was determined if the corresponding long

read alignment region was highly polymorphic with clustered SNVs and short indels or if split read alignments of long reads are

observed around both BPs of the test SVs. For complex SVs, TP was determined by the presence of DELs and INSs 0.5 to 2.0 times

the test SV size around the test SV position in the long read alignments. Short DUPs are detected as INSs in long read data, and in the

short tandem repeat regions the sizes of DUP in short read data and INS in long read data are often considerably different (Figure S22).

In view of this fact, TP for DUP was also determined if a long-read-derived INS longer than the test DUP was placed within 200 bp of

either of the BPs of the test DUP, or if the length of the test DUP was less than 100 bp and the length of a closely adjacent long-lead-

derived INS was R40% of the test DUP.

MOPline algorithm
Selection of overlap calls by MOP method

Themain algorithm of MOPline is based on theMOPmethod, which merges overlapping SV calls from selected pairs of SV detection

algorithms for each SV type and size range.We have currently prepared seven preset pipelines using four to fourteen algorithms (MO-

Pline-4t, -6t, 6t(G), -7t, -9t, -11t, and -14t) althoughMOPline can use any numbers and any types of existing algorithms. The SV calling

results from each algorithmwere converted to aMOPline-specific vcf file, where RSSwas appended to each call with a ‘READS’ key.

For algorithms not reporting RSS, provisional RSS values, that were converted from some SV-supporting scores specific to the al-

gorithm, were added to each call, as described previously.29 To ensure a high level of SV detection accuracy, SV calls from each

algorithm were filtered by RSS thresholds prior to the selection of overlap calls. RSS thresholds were selected a few points lower

than the optimal RSS that would yield the highest sum of precision and recall values for each SV category and SV detection algorithm.

If a given level of the RSS threshold achieved sufficiently high precision for a particular SV type and a particular algorithm in the eval-

uation analysis (e.g., > 95% precision for INS calling by inGAP-sv), MOPline accepted the corresponding SV calls without selecting

that overlap calls. To simplify this step, MOPline did not merge the selected overlap calls, but rather used a merge-selection proced-

ure that first merged all SV calls frommultiple algorithms for each SV type and then selected the overlap calls for the pair of specified

algorithms. In the merging step, overlapping calls (S 50% reciprocal overlap for DELs, DUPs, and INVs, and BP ±200 bp for INSs)

were merged into one call without redundancy, and information (algorithm name, RSS, etc.) of the merged calls was added. In the

selection step, overlap calls of specified algorithm pairs were selected from the merged SV calls for each SV category, satisfying the

RSS criteria for each algorithm. Finally, all the SV calls for every SV category were merged into a single vcf file. The choice of algo-

rithms and RSS parameters used in MOPline was optimized primarily based on the results of evaluation with the real data.

Adding read depth and split read information

MOPline adds read depth information DPR (ratio of read depths between SV internal and external regions) to each SV site. For this

purpose, the average read depth in the 50-bpwindow for each chromosome in the bam filewas calculated andwas recorded in sepa-

rate ‘‘cov’’ files, where themean read depthwas divided into two cases for all aligned reads and > 0mapping quality reads only. Using

the recorded read depth values, we calculated the DPR value by dividing the average internal depth of SV by the average flanking

depth. The 50-flanking region of the DEL/DUP corresponded to the region from 1 Kb (10% of SV size for > 10 Kb SV) upstream of

a corrected first BP (100 bp [400 bp for CNVnator calls] upstream of the first BP) to the corrected first BP. The 30-flanking region

of a DEL/DUP corresponded to the region from a corrected second BP (the first BP + SV size + 100 bp) to 1 Kb (10% of SV size

for > 10 Kb SV) downstream of the corrected second BP. For DELs, DPRs was calculated with > 0mapping quality reads. In addition,

MOPline adds the inconsistent DPR rate (DPS), which is the ratio of 50-bp regions with inconsistent DPRs in the internal DEL/DUP

region. When a 50-bp window of an internal region has a DEL DPR of > 0.8 or a DUP DPR of < 1.1, the region is judged to have an

inconsistent DPR. If there are five 50-bp regionswith inconsistent DPR in a 1KbDEL, DPS of 0.25 is given.MOPline also adds the split

read information SRR (ratio of break-ends of soft-clipped reads at SV BPs to the mean read depth of flanking regions). Split reads

were divided into 50-clipped and 30-clipped ones and recorded in 50 bp windows per chromosome as well as read depth. These sta-

tistics, including DPR and SRR, are useful for true/false identification (Figure S21), and are used for both SV genotyping and SV

filtering, as described later.

MOPline also integrates genotypes called by several specific algorithms in a way that depends on the accuracy of the genotyping.

Based on the evaluation of SV genotyping in the previous study,29 the genotyping scores of several genotyping algorithms were set

as follows: CNVnator DEL: 96, CNVnator DUP: 93, DELLY DEL: DELLY INV: 80, Lumpy DEL: 92, Lumpy INV: 80, Manta DEL: 94,

Manta INV: 80, Manta INS: 98, MELT INS: 70. Genotyping information was added to an SV call if all of the following criteria were

met: the SV call is derived from algorithm(s) with the genotyping score, the genotypes from multiple algorithms are identical, and
e7 Cell Genomics 3, 100328, June 14, 2023
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the sum of the genotyping score(s) exceeds 84. The percentage of SVs genotyped at this step was about 58% and some genotypes

of these SVs were changed based on the following multinomial logistic regression-based genotyping results.

Joint calling

MOPline performs joint calling of multi-sample SV call sets and generate a single vcf file. Joint calling combines genetically identical

(similar) SV calls frommultiple samples into a single site.S 1 KbDELs with DPRS 0.9 or DPSS 0.5,S 100 KbDELs with DPRS 0.8

or DPSS 0.35, andS 1 Kb DUPs with DPR& 1.1 were prefiltered. Overlapping SV sites from multiple samples were clustered pri-

marily by the following criteria:S 50% reciprocal overlap for DELs, DUPs, and INVs and BP ±200 bp for INSs. Clustering was done by

stepwise merging of closer sites for each SV type. For each clustered site, the sites from multiple samples were integrated into a

single site. Proximal DUPs and INSs with a BP distance of & 10 bp were integrated into a single site since DUPs are a type of

INSs and the calling of DUPs or INSs depends on SV calling algorithm. The median BP and size and the mean DPR were added

to the POS and INFO fields of the output vcf file, and the genotype, BP, SV size, DPR, DPS, and SRR for each sample were added

to the FORMAT field. In addition, if more than 50%of themedian SV size at an SV site overlappedwith the gap region of the reference,

the SV site was removed. INVs greater than 200 Kb were removed because of the high likelihood of false positives. DELs, DUPs, and

INVs were limited to the size ofS 50 bp whereas INSs could contain a fraction of < 50 bp INSs because many short read-based INS

detection algorithms detect only INS BPs and fail to determine INS sizes precisely.

Genotyping

SV genotyping was performed by multinomial logistic regression with DPR and SRR statistics. The multinomial logistic regression

was conducted using the multinom function in the nnet library in R (https://cran.r-project.org/web/packages/nnet/index.html). To

prepare training datasets, we first collected the frequency data across DPR and SRR site-level bins (with 0.1 widths) for each

type of SVs using MOPline joint call data for 1,494 BBJ samples. DELs and DUPs were further divided into size ranges (&

150 bp, 150-1000 bp, and > 1000 bp for DELs, and& 100 bp, 100-2000 bp, and > 2000 bp for DUPs) and each was further divided

into the two classes, overlapping repeat and non-repeat regions. The repeat region includes the STR and segmental duplication re-

gions. The DPR-based or SRR-based frequency exhibited a binomial distribution in typical cases, each peak corresponding to het-

erozygous (Het) or homozygous (Hom) SVs. We selected SVs, whose DPR and/or SRR values exhibited a binomial distribution at the

sites, and used the DPRs and SRRs of Het and Hom in each SV class as training data for multinomial logistic regression (only SRRs

were used for INSs and INVs). The control training DPR/SRR datasets as reference allele data were obtained from regions where SVs

were not present. The DEL and INS training datasets contained at least 10,000 DPR/SRR data for each genotype, whereas some

classes of DUP and INV training data, including > 2 Kb Hom DUP in non-repeats and Hom INV in repeats, contained less than

100 DPR/SRR data. Training of the multinomial logistic regression was conducted using the selected DPRs/SRRs and the corre-

sponding genotypes for each subclass (i.e., genotype as the objective valuable, and SRR for INS or SRR and DPR for the other

type as the explanation valuables). The mean SRR and DPR values calculated at a site were also used as the explanation valuable.

SVs that were more likely to be Ref alleles, such asS 200 bp DELs with DPRS 1.0,S 200 bp DUPs with DPR& 1.0, and INSs with

SRR & 0.1, were excluded for genotyping. Finally, genotypes of SVs were predicted with models created using the trained dataset

corresponding to the subclasses. Genotype quality (GQ) was calculated using the probability value (Pr) of the predicted genotype

with the following formula.

GQ = GL1 -- GL2

where GL1 is the likelihood of the first predicted genotype and GL2 is the likelihood of the second predicted genotype.

GL1 = � 103 log10 ð1 -- Pr 1Þ
GL2 = � 103 log10 ð1 -- Pr 2Þ
where Pr1 is the probability of the first predicted genotype and Pr2 is the probability of the second predicted genotype.

SMC

Supplementing Missing Calls (SMC) genotypes plausible missing calls (ref alleles) among samples at high confidence SV sites in a

joint-called vcf file. SMC is implemented at two levels: the first level finds matched SVs from the single SV detection algorithms used

in MOPline, the second predicts SV genotypes based on DPR and SRR statistics. In the first level, when a sample has a reference

allele at an SV site in the joint call data and the corresponding SV call is contained in the original SV calls of the sample (forMOPline-7t,

CNVnator [DEL, DUP], GRIDSS [DEL, DUP, and INV], inGAP-sv [DEL and INS], Manta [DEL, DUP, INS, and INV], MATCHCLIP [DEL

and DUP], MELT [INS], and Wham [DEL, DUP, and INV]) and when each SV must meet the RSS thresholds optimized for each algo-

rithms and each SV category, which are specified in a SVtool_param.txt file, the reference allele was converted to a non-reference SV

allele. At the second level, all genotypes at many selected SV sites were predicted using the multinomial logistic regression-based

methodwith DPR and SRR values of the corresponding sites as described. SVs eligible for the second level of SMCwere restricted to

S 50 bp DELs/DUPs with at least three non-Ref genotyped samples at a site, INSs with AF S 0.01 and with at least five non-Ref

genotyped samples at a site, andS 1Kb INVs with AFS 0.8 and with at least five non-Ref genotyped samples at a site. Genotypes

assigned in the first level were determined to have a Ref allele if the probability of the Ref allele was S 0.9. Genotypes with a Ref

allele were judged as Het allele if the probability of Het allele was S 0.99; otherwise, genotypes were judged as Ref allele. Finally,
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the SMC-based genotypes were corrected with the DPR and SRR statistics calculated for each site (third-level SMC). For example,

INSswith SRRS 0.3 genotyped as Ref allele were converted to a Het allele if the SRRwas greater than theminimumSRR value of the

non-SMC-derived Het allele at that site or the mean SRR value minus the standard deviation (SD) of the SRR of the Het allele at that

site. INSs genotyped as non-Ref alleles were converted to Ref alleles if the SRRwas smaller than the minimum SRR value of the non-

SMC Het allele at that site and smaller than the mean SRR value minus 3 SDs of the SRR of the Het allele at that site. DELs ofS 1 Kb

withSDPR 0.9 or DPSS 0.5 andS 1 KbDUPswith DPR& 1.1 were converted to Ref alleles. The SMC levels of SV genotypes were

labeled in the FORMAT/SAMPLE fields of the vcf files with MC tags ranging from 0 to 3. SVs with unequal proportions of split-reads

direction (50- and -30-soft-clipped read ends) in BP were considered false-positive calls; INSs with more than 8-fold difference and

DELs/DUPs with more than 4-fold difference were considered ref alleles. SV sites with a frequency of S 90% of samples with the

unequal proportions of split-read direction were deleted.

Filtering

The SV filtering of MOPline can optionally be applied after any steps to a vcf file with the DPR or DR tags in the INFO or FORMAT

fields. DELs and DUPs can be filtered by parameters based on read coverage while INS can be filtered by parameters based on split

read signals (Figure S21). The joint call and SMC steps involve primary filtering of DELs/DUPs based on coverage and INSs based on

split reads.

(a) Coverage-based DEL/DUP filtering: DELs and DUPs with inconsistent DPR and/or DPS are filtered with the MOPline DPR-

based filtering feature. The filtering was applied for S 10 Kb DELs when satisfying any of the following criteria:

DPR > 0.75; DPR > 0.85 and DPS > 0.2. The filtering of DELs was not applied when S 70% of the DEL length overlapped

the segmental duplications. The filtering of DUPs was applied when satisfying any of the following criteria: DPR < 1.25 and

>1 Kb in size; DPR < 1.35, DPS > 0.1, and > 200 bp in size. However, the DPR-based filtering was less effective for small

DELs/DUPs and could miss SVs with small changes in read depth, such as translocations or a gain or loss of a single copy

from multiple copy segments.

(b) Gap-based filtering: The SV detection algorithms based on read depth was found to miscall DELs that overlapped the gap

regions in the reference likely because reads cannot be aligned to the reference gaps. When more than half of the size of

the DEL overlapped the gap region, the corresponding DEL was filtered out (this is also conducted in the joint calling step).

DUPs in close proximity to the gap regions were more likely to be miscalled. This type of DUP miscalling could occur due

to misalignment of sequencing reads to be assigned to a gap region when the gap-flanking sequence is homologous to

the unassigned sequence in the gap region, possibly with repetitive nature. The MOPline filtered out gap-flanking DUPs

when the flanking gap size is S 20 Kb or S 0.5-fold of the DUP size. The 50-flanking region corresponds to the region

from 1.2 3 DUP size upstream of the first BP to 0.2 3 DUP size upstream of the first BP. The 30-flanking region corresponds

to the region from 0.23 DUP size downstream of the second BP to 1.23 DUP size downstream of the second BP. The gap-

based DUP filtering was restricted to S 50 Kb DUPs by default.

(c) DUPs overlapping segmental duplications: DUPs overlapping the segmental duplications were found to be ambiguous and

inaccurate. We filtered out S 5 Kb DUPs completely overlapping the segmental duplications with S 3 copies of the unit in

the genome (Figure S21).

(d) Overlapping INS-DUP calls: Since DUPs are a type of INSs, INS calls may overlap DUP calls. If the terminal segment of an INS

overlaps the adjacent reference sequence at a BP, some SV detection algorithms consider the terminal segment of the INS to

be DUP. When a DUP is in a short tandem repeat region, the INS size observed in the long-read data is often larger or shorter

than the size of the DUP called with short-read data (Figure S22). In the latter case, the size of the DUP is incorrectly called

because the DUP alignment signals often skip one or several copies of the short tandem repeat unit in the short-read data

(Figure S22B). Calling of DUP or INS depends on the short read-based SV detection algorithms. In MOPline, integrating mul-

tiple SV detection call sets, redundant calls of a DUP and an INS at the same or nearly identical positions are often observed.

MOPline deletes redundant INSs of & 100 bp or redundant DUPs of >100 bp.

(e) Overlapping DEL-DUP signals causing pseudo-DEL/DUP calls: Short read-based SV detection algorithms often call both a

DEL and a DUP with a similar size at nearly identical sites. We found that this overlapping DEL-DUP call could be caused

largely by an interspersed duplication of a distantly located segment on the same chromosome. The interspersed duplication

(i.e., insertion) of a local segment generates pseudo-read pair signals to detect both a DEL and a DUPwith a size correspond-

ing to the interspersed distance of the DUP (Figure S23). In this case, there is often no clear change in the read coverage of the

pseudo-DEL and DUP. We observed at least 76 of this complex type of pseudo-DEL-DUP calls in the NA12878 SV call set

detected with MOPline-7t (Table S10). Such miscalled DELs/DUPs were filtered out at the first SV-merging step. However,

MOPline was not able to effectively remove such DELs or DUPs when DELs and DUPs of similar size were not called at similar

sites in a given sample. Such miscalls can be effectively eliminated in the validation step using the alignment viewer.

(f) Overlapping INV-DUP signals causing pseudo-INV calls: An interspersed DUP often generates false DEL signals, as described

above. An inverted interspersed DUP often generates wrong INV signals (Figure S24). We observed at least 22 of this complex

type of pseudo-INV calls in the NA12878 SV call set detected with MOPline-7t (Table S10). However, MOPline was unable to

effectively remove such pseudo-INV calls. Suchmiscalls can be effectively eliminated in the validation step using the alignment

viewer.
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Annotation of SV-overlapping genes

Information on gene regions that overlap with SV sites can be added in the INFO field of the vcf file. MOPline used the gene infor-

mation for 41,911 genes, excluding pseudogenes and including 20,268 protein-coding genes, from Homo_sapiens.GRCh37.87.gff3

(or Homo_sapiens.GRCh38.104.gff3.gz for GRCh38), which is available at the Ensembl site. For SVs overlapping with exons/CDSs,

introns, untranslated regions (UTRs), 50- or 30-flanking regions of the genes, the gene name, gene ID, and the overlapped gene region

were added to the INFO field with the SVANN tag. These annotations were also added to the FORMAT AN subfield for each sample

because the same integration site often has different SV sizes and BPs in different samples. When an SV overlapped with multiple

regions of a gene, the region at the higher level of hierarchy (CDS/exon > UTR > intron > flanking) was indicated. Two ranges of flank-

ing length were specified by default (5 Kb and 50 Kb).

INSs and DELs of mobile elements
MELTwas used to detectmobile (retrovirus) element insertions (MEIs) for Alu, L1, SVA, andHERVK from the 3,258 high coverage BBJ

WGS dataset, resulting in a total of 20,919 MEIs. We precisely measured the content of MEIs in the BBJ INSs using the long read-

based HGSVC INS call set because the BBJ INS call set may contain false negative or false positive MEIs that MELT failed to call. The

HGSVC INSs matching the BBJ-INSs (maximum distance 50 bp between BPs) were selected and the INS (ALT) sequences were ex-

tracted from the HGSVC SV vcf file. These INS sequences were aligned to the Alu, L1, and SVA reference sequences in a pair-wise

manner using the yass alignment tool (https://bioinfo.lifl.fr/yass/). The alignments withmismatch rate of& 15%and continuous align-

ment length ofS 50 bp were determined to be MEI sequences. Of the tested 10,274 INSs with AFS 0.01, 4,127 (40.2%) and 3,520

(34.3%) were found to be MEI and Alu sequences, respectively.

Mobile element deletions were detected using repeat element annotation information in rmsk.txt, which was obtained from the

UCSC Genome Browser site (https://genome.ucsc.edu). The total length of the annotated regions was approximately 308 Mb for

Alu, 513 Mb for L1, and 4 Mb for SVA. In the DELs detected with MOPline from the BBJ WGS data, DELs located on the Alu, L1,

and SVA regions in the reference were annotated as Alu DELs, L1 DELs, and SVA DELs, respectively. Only when S 70% of the

DEL size overlapped with these mobile element regions, the DELs were considered MEI DELs.

PCA
Principal component analysis (PCA) was performed using SNPRelate (https://github.com/zhengxwen/SNPRelate). The 1KG-SVs

with AF S 0.05 were converted to pseudo-SNPs by converting the reference base at the first BP of the SV to another base. For

PCA using SNPs, the SNPs used in the Illumina SNP array were selected from the 1KG SNPs with AF S 0.05. These SNPs and

the sample information from the vcf files were converted to ped and map files to create gds files. The SNPs were pruned using

‘ld.threshold = 0.2’ in SNPRelate and PCA was performed.

LD test
Linkage disequilibrium (LD) between the BBJ-SVs and their neighboring SNVs or indels was determined as done in the gnomAD-SV

study.22 SVs were restricted to autosomal SVs with AF S 0.01 that did not overlap repeat regions, including the STR and the

segmental duplication regions, and the SVs to be tested were a total of 14,310 SVs. The overlap between SVs and repeats was deter-

mined whenS 30% of SV size overlapped with a repeat region. LDs between SV and nearby SNVs/indels with a distance of < 1 Mb

were measured using vcftools (https://vcftools.github.io/index.html) with options –ld-window-bp 1000000 –min-r2 0.0001, and the

top LDs were selected for each SV. The average of the selected top LDs was calculated for each type of SV.

HWE test
The Hardy-Weinberg equilibrium (HWE) of autosomal SV genotypes in the BBJ-SV dataset was tested for each SV type as in the gno-

mAD-SV study. Chi-square tests were performed to determine how likely the observed frequencies matched the expected HWE

values and were calculated as follows: N * AF2 for the number of homozygous variants and N * AF * (1 – AF) * 2 for the number of

heterozygous variants, where N is the number of samples in the population. The percentage of SVs for which the HWE p-value ex-

ceeded the Bonferroni corrected p-value (0.05 divided by the number of SVs tested) was determined for each SV type.

SV-associated disease risk genes
Gene-based burden tests were performed for colorectal cancer (n = 196), breast cancer (n = 237), prostate cancer (n = 215), gastric

cancer (n = 257), dementia (n = 200), and CAD (n = 1,964) using BBJ-SVs. SV data from 2,353 non-cancer disease samples (CAD,

drug eruption, and dementia) were used as controls for colorectal and gastric cancers. For breast and prostate cancer, only the fe-

male (n = 361) andmale (n = 1,992) samples in this control set were used as controls, respectively. For dementia and CAD, all samples

other than the corresponding samples (n = 3,058 for dementia and n = 1,294 for CAD) were used as controls, respectively. We

counted the number of case or control samples in which the SV overlapped with an exon of a gene. Known risk genes for each dis-

ease were obtained fromClinVar (https://www.ncbi.nlm.nih.gov/clinvar). For all the overlapped genes, ORs and p-values were deter-

mined by the number of cases and controls in which the SVs overlappedwith a gene. p-valueswere determined by two-tailed Fisher’s
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exact test or chi-square test, depending on whether there were five or fewer cases with the mutated gene. All identified SVs with a

significant association were confirmed using the IGV viewer with regional BAM files of up to 5 randomly selected samples for each

carrier and non-carrier.

SVs associated with published GWAS signals
The GWAS data file (gwas_catalog_v1.0.2-associations.tsv) was downloaded from the GWAS catalog site (https://www.ebi.

ac.uk/gwas/download). This file was converted to a file compatible with the GRCh37 reference using liftOver and with the

dbSNP bed files (GRCh37 build 152, downloaded at NCBI: ftp://ftp.ncbi.nih.gov/snp/.redesign/pre_build152/organisms/

human_9606_b151_GRCh37p13/BED). From the converted GWAS catalog file, GWAS data matching disease traits in the BBJ

WGS data except drug eruption were extracted. For dementia, the data with the ‘‘Alzheimer’’ trait were also extracted. For CAD,

the data with the ‘‘coronary heart/artery disease’’ or ‘‘myocardial infarction’’ trait were extracted. The GWAS lead SNPs within 1

Mb of a disease were considered as variants at the same locus and were merged into one site with the lowest p-value. For each dis-

ease, we selected the GWAS lead SNPs and its nearly located SVs (upstream 500 Kb to downstream 500 Kb of the lead SNP). We

also selected SNVs from the BBJWGS data that matched the GWAS lead SNPs. LD r2 values between the pairs of the selected BBJ

SNVs and SVswere determined using vcftools with the options ‘–geno-r2-positions <SNV.vcf> –ld-window-bp 1000000 –min-r2 0.1’.

For SNV/SV pairs with LD r2 S 0.1, ORs and p-values were also determined for each SNVs and SVs. The same control sample set

used in the disease burden test was used for each disease to calculate ORs and p-values. All disease-associated SVs in LD (r2S 0.8)

with GWAS variants were confirmed using the IGV viewer with regional BAM files of up to 5 randomly selected samples for each car-

rier and non-carrier.

Imputation of SVs
To test whether SVs are associated with common diseases and traits, genotype data from the array were imputed with SV-containing

imputation panels. To generate a reference imputation panel in vcf format, SVs (DELs, DUPs, and INSs) in BBJ-SVs were integrated

with SNVs and indels detected from the sameWGS data, in which the first BP of SVs was considered a pseudo-SNP. Variants with a

genotyping rate of <95% in 3,258 samples andmultiallelic variants were excluded. Several imputation panels containing variants with

different AF thresholds (S 0.01,S 0.001,S 0.0003, and no AF threshold) were generated for each autosome. The imputation panels

for each chromosome were phased using Beagle 5.103 (http://faculty.washington.edu/browning/beagle/beagle.html) with the

HapMap genetic map files for GRCh37 before imputation. To evaluate SV phasing accuracy, we used long read-based haplo-

type-resolved HGSVC genotype data17 as truth phased data. Since the HGSVC data shared five 1KG samples used in this study

(NA18534, NA18939, NA12878, NA19238, and NA19239), we phased the combined SNV and SV data for the 1KG detected in

this study. We calculated the flip rate for pairs of SVs and their flanking SNVs on both sides to determine the SV phasing accuracy

for the shared five samples, as described in the recent HGSVC study.24 Briefly, heterozygous variants matched between the HGSVC

data and the 1KG data in this study were selected based on a minimal reciprocal overlap ratio of 0.8 for DEL and a maximal BP dis-

tance of 20 bp for INS. Since there is no DUP in the HGSVC data, the 1KG DUP was considered as INS. The closest matched SNVs

within 20 Kb upstream and downstream of each of the matched SVs were selected. If the phase (on the same or different chromo-

somes) of a pair of heterozygous SNVs and SVs in this study matched that of a pair of HGSVC truth data, it was counted as true. A

total of 4,500 to 6,500 SVs were tested in each sample, resulting in an average true positive rate of 98.3% for DEL and 96.5% for INS.

Quality-controlled array genotype data for 181,622 BBJ samples from participants each with any of 44 diseases was imputed with

the phased reference panel using IMPUTE 5 v1.1.4104 (https://innovation.ox.ac.uk/licence-details/impute-5/). Imputation with

IMPUTE 5 was performed with the default options, chunk size 5 Mb (chunk size 3 Mb for chromosome 6 only) and genetic map files

for GRCh37 provided by SHAPEIT4 (https://odelaneau.github.io/shapeit4/). Imputed files for chromosome 1 to chromosome 22were

combined into a single vcf file, compressed with bgzip, and indexed with tabix. In GWAS, imputed variants with INFO scores < 0.3

were excluded. To evaluate the accuracy of imputation, array genotype data from 200 randomly selected individuals from the 3,258

individuals used in the reference panel were used as a test data set. The test dataset was imputed with the reference panel of the

remaining 3,058 individuals using IMPUTE 5. Because 200 samples of the test data were included in the original reference panel

generated with the WGS data, a sample’s imputed calls were determined to be a true positive if it matched that of the original refer-

ence panel (i.e., reference allele or non-reference allele). Precision was calculated as the percentage of true positives in the total num-

ber of imputed calls for each of the 200 test samples, and recall as the percentage of true positives in the total number of non-refer-

ence alleles for each of the 200 test samples. Overall precision or recall was the average of precision or recall per individual for each

variant type and each AF range. To further validate the false positive imputation calls, we selected one sample from the test samples

and checked the alignment signals supporting the SV calls using the IGV viewer with the bam file of the selected sample. SVs sup-

ported by only ambiguously aligned reads with mapping quality 0 were excluded from the analysis although it is possible that SVs

supported by misaligned reads were evaluated in a difficult-to-align region containing segmental duplications.

GWAS
In GWAS for binary and quantitative traits, we used two imputation datasets (with INFO score S 0.3) generated with the S 0.01 AF

and S 0.0003 AF imputation panels, because imputation using the S 0.0003 AF imputation panel resulted in low imputation effi-

ciency in the AF range S 0.01 (Figure S25). GWAS for 42 diseases was performed with the imputed SV-SNV-indel data for the
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BBJ 181,622 samples using SAIGE v0.35.8,105 which implements a generalized mixed model association method that controls un-

balanced case-control ratios, as in a previous study.43 The GWAS in this study differs from the previous study in the imputation panel

and control sample; additional 32,793 controls from a different cohort were included in the study by Ishigaki et al.43 The selection of

control samples for several diseases was done as in the study by Ishigaki et al. In step 1 of SAIGE for fitting the null logistic/linear

mixed model, binary trait was used as the trait type, and age, sex, and top 5 principal components were used as covariates for all

diseases. This step was performed using plink bed files, that was converted from the imputed vcf file and pruned using plink with

the options –indep-pairwise 500 50 0.2 –maf 0.01. The second step was done for each chromosome with the default options. For

60 quantitative traits, we used REGENIE v2.2.4,106 which implements a machine-learning-based whole-genome regression model

with high computational efficiency. The quantitative data for each trait were adjusted for age, sex, top 10 principal components,

and disease status for the 47 target diseases of BBJ in a linear regression model, and the resulting residues were normalized, as

described.42,44,45 In step 1 of REGENIE fitting model, bsize 1000 was specified, and the pruned bed files were used with bsize

400 in step 2. From the GWAS results with the S 0.0003 AF imputation dataset, only genome-wide significant variants with

AF < 0.01 were selected. Top-ranked SVs were selected from genome-wide significant variants (p-value& 53 10�8) as SVs exhibit-

ing the lowest p-value or a similar p-value (S 90% orS 84% of the -log10 p-value of the top variant for quantitative and binary traits,

respectively) to the top variant at each GWAS loci. In the GWAS summary statistics, the direction of the effect size was inverted if the

reference allele corresponded to an alternative allele (second allele). In addition, genome-wide significant SVs overlapping exons

were searched to find SVs hidden in adjacent strongly associated SNPs. We confirmed whether identified top-ranked GWAS SVs

were correctly genotyped or not, using the IGV viewer with regional BAMfiles from the originalWGSdata of up to 5 randomly selected

samples for each carrier and non-carrier. For non-sporadic SVs with supporting SNPs at certain loci, alignment signals supporting

SVs for all the SVs were observed in the selected positive sample data, but not in the negative sample data. However, for many spo-

radic SVs found in CAD, PrCa, and CoCa, alignment signals were inconsistent or ambiguous in several positive or negative samples,

and these unreliable SVs were excluded from the analysis. To further assess the accuracy of the top-ranked associated SVs, we

searched for array SNPs with strong association signals and in high LD with the SVs. For 45 top-ranked SVs with AF > 0.01,

SNPs derived from array-genotype data within 200 Kb upstream or downstream of the SVs were selected. LDs between SV and

SNP pairs were measured using vcftools, and the p-values for the corresponding association test were obtained from the GWAS

summary statistics. Manhattan plots were drawn with the GWAS summary statistics using the R qqman library, with highlighted

genome-wide significant SVs. Regional Manhattan plots were drawn using locuszoom (http://locuszoom.org) with focusing on a

genome-wide significant SV specified with the –refsnp and with –flank 500kb options.

Survival analyses of prostate cancer
Among SVs significantly associated with complex traits, we focused on the SV associated with prostate cancer (PrCa) because of its

high heritability (�58%) and many PrCa associations observed in previous GWAS. Furthermore, we found that polygenic risk score

would predict development of PrCa (unpublished work). Given the possibility that SV may have a strong effect on coding genes, we

hypothesized that SV would show a strong association with mortality in PrCa in the follow-up study. In the BBJ follow-up study,

approximately 140,000 BBJ subjects were followed up for approximately 12 years to monitor mortality and its causes coded by

ICD10. We took a very similar approach (including data usage) to our previous paper.41 We restricted this analysis to male subjects

without malignancy at enrollment and analyzed the association between PrCa mortality and SV using the Cox proportional hazards

model with age, disease status at enrollment and smoking as covariates.

GWAS DELs overlapping TF footprints
To infer the causality of genome-wide significant variants, we searched for the GWAS variants that overlap with the transcription fac-

tor (TF) footprints. TF footprint data was obtained from the study by Vierstra et al.,51 which identified 4.6 M consensus TF footprints

from 243 biosamples by genomic DNaseI footprinting experiments. Compared to the data from Chip-Seq and ATAC-Seq, the higher

resolution of the footprints (typically 7-30 bp per footprint) allows for more clearly defining TF-binding sites affected by variants. First,

GWAS SNVs/indels in LD with GWAS SVs were defined using plink with the option, –r2 –ld-window 1000 –ld-window-r2 0.2 –ld-snp-

list. For each of the defined GWAS loci, the overlap of the GWAS variants with TF footprints was searched using the data (consen-

sus_footprints_and_collapsed_motifs_hg38.bed and consensus_index_matrix_full_hg38.txt), obtained from https://www.vierstra.

org/resources/dgf. The coordinates in the file (consensus_footprints_and_collapsed_motifs_hg38.bed) were converted to those of

GRCh37 using liftOver. The histological types derived from the footprints were selected based on the score (S 1.0) in the consen-

sus_index_matrix_full_hg38.txt file. Overlap of DELs and footprints was restricted to only whenS 50% of the footprint size overlap-

ped with the DEL. SNVs and short indels that overlapped with footprints were further evaluated to determine whether the TF binding

sites in the footprints were functionally disrupted by the mutation. This evaluation was performed using Homer (http://homer.ucsd.

edu/homer/). For SNVs, we used the fasta file of the 21 bp genomic sequence centered on the SNV and the file of known vertebrate

motifs provided by Homer to execute the homer2 find command. The SNV was considered a variant affecting the TF footprint if the

Homer evaluation showed that its SNV functionally altered TF-bindingmotifs (loss or gain) on the TF footprint. We focused on only the

inhibitory effect of themutation in the TF-bindingmotif on the TF footprint because it is difficult to assess the effect of a newly created

TF-binding motif by the mutation on the already formed TF footprint.
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To determine the empirical p-value for TF footprint overlap based on random expectations using a permutation test, we used 21

non-redundant GWAS top-ranked DELs (the 30 Kb DEL associated with BrCa was excluded due to lack of TF footprint-derived his-

tological types related to breast cancer). Simulated DELs corresponding to the GWAS DELs were created at randomly selected po-

sitions from the same chromosome with the same length, and regions corresponding to simple repeats, segmental duplications, and

gaps were excluded because these regions are difficult to detect and genotype SVs using short reads. DEL overlap events were

counted when the DEL overlapped with at least one TF footprint region and the overlapping footprint-derived histological type

was related to the corresponding trait. The histological types related to traits were ‘Respiratory’ for LuCa, ‘Connective’ for RA,

‘Hematopoietic/Musculoskeletal/Connective’ for Height, ‘Hematopoietic/Hepatic’ for ALP, AST, Plt, GGT, TBil, and ZTT, and

‘Hematopoietic’ for the other traits. This test was repeated 1,000 times, and overlap counts for the 21 DELs were determined for

each repeated test. The resulting counts followed a normal distribution with a mean of 5.8 and a standard deviation of 1.59. The

p-value for the TF footprints enrichment of the GWAS top DELs (11/21) was approximated under the assumption of standard normal

distribution.
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