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A folate receptor 3 SNP promotes mitochondria-induced
clonogenicity of CML leukemia cells: Implications for

treatment free remission

Dear Editor,

Treatment-free remission (TFR) is an emerging goal of
chronic myeloid leukemia (CML) due to long-term costs
and toxicity."? Previous studies had shown that 55% of
selected CML patients suffered molecular relapse after
tyrosine kinase inhibitor (TKI) cessation, while the rest
remained in a TFR.>* Here, we highlighted the biological
role and indicator of folate receptor 3 (FOLR3) and its SNP
in TFR.

We collected bone marrow samples from CML patients
at the time of TKI cessation. These patients were fol-
lowed up for 24 months; from them 7 relapsed and 7 non-
relapsed were sequenced (Table S1). Among top differ-
entially expressed genes (DEGs) (Figure 1A), the FOLR3,
which was not expressed in any relapsed samples and
highly expressed in 3/7 non-relapsed samples, was the
most significantly gene (Fig S1B). Published expression
profiles (Figure 1B) indicated FOLR3 highly expressed in
bone marrow. We found that FOLR3 was highly expressed
in TKI responders by analysing two public CML datasets,
GSE14671° and GSE2535° (Figure 1C, D). Besides, we iden-
tified a TA insertion (SNP rs139130389, termed FOLR3
SNP+) in the third exon of FOLR3 gene in three non-
relapsed CML samples with FOLR3 overexpression (Fig-
ure 1E). The FOLR3 SNP+ encoded a functional protein;
only a partial folate receptor domain was encoded by the
FOLR3 SNP- (Figure 1E; Figure S1). Average proportion of
FOLR3 SNP+ genotype in human is 11.08%, with Africans
having the highest frequency (Figure 1F). We retrospec-
tively studied 87 CML patients who discontinued TKI out-
side of clinical trials. TFR at 48 months for the FOLR3
SNP+ and FOLR3 SNP- patients were 84.4% (95% CI: 74.2%-
94.6%) and 52.4% (95% CI: 44.6%-60.2%), respectively (Fig-
ure 1G, P =.0407). Fifteen of 87 patients carried the FOLR3
SNP, only two relapsed but they successfully achieved sec-
ondary withdrawal by resuming TKI treatment (Table S6).

The distributions of immune cells were not significantly
different between relapsed and non-relapsed samples in

our cohort (Figure S1).” Therefore, we established differ-
ent FOLR3 SNP expression subtypes in CD34" cells from
newly diagnosed CML patients and K562 cells through
lentiviral transfection (details in Supporting Information).
The proliferation, cell cycle (Figure 2A; Figure S2), colony-
forming capacities (Figure 2B) and capacity of folic acid
uptake (Figure 2C) of FOLR3 SNP+ CD34+ and K562 cells
were higher than those of control, siFOLR3 and FOLR3
SNP- groups. Folate-free medium could cancel the differ-
ence of colony-forming units among different groups of
K562 cells (Figure 2D). Besides, we found FOLR3 SNP+
K562 cells exhibited the lowest BCR-ABLI expression in the
four groups (Figure 2E) but higher sensitivity to TKI (Fig-
ure 2H). Metabolomics analysis of FOLR3 SNP+/- CD34*
indicated they were enriched in fatty acid metabolism,
biosynthesis, and elongation pathways (Figure 2F). The
glycerophospholipid and fatty acid biosynthesis were more
active in FOLR3 SNP+ K562 cells (Figure 2F). Subcuta-
neous tumorigenesis by K562 cells and small animal PET
scanning were performed on three representative mice of
each group at 21 days after engraftment. An increase in the
maximal standard uptake value of 8 F-FDG was found in
FOLR3 SNP+ group (Figure 2G).

To explore the outcome of continuously proliferated
cells, we conducted colony forming assay on cells cul-
tured for 21 days after lentivirus transfection. The colony-
forming capacity of FOLR3 SNP+ CD34" cells remark-
ably decreased compared to that of siFOLR3 and FOLR3
SNP- cells (Figure 2I). The percentages of FOLR3 SNP-
CD34* cells at G2/M stage were higher than that of the
FOLR3 SNP+ counterpart (Figure 2J). Compared with
the other arms, the proliferation (Figure 2K), CyclinE2
and p21 (Figure 2L, FigS3) of FOLR3 SNP+ CD34" cells
noticeably decreased, while ROS levels (Figure 2M) and
senescence-associated secretory phenotype-related genes
IL-6 and MMP9 substantially increased (Figure 2N, Figure
S3). Compared with CD34* cells from cord blood, healthy
mobilization and non-treated CML patients, we found that
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FIGURE 1 Identifying the differential expression of FOLR3 by an SNP between relapsed and non-relapsed CML patients. A, Heatmap of
the top 50 DEGs from differential expression analysis between relapsed and non-relapsed CML patients. B, Expression profiles of folate receptor
genes in normal tissues from HPA data. C, D, Normalized expression of FOLR3 in responder and non-responder CML samples after imatinib
therapy in datasets GSE14671 and GSE2535. E, The FOLR3 mapping results and their encoded proteins. The TA deletion (SNP+) transcript of
FOLR3 encodes a protein with a complete folate receptor domain. F, The SNP rs139130389 genotype frequencies in different populations from the
1000 Human Genome Project. G, TFR and distribution of relapse and non-relapsed of FOLR3 SNP+/- CML patients after TKI discontinuation
[n = 87, Log-rank (Mantel-Cox) test and likelihood ratio test].
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FIGURE 2 FOLR3 SNP affected the proliferation, metabolism and TKI sensitivity of CML cells. A-B, Cell proliferation (A) and (B) of
CML CD34* and K562 cells with different FOLR3 SNP. C, Capacity of folic acid intake in K562 cells with different FOLR3 SNP. D, Colony
images of K562 cells with different FOLR3 SNP cultured in normal folate or folate-free medium. E, The relative BCR-ABL1 mRNA expression
in K562 cells with different FOLR3 SNP were determined by qRT-PCR. The results are presented as 2722, F, Pathway analysis of differential
metabolite upregulated in FOLR3 SNP+ CD34% /K562 cells and simultaneously downregulated in FOLR3 SNP- CD34%/K562 cells. The x and
y axes represent the pathway impact and enrichment, respectively. Larger size and darker color represent increased pathway enrichment and
higher pathway impact values, respectively. G, Representative 18F-FDG PET images and quantification of tumor 18F-FDG uptake in mice
3 weeks after subcutaneous injection of K562 cells with different FOLR3 SNP (n = 3 images per group). SUV, standardized uptake value. H,
Cell proliferation was assessed using the CCK-8 assay on K562 cells with different FOLR3 SNP treated with imatinib for 48 h. The following
experiments were performed 21 days after transfection: I, The statistics for colony numbers for quartic experiments on CD34+ cells with different
FOLR3 SNP. J, G2/M stage of CD34" cells were stained by PI and calculated on flow cytometry. K, The proliferation of CD34+ with different
FOLR3 SNP was determined by CCK-8 after 48 h. L, qRT-PCR was applied to quantify the relative expression of senescence-associated genes
Cyclin E2 in CD34* cells. M, Representative histograms of DCFH-DA labelled CD34" cells with different FOLR3 SNP. ROS in CD34* cells was
determined from the median fluorescence intensity of DCFH-DA labelled cells. N, qRT-PCR was applied to quantify the relative expression of
senescence-associated genes IL-6 in CD34* cells. O, The mean fluorescence intensity (MFI) of SPiDER-( Gal labelled CD34+ cells from human
cord blood (CB), healthy mobilized peripheral blood (Normal), non-treated CML cells (CML) and CML patients treated with TKI (CML+TKI)
were measured on flow cytometry. P, The association analyses between duration of TKI treatment and senescence/colony forming ability of
CML CD34* cells. "P < .05, "P < .01, ""P < .001
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CD34%" cells in CML patients treated with TKI presented
more senescence phenotypes (P < .05) (Figure 20). The
longer TKI treatment lasted, the higher of §-gal activity
exhibited, and the fewer colonies produced (Figure 2P).
To explore the mechanism, we performed RNA-seq
for CD34+ cells from 3 newly diagnosed CML patients
and K562 cells (Figure 3A), which were transfected with
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FIGURE 3 Identifying mechanism of
the FOLR3 SNP by promoting mitochondrial
function. (A) PCA analysis of gene expression
in the five groups (Blank, Control, siFOLR3,
FOLR3 SNP* and FOLR3 SNP-). B
Mitochondrion-related processes were
enriched in upregulated DEGs from
comparisons of FOLR3 SNP+ vs. blank in all
three CD34+ samples and K562 cell lines. (C)
Relative expression profiles of mitochondrial
complexes and gene expression density of
mitochondrial complexes, all mitochondrial
genes, oxidative phosphorylation, ATP
synthesis and ROS process in FOLR3 SNP+,
FOLR3 SNP- and siFOLR3 groups. Due to
individual differences, gene expression
activity (x-axis) was calculated as the FPKM
of experimental group samples (FOLR3
SNP+, FOLR3 SNP- and siFOLR3) divided by
the FPKM of the blank sample for each
group. The y-axis is the density of gene
numbers, and its distribution was scaled to
the same maximum height. D, Representative
electron microscopy images of mitochondria
in CD347 cells and K562 cells with different
FOLR3 SNP. Magnification 5000 , scale
bar = 1 um. E, Cellular OCRs in CD34* and
K562 cells with different FOLR3 SNP. Arrows,
the time when oligo (oligomycin), FCCP
[carbonyl cyanide-4-(trifluoromethoxy)
phenylhydrazone], and Rot/AA
(antimycin/rotenone) were added to the
system. Data were obtained using the
Seahorse XF24 analyzer. F, Quantified
indexes, maximal respiration capacity and
spare respiration capacity of CD34" cells with
different FOLR3 SNP were calculated by the
Seahorse XF24 analyzer. G, Maximal
respiration capacity and proton leakage in
K562 cells with different FOLR3 SNP were
quantified by the Seahorse XF24 analyzer. H,
SHMT2 mRNA levels in CD34" and K562
cells with different FOLR3 SNP were
determined by qRT-PCR. The results are
presented as 2722¢t, P values were tested by
the paired t-test. "P < .05, “P < .01, “"P < .001

lentivirus to differentially express FOLR3 SNP (blank,
FOLR3 SNP+, FOLR3 SNP- and siFOLR3, Table S3). The
220 upregulated DEGs in FOLR3 SNP+ CD34+ vs blank
comparison were significantly enriched in mitochondrion-
related processes, such as ATP hydrolysis, ATPase activ-
ity and mitochondrial electron transport (Figure 3B;
Figure S4C). Similarly, 229 upregulated DEGs identified in
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the FOLR3 SNP+ K562 versus blank comparison were also
enriched in mitochondrion-related processes (Figure 3B).
Besides, the FOLR3 SNP+ groups had significantly higher
mitochondrion-related gene expression, as well as oxida-
tive phosphorylation, ATP synthesis and ROS production
(Figure 3C).

Transmission electron microscopy indicated that
FOLR3 SNP+ K562 cells exhibited rich amounts of lipid
droplets, which were not observed in SNP+ CD34+
cells (Figure 3D). The FOLR3 SNP- groups had fewer
mitochondria than SNP+ groups (Figure 3D). FOLR3
SNP+ CD34% and K562 cells had higher oxygen con-
sumption rates (Figure 3E), maximal respiration and
spare respiratory capacity (Figure 3F; Figure S5A). In
K562 cells, FOLR3 SNP significantly increased maximal
respiration and proton leakage; however, differences in
basal respiration between each group were not notable
(Figure 3G; Figure S5A). Notably, mitochondrial mem-
brane potential and ATP concentrations of FOLR3 SNP+
CD34% cell was significantly higher (Figure S5B, C).
Serine hydroxymethyltransferase 2, a key enzyme in
folate-dependent mitochondrial translation and oxidative
phosphorylation,® highly expressed in SNP+ CD34" and
K562 cells (Figure 3H; Figure S5D).

In conclusion, we detected FOLR3 SNP rs139130389 only
in the TFR group. FOLR3 SNP+ CML cells proliferated
actively and exhibited greater colony-forming ability via
elevating mitochondrion activity. Proliferating cells were
relatively lower BCR-ABLI but more sensitive to TKI. Fur-
ther, continuous proliferation of stem cells would induce
replicative senescence.” We speculate patients achieve
TFR because their aging CML-LSCs failed to produce
malignant clones after discontinuation. As a result, CML-
LSCs senescence might be a key point of discontinuation
and the time needed to take medicine would be personal-
ized for CML-LSCs to accumulate senescence. The idea of
senescence will provide an outlook on future challenges of
CML-LSCs elimination.
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