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Abstract: In this study, several different depolymerases encoded in the prophage regions of Acineto-
bacter baumannii genomes have been bioinformatically predicted and recombinantly produced. The
identified depolymerases possessed multi-domain structures and were identical or closely homolo-
gous to various proteins encoded in other A. baumannii genomes. This means that prophage-derived
depolymerases are widespread, and different bacterial genomes can be the source of proteins with
polysaccharide-degrading activities. For two depolymerases, the specificity to capsular polysaccha-
rides (CPSs) of A. baumannii belonging to K1 and K92 capsular types (K types) was determined. The
data obtained showed that the prophage-derived depolymerases were glycosidases that cleaved the
A. baumannii CPSs by the hydrolytic mechanism to yield monomers and oligomers of the K units.
The recombinant proteins with established enzymatic activity significantly reduced the mortality of
Galleria mellonella larvae infected with A. baumannii of K1 and K92 capsular types. Therefore, these
enzymes can be considered as suitable candidates for the development of new antibacterials against
corresponding A. baumannii K types.

Keywords: Acinetobacter baumannii; prophages; phage receptor-binding proteins; structural
depolymerase; glycosidase; capsular polysaccharide; capsular type

1. Introduction

Acinetobacter baumannii is a nosocomial pathogen that causes pneumonia, wound
and catheter-related urinary tract infections, peritonitis, meningitis, endocarditis, and
bloodstream infections [1]. Due to the growing prevalence of isolates with limited treatment
options, A. baumannii has been listed by the World Health Organization as a critical priority
pathogen for therapeutics development [2]. Capsular polysaccharide (CPS) is one of the
essential A. baumannii virulence determinants composed of many oligosaccharide repeats
(K units), which forms a thick protective layer around the bacterial cell. The polymorphism
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of the chromosomal capsule loci (K loci, KL) is responsible for the observed high diversity
of A. baumannii CPS structures (more than 144 K types have now been identified) [3–5].

Genomes of many lytic bacteriophages contain genes encoding proteins with
polysaccharide-degrading activities [6]. These are highly specific structural depolymerases
combining the functions of the cleavage of capsular polysaccharides and phage attachment
to the bacterial host cell.

We suggest that the genetic material of temperate phages integrated in bacterial
genomes (or prophages) can also contain genes encoding different receptor-binding proteins
(RBPs), including structural depolymerases. During an analysis of several A. baumannii
genomes deposited in Genbank, we identified open reading frames (ORFs) encoding
proteins with the bioinformatically predicted polysaccharide-degrading activities and
structural similarities to tailspike depolymerases of different virulent phages. Considering
the high prevalence of prophages in A. baumannii genomes [7,8], we assumed that genetic
material of prophages could be a source of different polysaccharide-degrading enzymes.
The use of these prophage-derived depolymerases, such as the described specific phage
depolymerases, could be an effective approach to control bacterial cells surrounded by
polysaccharide capsules and the extracellular polymer matrix of biofilms.

The aim of this work was to characterize several different prophage-derived depoly-
merases encoded in A. baumannii genomes. For two of studied depolymerases, designated
as DpoAB5075 and DpoB8300, we determined the specificity towards CPSs of A. baumannii
K1 and K92 capsular types, respectively, and elucidated the mechanisms of their specific
action. We demonstrated that recombinant proteins with established enzymatic activity
significantly reduce the mortality of Galleria mellonella larvae infected with A. baumannii of
corresponding K types. Thus, in our opinion, prophage-derived depolymerases degrading
A. baumannii CPS of a certain structure can be considered as effective antivirulence agents
as well as described lytic phage-derived enzymes.

2. Results
2.1. Identification of Prophage-Derived Depolymerases

For our analysis, we randomly chose several genome sequences of A. baumannii
strains isolated from different geographical regions. We identified the coordinates of
possible prophage regions (complete or truncated/incomplete prophage genomes) in these
sequences using the PHASTER [9]. After that, we reannotated some of predicted prophage
regions and adjacent areas of the A. baumannii genomes using a search in the NR (non-
redundant) database of the NCBI [10] and HHpred profile–profile search [11]. These
regions were confirmed to contain genes encoding phage assembly and structural proteins,
products involved in phage nucleotide metabolism, the packaging of DNA into the capsid,
bacterial cell lysis, and the integration of phage DNA into the bacterial genomes. The
fragments of A. baumannii genomes containing determined prophage-derived genes are
presented in Figure 1.

Several ORFs encoding proteins with predicted polysaccharide-degrading activi-
ties or those that shared homology with different phage RBPs (tail fibers or tailspikes)
were identified in some determined prophage regions. We chose six genes located in the
genomes/genome contigs of A. baumannii strains AB2828, AB5075-UW, B8300, B11911,
AB4932, NIPH60 (Table 1). The proteins encoded by these genes were conventionally named
according to the designations of corresponding A. baumannii strains. For example, the de-
polymerase encoded in the prophage region of A. baumannii B8300 genome (CP021347) was
conventionally designated as DpoB8300, etc. Since the proteins, DpoAB2828, DpoAB5075,
DpoB8300, DpoB11911, DpoAB4932, and DpoNIPH60, were found to be structurally similar
to tailspikes of different virulent phages (Figure 2), they can all be assigned as prophage-
derived structural depolymerases, most likely prophage tailspike depolymerases. In all
cases, predicted depolymerases were surrounded by other prophage-derived genes, such as
different tail and baseplate proteins, major capsid proteins, terminase and portal proteins,
endolysins and holins, integrases, etc. (Figure 1).
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Figure 1. Genetic maps of A. baumannii genome fragments (approximately 25,000 base pairs) con-
taining determined prophage-derived genes. ORFs are indicated as arrows, the direction of an ar-
row shows the direction of transcription. The names of A. baumannii strains, where the genes en-
coding structural depolymerases have been found, are shown above the genetic maps. The ORFs 
were validated and curated using a search in the non-redundant database of the NCBI and HHpred 
profile–profile search. The ORFs are coloured according to the following predictions: green for 
prophage-derived genes encoding phage assembly and structural proteins, products involved in 
phage nucleotide metabolism, packaging of DNA into the capsid, bacterial cell lysis, and integra-
tion of phage DNA into the bacterial genomes; dark red for the genes encoding predicted structural 
or tailspike depolymerases, conditionally designated as DpoAB2828, DpoAB5075, DpoB8300, 
DpoB11911, DpoAB4932, and DpoNIPH60; gray for genes of hypothetical proteins; light green for 
genes responsible for the functioning of the bacterial cells. Maps were created using SnapGene 
software (from Insightful Science; available at snapgene.com). 

Figure 1. Genetic maps of A. baumannii genome fragments (approximately 25,000 base pairs) con-
taining determined prophage-derived genes. ORFs are indicated as arrows, the direction of an
arrow shows the direction of transcription. The names of A. baumannii strains, where the genes
encoding structural depolymerases have been found, are shown above the genetic maps. The ORFs
were validated and curated using a search in the non-redundant database of the NCBI and HHpred
profile–profile search. The ORFs are coloured according to the following predictions: green for
prophage-derived genes encoding phage assembly and structural proteins, products involved in
phage nucleotide metabolism, packaging of DNA into the capsid, bacterial cell lysis, and integration
of phage DNA into the bacterial genomes; dark red for the genes encoding predicted structural or tail-
spike depolymerases, conditionally designated as DpoAB2828, DpoAB5075, DpoB8300, DpoB11911,
DpoAB4932, and DpoNIPH60; gray for genes of hypothetical proteins; light green for genes respon-
sible for the functioning of the bacterial cells. Maps were created using SnapGene software (from
Insightful Science; available at snapgene.com, accessed on 12 January 2022).

snapgene.com


Int. J. Mol. Sci. 2022, 23, 4971 4 of 18

Table 1. Prophage-derived depolymerases identified in A. baumannii genomes.

Depolymerase
Designation

A. baumannii
Strain/GenBank

Accession Number of
Genome or Contig

Sequence 1

Locus/Coordinates
in Genome or

Contig
Gene Product 2 GenBank Accession

Number (Protein_Id)
Protein
Size, aa

DpoAB2828 AB2828/ LRDT01000031
LV35_02359/
complement
78922–81369

hypothetical
protein KZA15926 815

DpoAB5075 AB5075-UW/ CP008706 ABUW_0568/
566943–568895

phage tail fibre
protein AKA30338 650

DpoB8300 B8300/ CP021347
AB987_0146/
complement

142633–144540

hypothetical
protein KMV24774 635

DpoB11911 B11911/ CP021345 AB994_2560/
2694400–2697699

carbohydrate
binding

domain protein
KMV03800 1099

DpoAB4932 AB4932/ LREK01000014 LV53_01598/
23828–25882

hypothetical
protein

KZA74345 684

DpoNIPH60 NIPH60/APPM01000011 F961_00657/
112235–114493

hypothetical
protein ENV30868 752

1 in which the prophage-derived depolymerases were identified 2 according to the annotation made by the authors
of a sequence.
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BLASTp analysis revealed that predicted depolymerases DpoAB2828, DpoAB5075,
DpoB8300, DpoB11911, DpoAB4932, and DpoNIPH60 were completely identical to dif-
ferent proteins encoded in various A. baumannii genomes (GenBank: WP_002009999,
WP_000729646, WP_049590628, WP_053093879, WP_000224779, and WP_004840621, re-
spectively).

Depolymerase DpoAB2828 was also found to share similarity with the tailspike protein
gp48 of lytic Acinetobacter phage APK09 (UAW09804, the coverage obtained to an E-value of
6× 10−173 was 62% with an identity of 52%) and tailspike protein gp45 of lytic Acinetobacter
phage vB_AbaP_B1 (YP_009610331, the coverage obtained by an E-value of 1 × 10−171

was 70% with an identity of 47.29%) belonging to the family Autographiviridae, the genus
Friunavirus. Depolymerase DpoAB4932 was completely identical to the tail fibre protein
of temperate Acinetobacter phage Ab105-1phi (ALJ99087) and almost identical to the tail
fibre protein of temperate Acinetobacter phage AbTJ (QAU04146, the coverage obtained
by an E-value of 4 × 10−165 was 97% with an identity of 96.26%) belonging to the family
Myoviridae. Depolymerase DpoNIPH60 shared a similarity to the tailspike protein gp79
of lytic Acinetobacter phage TaPaz (QVW53860, the coverage obtained by an E-value of 0.0
was 86% with an identity of 49.77%) and the tailspike protein gp43 of lytic Acinetobacter
phage Cato (UMO77867, the coverage obtained by an E-value of 4 × 10−165 was 84% with
an identity of 44.32%) assigned to the family Myoviridae.

According to HHpred analysis, the N-terminal parts of DpoAB2828 and DpoB8300
shared a structural similarity with the N-terminal part of Escherichia phage T7 tail fiber
protein gp17. The remaining parts of all analyzed depolymerases contained regions that
showed structural similarities with different phage carbohydrate-hydrolyzing enzymes or
tailspikes (Figure 2). The C-terminal domain structure of DpoB11911 was predicted as an
intramolecular chaperone, which most likely participated in correct protein folding [12].
Similar structures were located at the C-termini of A. baumannii phage vB_AbaP_AS12
tailspike depolymerase AS12_gp42 (PDB ID: 6EU4) and tail proteins of E. coli phage K1F
(PDB ID: 3GW6), E. coli phage T5 (PDB ID: 4UW8), and Bacillus virus GA-1 (PDB ID: 3GUD).

2.2. Prediction of the Domain Organization of Prophage-Derived Depolymerase Monomers

The domain structures of prophage-derived depolymerase monomers predicted with
AlphaFold 2 [13] were shown to include several regions, conventionally designated as part
1, part 2, and part 3 (Figure 3).

Part 1 of depolymerase monomers possesses a complex structure. This part can be
responsible for the attachment of these proteins to the phage particles. The predicted
structures of part 1 for DpoAB2828, DpoAB5075, DpoB8300, DpoB11911, and DpoNIPH60
essentially include an antiparallel β-sheet structured N-terminal part followed by α-helices.
The modelled structure of DpoAB4932 part 1 was predicted to include an α-helical part
comprising roughly the first 100 N-terminal amino acid residues followed by the antiparallel
β-sheet structure.

Except for the DpoB8300 predicted structure, all other prophage-derived structural
depolymerases contain a parallel β-structured pyramidal central part, which can form the
“pyramid domain” (part 2) [14,15] upon trimerization. The central part of the predicted
DpoB8300 structure also seems to include a pyramid-like region, but the secondary structure
of this region was not determined. Most likely, it was impossible to make a better prediction
with AlphaFold due to the lack of resolved structures of similar sequences.



Int. J. Mol. Sci. 2022, 23, 4971 6 of 18

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 20 
 

 

[12]. Similar structures were located at the C-termini of A. baumannii phage 
vB_AbaP_AS12 tailspike depolymerase AS12_gp42 (PDB ID: 6EU4) and tail proteins of E. 
coli phage K1F (PDB ID: 3GW6), E. coli phage T5 (PDB ID: 4UW8), and Bacillus virus GA-1 
(PDB ID: 3GUD). 

2.2. Prediction of the Domain Organization of Prophage-Derived Depolymerase Monomers 
The domain structures of prophage-derived depolymerase monomers predicted 

with AlphaFold 2 [13] were shown to include several regions, conventionally designated 
as part 1, part 2, and part 3 (Figure 3). 

 
Figure 3. Schematic representation and predicted spatial structure of the prophage-derived de-
polymerases. The parts of proteins are coloured according to their suggested roles. Part 1 (coloured 
green) contains the particle-binding N-terminal domain, part 2 (coloured yellow) contains the cen-
tral pyramidal domain, the part 3 (coloured red) contains C-terminal domain. 

Part 1 of depolymerase monomers possesses a complex structure. This part can be 
responsible for the attachment of these proteins to the phage particles. The predicted 
structures of part 1 for DpoAB2828, DpoAB5075, DpoB8300, DpoB11911, and 

Figure 3. Schematic representation and predicted spatial structure of the prophage-derived depoly-
merases. The parts of proteins are coloured according to their suggested roles. Part 1 (coloured
green) contains the particle-binding N-terminal domain, part 2 (coloured yellow) contains the central
pyramidal domain, the part 3 (coloured red) contains C-terminal domain.

Parts 3 of all the modelled depolymerases includes a C-terminal antiparallel β-
structured region of about 100 amino acids. It seems that the structure of this region
is reminiscent of the structure of the receptor-binding, carboxy-terminal domain of phage
T7 tail fiber, which forms a β-sandwich containing two sheets of four β-strands each. Part
3 of a longer protein DpoB11911 also includes additional structures comprising α-helices
and β-sheets, most likely corresponding to predicted intramolecular chaperone.

Approximate positions of the central part (part 2), N-terminal part to the right of the
central domain (labelled as part 1) and C-terminal part to the left of the central domain
(labelled as part 3) are shown in Figure 3.
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2.3. The Phylogenetic Analysis

A phylogenetic analysis was conducted using amino acid sequences of N-terminal
parts (parts 1 in Figure 3) and CPS-recognizing/degrading parts (combined parts 2 and
3 in Figure 3) of the prophage-derived depolymerases and homologous sequences found
with the BLAST search (Figure 4A,B).
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binding to phage particles (Figure 4A) showed that these parts of prophage-derived de-
polymerases were most closely related to the corresponding parts of different proteins 
encoded in various A. baumannii genomes. Since depolymerases are structural proteins, 
the similarity of amino acid sequences of their N-terminal domains to corresponding 
parts of other proteins most likely reflect the fact that temperate phages carrying these 
proteins could be representatives of closely related taxonomic groups. 

The results of the phylogenetic analysis of CPS-recognizing/degrading parts of the 
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Figure 4. Best-scoring phylogenetic trees constructed with RAxML-NG based on the protein se-
quences of the studied prophage-derived depolymerases and homologous sequences found in NCBI
nr/nt database. (A) The tree built with the N-terminal parts of the proteins (part 1 in Figure 3).
(B) The tree built with CPS-recognizing/degrading parts of the proteins (combined parts 2 and 3
in Figure 3). Bootstrap support values are shown above their branch as a share of 1000 replicates.
The scale bar shows 0.5 estimated substitutions per site. Vibrio furnissii NCTC 11218_1 was used as
an outgroup.

The results of the phylogenetic analysis of N-terminal domains responsible for binding
to phage particles (Figure 4A) showed that these parts of prophage-derived depolymerases
were most closely related to the corresponding parts of different proteins encoded in various
A. baumannii genomes. Since depolymerases are structural proteins, the similarity of amino
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acid sequences of their N-terminal domains to corresponding parts of other proteins most
likely reflect the fact that temperate phages carrying these proteins could be representatives
of closely related taxonomic groups.

The results of the phylogenetic analysis of CPS-recognizing/degrading parts of the
prophage-derived depolymerases (Figure 4B) showed that these parts were also related to
different A. baumannii proteins, most likely of prophage origin. Moreover, depolymerase
Dpo2828 formed a distinct monophyletic branch with related proteins encoded in genomes
of Friunavirus phages APK09 and vB_AbaP_B1, and depolymerase DpoNIPH60 was related
to the proteins encoded in genomes of lytic phages TaPaz and Cato, belonging to the family
Myoviridae.

In both phylogenetic analyses, depolymerase DpoAB4932 was found to be very closely
related to the proteins encoded in the genomes of temperate phages Ab105-1phi and AbTJ
assigned to the family Myoviridae. This means that all these proteins could probably be
specific towards CPS with a certain structure. However, this suggestion requires further
experimental confirmation.

Interestingly, DpoB8300 was phylogenetically related to the proteins encoded in a
siphoviral phage and Klebsiella bacterial genomes, reflecting the possible results of horizon-
tal transfers between bacteria belonging to comparatively distant taxa sharing the same
ecological niche.

Differences in the topologies of the trees built using different parts of prophage-derived
depolymerases indicate the possibility of the independent evolution of different domains
of phage receptor-binding proteins.

2.4. The K-Specificity of Prophage- Derived Depolymerases

Deletion mutants lacking the N-terminal domains of the prophage-derived depoly-
merases were cloned, expressed, and purified (Figure S1). The described expression
conditions and a combination of metal affinity and gel permeation chromatography yielded
approximately 10–15 mg of active proteins from 1 L cell culture.

The specificity of prophage-derived depolymerases, DpoAB2828, DpoAB5075, DpoB8300,
DpoB11911, DpoAB4932, and DpoNIPH60, was tested against a collection of A. baumannii
strains belonging to 56 different capsular type (Table S1). Two of six recombinant proteins
expressed in E. coli exhibited depolymerase activities on the bacterial lawns of A. baumannii
belonging to different capsular types. Namely, the depolymerase DpoAB5075 was specific
to CPS of A. baumannii AYE (capsular type K1), and the depolymearse DpoB8300 was
specific to CPS of A. baumannii B8300 (K92). These depolymerases formed opaque haloes
on the bacterial lawns of A. baumannii strains of the corresponding K types. An example of
a serial 10-fold titration of the purified recombinant depolymerases on the bacterial lawns
of A. baumannii strains, after 18 h of incubation, is presented in Figure 5. The proteins were
stable for at least 3 months at 4 ◦C, retaining sufficient depolymerase activities.
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For the remaining depolymerases, which were cloned, expressed and purified, we
were unable to identify specificity to any of the tested K types.

2.5. Mechanisms of Cleavage of A. baumannii CPSs by Prophage-Derived Depolymerases

To elucidate the mechanisms of action of prophage-derived depolymerases, DpoAB5075
and DpoB8300, the CPSs of A. baumannii AYE and B8300 were isolated and purified.

The CPS of A. baumannii AYE has the same structure as the K1 CPS of A. baumannii
24 [16] and AB307-0294 [17]. It is composed of linear trisaccharide K units containing
one residue each of 2-acetamido-4-acylamino-2,4,6-trideoxy-D-glucose (2-acetamido-4-
acylamino-2,4-dideoxy-D-quinovose) (D-QuiNAc4NAcyl, where Acyl indicates acetyl
or (S)-3-hydroxybutanoyl; units AAc and AHb, respectively), 2-acetamido-2-deoxy-D-
galacturonic acid (D-GalNAcA, unit B), and N-acetyl-D-glucosamine (D-GlcNAc, unit
C) (Figure 6A). The CPS is non-stoichiometrically (in ~35% K units) O-acetylated, and both
intact and O-deacetylated CPSs were studied.
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The K92 CPS of strain B8300 is composed of branched pentasaccharide K units con-
taining one residue of β-D-Galp (unit A) and four residues of α-L-Rhap (units B–E) [18]
(Figure 6B).

The CPSs were cleaved with recombinant prophage-derived depolymerases, and
oligosaccharide products were fractionated by Fractogel TSK HW-40S gel-permeation
chromatography. As a result, oligosaccharides 1–3 were obtained from the O-decatylated
CPS from strain AYE upon cleavage by depolymerase DpoAB5075. The intact AYE CPS
was cleaved with the depolymerase in a similar manner, giving rise to the corresponding
non-stoichiometrically O-acetylated oligosaccharides (data not shown). Treatment of the
B8300 CPS with depolymerase DpoB8300 resulted in oligosaccharides 4 and 5.

The structures of the oligosaccharides obtained by depolymerization of the CPS were
established by one- and two-dimensional 1H (Figures S2 and S3) and 13C NMR spec-
troscopy [19] and positive and negative ion modes high-resolution electrospray ionization
mass spectrometry HR ESI MS (Figure S4) [20]. All oligosaccharides were found to have
the same monosaccharide composition as the CPS they were derived from (Figure 6A,B).

The 1H and 13C NMR spectra of smaller oligosaccharides 1 and 4, which corresponded
to the K units of the CPSs, were fully assigned by two-dimensional shift-correlated experi-
ments (1H-1H COSY, 1H-1H TOCSY, and 1H-13C HSQC) and compared with the data of the
corresponding CPSs (Tables S2 and S3). Linkage and sequence analyses by two-dimensional
1H-1H ROESY and 1H-13C HMBC experiments enabled an elucidation of structures of 1
and 4, which were confirmed by HR ESI MS (Table S4).

The 1H and 13C NMR spectra of larger oligosaccharides 2, 3, and 5 showed two series
of signals, one series corresponding to smaller oligosaccharides 1 and 4 and the other to the
CPS K units. Based on these and HR ESI MS data (Table S3), it was concluded that 2 and 5
corresponded to dimers and 3 to a trimer of the K units.

The data obtained indicated that oligosaccharides 1–5 were derived from the CPSs
by specific hydrolytic cleavage of a linkage between the K units. Therefore, prophage-
derived depolymerases DpoAB5075 and DpoB8300 are glycosidases that cleave the β-D-
QuipNAc4NAcyl-(1→4)-D-GlcpNAc and α-L-Rhap-(1→3)-D-Galp linkages in the CPSs of
A. baumannii AYE and B8300, respectively.

2.6. Galleria Mellonella Larvae Infection Model

To evaluate the antivirulent potential of depolymerases, DpoAB5075 and DpoB8300,
we used the G. mellonella larvae model of A. baumannii infection, induced by strains AYE
and B8300. To determine larval susceptibility to infection with A. baumannii B8300 and
AYE, we injected them with different inocula and monitored mortality daily. The doses
of 1 × 107 CFU and 1 × 106 CFU for A. baumannii B8300 and AYE, respectively, were
selected. In both cases, a gradual reduction in larval survival rates occurred over the 7-day
experiments with that amount. At the end of the 7-day follow-up period, 86.7%, and 80.0%
of the larvae died after inoculation with A. baumannii B8300 and AYE, respectively. At the
same time, a single dose of the enzyme DpoB8300 or DpoAB5075 injected together with
bacteria significantly inhibited A. baumannii-induced death in a time-dependent manner
(Figure 7). Only a 13% mortality of larvae was recorded within 7 days after inoculation of
A. baumannii B8300 together with depolymerase DpoB8300. Depolymerase DpoAB5075
also significantly increased the survival of larvae when co-administered with the strain
A. baumannii AYE. In this case, the injection of 2 µg of depolymerase together with the
infecting bacteria resulted in 80% survival of the larvae.
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strains treated and non-treated with depolymerases. (A) Larvae treatment with 1 × 106 CFU of A.
baumannii AYE; (B) Larvae treatment with 1 × 107 CFU of A. baumannii B8300. Larvae (n = 30) were
injected with either bacteria or bacteria simultaneously with the enzyme DpoAB5075 or DpoB8300
(2 µg per larva). The experiments were controlled by observation of uninfected larvae, larvae injected
with saline solution, and larvae receiving the depolymerase only. Survival for each control group was
100%, so for simplicity, a group of uninfected larvae, and larvae injected with the saline solution, were
not included in the figure. Statistically significant differences in survival between larvae infected with
bacteria only and larvae infected with bacteria simultaneously with depolymerases were estimated
by the log-rank (Mantel–Cox) test (**** p < 0.0001).

No mortality of larvae was observed in the controls, among uninfected larvae, larvae
injected with saline solution, and larvae injected with the depolymerases.

3. Discussion

In this study, six structural depolymerases encoded in different A. baumannii genomes
were bioinformatically predicted, recombinantly produced, and studied. The examination
of bacterial genomes, where the sequences were found, testified that they apparently
belonged to prophage regions containing genes encoding phage assembly and structural
proteins, products involved in phage nucleotide metabolism, the packaging of DNA into
the capsid, bacterial cell lysis, and integration of phage DNA into bacterial genomes.

According to the BLASTp analysis, the identified depolymerases were identical or
very closely homologous to various proteins encoded in other A. baumannii genomes.
Considering the high prevalence of prophages in A. baumannii genomes [7,8], we assumed
that prophage-derived structural depolymerases are widespread, and different bacterial
genomes contain genes encoding proteins with polysaccharide-degrading activities.

Protein remote homology detection by HMM-HMM comparison conducted with
HHpred demonstrated that the depolymerases possessed a multi-domain structure. The N-
terminal parts of some depolymerases shared a similarity with the Escherichia phage T7 tail
fiber. The remaining parts of all the proteins analysed contained the regions that showed
similarities with different carbohydrate-hydrolyzing enzymes or lytic phage tailspikes.
Thus, the studied proteins most likely assigned to prophage tailspike depolymerases,
which participate in the first steps of interactions with bacterial hosts. Prediction of the
domain organization of prophage-derived depolymerase monomers with AlphaFold 2 also
revealed several regions corresponding to the N-terminal, central, and C-terminal parts.

Deletion mutants lacking the N-terminal domains responsible for the attachment of
CPS-recognizing/degrading parts of the prophage-derived depolymerases to the phage
particles were cloned, expressed, and purified. The strategy of cloning only receptor-
binding/recognizing parts of the depolymerases was chosen in order to avoid possible
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protein aggregation due to the hydrophobicity of their N-termini. Moreover, we used this
strategy in our previous studies on the characterization of tailspike depolymerases encoded
in lytic phage genomes [21–24], where we showed the enzymatic activity of depolymerases
without N-terminal parts towards corresponding CPSs.

The specificity of purified prophage-derived depolymerases was tested using a collec-
tion of A. baumannii strains belonging to 56 different capsular types. Two of six recombinant
proteins expressed in E. coli, namely DpoAB5075 and DpoB8300, exhibited depolymerase
activities on the bacterial lawns of A. baumannii AYE and B8300 belonging to K1 and K92
capsular types, respectively. Unfortunately, we were unable to determine the specificity
of other purified prophage-derived depolymerases. Considering the fact that nowadays
more than 144 K types were identified [5], this means that these proteins most likely could
specifically interact with a CPS of one of those K types that were not tested in this study.

Taking into account that the CPSs are the primary receptors for depolymerase-carrying
lytic A. baumannii phages [23], the first step of the infection of bacterial host by a temperate
phage can also cause the degradation of corresponding CPS with a specific structural de-
polymerase. This is confirmed by the fact that prophage-derived depolymerase DpoB8300
degrades CPS of the K92 capsular type, to which the host strain A. baumannii B8300 also
belongs. However, A. baumannii AB5075-UW, a representative of the K25 capsular type [25],
encoded depolymerase DpoAB5075 which possess the enzymatic activity towards K1 CPS.
This could be explained by possible recombination events between bacterial genomes or
the horizontal transfer of prophage-containing regions.

The analysis of oligosaccharide products obtained by the degradation of the A. bau-
mannii CPSs by recombinant prophage-derived depolymerases DpoAB5075 and DpoB8300
showed that the enzymes were specific glycosidases that cleaved the CPSs by the hydrolytic
mechanism to produce a monomer and oligomers of the K1 and K92 units, respectively.

The capsule comprising repeating polysaccharide units is a major A. baumannii viru-
lence determinant, which protects bacteria from host immune defences [17,26,27]. Thus,
CPS-degrading enzymes or depolymerases encoded in phage genomes can represent effec-
tive antivirulence agents [28,29]. In recent years, the Galleria mellonella larvae were shown to
be a reliable and cheap invertebrate model for studying the pathogenic mechanisms of mi-
croorganisms and the action of new antimicrobial agents [30]. The antivirulence efficacy of
several depolymerases encoded in the genomes of lytic A. baumannii-phages was explored
using a G. mellonella model [28,29]. In particular, a specific K2 depolymerase (B3gp42) en-
coding in the phage vB_AbaP_B3 genome (GenBank: MF033348) [28] was shown to protect
larvae from bacterial infections, using either pretreatments or single-enzyme injections
after bacterial challenges in a dose-dependent manner. In another study, depolymerase
Dpo48 encoded in phage IME200 genome (GenBank: KT804908) was shown to reduce the
virulence of A. baumannii host cells [29].

In this study, for the first time, we demonstrated that recombinant prophage-derived
depolymerases with an established enzymatic activity could significantly reduce the mor-
tality of G. mellonella larvae infected with A. baumannii of corresponding K types. In the
long term, this means that specific prophage-derived depolymerases, as well as enzymes
encoded in lytic phage genomes have great potential as antivirulence agents to control A.
baumannii belonging to corresponding capsular types.

4. Materials and Methods
4.1. Bacterial Strains and Cultivation

A. baumannii strains B8300 and B11911 was kindly provided by Dr. Veeraraghavan
Balaji (Christian Medical College, Vellore, India); strains AB2828, AB4932, AB5075-UW
were kindly provided by Dr. D. Scholl (Pylum Biosciences, San Francisco, CA, USA); strain
AYE was kindly provided by Dr. R. Zarrilli (University of Napoli Federico II, Naples, Italy);
and strain NIPH60 was kindly provided by Dr. Alexandr Nemec (National Institute of
Public Health, Prague, Czech Republic).
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The spectra of depolymerase activity of purified recombinant proteins were tested
against a panel of A. baumannii strains with confirmed CPS structures (Table S1) belonging
to different K types (K1, K2, K3, K6, K7, K8, K9, K11, K12, K15, K16, K17, K19, K20, K21,
K24, K25, K27, K30, K32, K33, K35, K37, K42, K43, K44, K45, K46, K47, K48, K51, K52, K53,
K54, K55, K57, K58, K61, K73, K74, K80, K81, K82, K83, K84, K85, K87, K88, K89, K90, K91,
K92, K93, K116, K125, and K128).

The strains were provided courtesy of members of the A. baumannii research commu-
nity (c.f., Acknowledgements).

All bacteria were grown in Luria–Bertani (LB) broth (Difco, Detroit, MI, USA) or
Nutrient agar (Himedia Laboratories Pvt. Limited, Mumbai, India) at 37 ◦C.

4.2. Bioinformatic Analysis

The bacterial genomic sequences were downloaded from GenBank [31]. Genomes of
A. baumannii strains or contig sequences of interest were examined for potential prophage
regions using PHASTER [9]. The open reading frames (ORFs) were validated and curated
using a search of the NR (non-redundant) database of the NCBI [10] and a HHpred profile–
profile search [11]. The homology search was performed by BLAST [32] using NCBI
database and custom phage database with the E-value cut-off of 1 × 105. Genetic maps
were created using SnapGene software (from Insightful Science; available at snapgene.com,
accessed on 12 January 2022). The tertiary structure prediction was made with AlphaFold
2.0 [13] with default settings and visualized with PyMOL (The PyMOL Molecular Graphics
System, Version 2.0 Schrödinger, LLC.). The model quality assessment was performed with
ModFOLD8 [33]. The alignments were made with Clustal Omega 1.2.3 [34,35] with the
following settings: number of refinement iterations = 3, initial guide tree = evaluate full
distance matrix, refinement iteration guide tree = evaluate full distance matrix, cluster size
for mBed guide trees = 100. The alignments were trimmed manually. Best protein model
was found with ModelTest-NG [36,37] integrated in raxmlGUI 2.0.7 graphic interface [38].
The phylogenetic tree was constructed with RAxML-NG [39] integrated in raxmlGUI 2.0.7
graphic interface using the PMB GAMMA F protein substitution model [40] and (ML +
transfer bootstrap expectation + consensus) settings. The robustness of the RAxML-NG
trees was assessed by bootstrapping (1000). The tree was visualized in Geneious Prime
2021.1 [41].

4.3. Cloning, Expression and Purification of the Recombinant Proteins

The DNA fragments of prophage-derived depolymerases lacking N-terminal domains
were amplified by PCR using oligonucleotide primers, indicated in Table S5 and cloned
into the the pTSL plasmid (GenBank accession KU314761) [42].

Expression vectors were transformed into chemically competent E. coli BL21(DE3)
cells. Protein expression was performed in an LB medium supplemented with ampicillin
at 100 mg/L. Transformed cells were grown at 37 ◦C until the optical density reached the
value of 0.4 at 600 nm. The medium was cooled to the temperature of 16 ◦C followed by
expression induction by an addition of isopropyl-1-thio-β-D-galactopyranoside (IPTG) to a
final concentration of 1 mM. After further incubation at 16 ◦C overnight (approximately
16 h), the cells were harvested by centrifugation at 3700× g for 20 min, 4 ◦C. The cell pellets
were resuspended in 1/50th of the original cell volume in buffer A (20 mM Tris pH 8.0,
0.5 M NaCl, 20 mM imidazole), complemented with 1 mg/mL lysozyme, and then lysed
by sonication. The cell debris was removed by centrifugation at 16,000× g for 30 min, 4 ◦C.
The supernatants were loaded onto nickel Ni2+-charged 5 mL GE HisTrap columns (GE
Healthcare Life Sciences, Marlborough, MA, USA) equilibrated with buffer A containing
20 mM imidazole, and eluted with a 20–500 mM imidazole linear gradient in buffer A. The
fractions containing the target proteins were pulled together and set up at 4 ◦C for the
His-tag overnight digestion with TEV-protease at a protease/protein ratio of 1/100 (w/w).
This reaction mixture was simultaneously dialyzed against 20 mM Tris pH 8.0, 200 mM
NaCl, 0.5 mM DTT buffer resulting into His-SlyD expression tag removal. Protein samples
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after digestion were applied to the His-Trap column as before. A flow through concentrated
with Sartorius ultrafiltration devices (molecular weight cutoff of 10,000) was applied to
a Superdex 200 Hiload 16/60 column pre-equilibrated in 20 mM Tris-HCl, pH 7.5, and
150 mM NaCl (buffer B). The final protein samples were concentrated and stored in the
same buffer at 4 ◦C.

4.4. Lawn Spot Assay

Enzymatic activity of prophage-derived depolymerases was tested by spotting protein
solutions onto the bacterial lawns of different A. baumannii K types prepared using the
double layer method [43]. For this, 300 µL of A. baumannii host strain cultures grown in LB
medium at 37 ◦C to OD600 of 0.3 were mixed with 4 mL of soft agar (LB broth supplemented
with 0.6% agarose). Mixture was plated onto nutrient agar. Then, 10 µL aliquots of solutions
containing N-deletion mutants of depolymerases, and their tenfold dilutions were spotted
on the soft agar lawns and incubated at 37 ◦C for 18–24 h.

4.5. Isolation and Purification of the CPSs

Bacteria were cultivated in 2TY media (16 g Bacto Tryptone, 10 g Bacto Yeast Extract,
and 5 g NaCl, adjusted to 1 L with distilled H2O) for 16 h. Cells were harvested by centrifu-
gation (10,000× g, 20 min), washed with phosphate-buffered saline, suspended in aqueous
70% acetone, precipitated, and dried on air. Capsular polysaccharides were isolated by
extraction of bacterial cells of A. baumannii AYE and B8300 with 45% aqueous phenol for
30 min at 65–68 ◦C [44]. The extract was cooled, dialyzed without layer separation, freed
from insoluble contaminations by centrifugation (12,000× g, 20 min), and CPS preparations
were purified as described [45]. Briefly, aqueous 50% CCl3CO2H was added to a CPS
solution in water at 4 ◦C, a precipitate was removed by centrifugation, the supernatant
was dialyzed against distilled water and freeze-dried. To cleave the accompanying short-
chain lipopolysaccharide, the CPS preparations were heated with 2% HOAc (100 ◦C, 3 h),
and a lipid precipitate was removed by centrifugation (12,000× g, 20 min). Purified CPS
samples were isolated from the supernatant by gel-permeation chromatography on a XK
26/70 column (700 × 26 mm, gel layer 560 mm) (GE Healthcare, Pollards Wood, UK) of
Sephadex G-50 Superfine (Amersham Biosciences, Uppsala, Sweden) in 0.05 M pyridinium
acetate buffer pH 4.5. Flow rate was 0.5 mL/min; elution was monitored with a differential
refractometer (Knauer, Berlin, Germany). Control of retention of the intact structure upon
mild acid treatment was performed by NMR spectroscopy. A CPS sample from strain
AYE was treated with 12.5% aqueous ammonia (60 ◦C, 3 h), ammonia was removed by
stream of air, and an O-deacetylated CPS sample was obtained by liophylization of the
remaining solution.

4.6. Cleavage of the CPSs with Prophage-Derived Depolymerases

Purified CPSs were solubilized at the 20 mM Tris-HCl pH7.5, and 500µg of recom-
binant proteins were added for digestion. The reaction mixture was incubated at 37 ◦C
overnight.

CPS digestion products were fractionated by gel-permeation chromatography on a
XK 16/100 column (110 cm × 16 mm, gel layer 80 cm) (GE Healthcare, Pollards Wood,
UK) of Fractogel TSK HW-40S (Toyo Soda, Tokyo, Japan) in 1% acetic acid at a flow rate
0.5 mL/min monitored as above.

4.7. NMR Spectroscopy

Samples were deuterium-exchanged by freeze-drying from 99.9% D2O and then
examined as the solution in 99.95% D2O. NMR spectra were recorded on a Bruker Avance II
600 MHz spectrometer (Bruker, Bremen, Germany) at 30–60 ◦C. Sodium 3-trimethylsilylpro
panoate-2,2,3,3-d4 (δH 0, δC –1.6) was used as internal reference for calibration. Two-
dimensional 1H-1H correlation spectroscopy (COSY), 1H-1H total correlation spectroscopy
(TOCSY), 1H-1H rotating-frame nuclear Overhauser effect spectroscopy (ROESY), 1H-13C
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heteronuclear single-quantum coherence (HSQC), and 1H-13C heteronuclear multiple-bond
correlation (HMBC) experiments were performed using standard Bruker software and
used for assignment of 1H and 13C NMR chemical shifts [19]. Bruker TopSpin 2.1 program
was used to acquire and process the NMR data. A MLEV-17 spin-lock time of 60 ms and a
mixing time of 200 ms were used in TOCSY and ROESY experiments, respectively. A 60 ms
delay was used for the evolution of long-range couplings to optimize the 1H-13C HMBC
experiment for coupling constant JH,C 8 Hz.

4.8. Mass Spectrometry

High-resolution electrospray ionization mass spectrometry (HR ESI MS) [20] was
performed in positive and negative ion modes using a micrOTOF II or maXis instruments
(Bruker Daltonics, Bremen, Germany). Oligosaccharide samples (~50 ng/µL) were dis-
solved in a 1:1 (v/v) water/acetonitrile mixture and injected with a syringe at a flow rate
of 3 µL/min. Capillary entrance voltage was set at –4500 V (positive ion mode) or 3000 V
(negative ion mode), and the interface temperature at 180 ◦C. Nitrogen was used as the
drying and sheath gas. Mass range was set from m/z 50 to 3000. Internal calibration was
conducted with ESI Tuning Mix (Agilent, Santa Clara, CA, USA).

4.9. Galleria Mellonella Larvae Infection Model

Culture and infection of G. mellonella larvae with A. baumannii strains and the estima-
tion of the survival rate of infected larvae were performed as previously described [46].
Briefly, larvae were infected by injection into the hemocoel with 1 × 107 CFU (A. baumannii
B8300) or 1 × 106 CFU (A. baumannii AYE) of (i) bacteria only, and (ii) bacteria administered
together with the depolymerase (2 µg per larvae). Three control groups were used: unin-
fected larvae, larvae injected with saline solution, and larvae injected with depolymerase.
Infected larvae were incubated at 37 ◦C for 7 days and mortality was recorded daily. Each
test was performed in triplicate, with 10 larvae per trial. The GraphPad Prism software
(GraphPad Software, Inc., La Jolla, CA, USA) was used for statistical analysis and graphical
presentation of the results. Statistical analysis was performed for pairwise comparisons
between larvae infected with bacteria only and larvae infected with bacteria simultaneously
with depolymerase using log-rank (Mantel-Cox) test. Values of p < 0.05 were considered
statistically significant.
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