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Abstract: Cancer remains a major cause of death globally. Given its relapsing and fatal features,
curing cancer seems to be something hardly possible for the majority of patients. In view of the
development in cancer therapies, this article summarizes currently available cancer therapeutics
and cure potential by cancer type and stage at diagnosis, based on literature and database reviews.
Currently common cancer therapeutics include surgery, chemotherapy, radiotherapy, targeted therapy,
and immunotherapy. However, treatment with curative intent by these methods are mainly eligible
for patients with localized disease or treatment-sensitive cancers and therefore their contributions to
cancer curability are relatively limited. The prognosis for cancer patients varies among different cancer
types with a five-year relative survival rate (RSR) of more than 80% in thyroid cancer, melanoma,
breast cancer, and Hodgkin’s lymphoma. The most dismal prognosis is observed in patients with
small-cell lung cancer, pancreatic cancer, hepatocellular carcinoma, oesophagal cancer, acute myeloid
leukemia, non-small cell lung cancer, and gastric cancer with a five-year RSR ranging between 7% and
28%. The current review is intended to provide a general view about how much we have achieved
in curing cancer as regards to different therapies and cancer types. Finally, we propose a small
molecule dual-targeting broad-spectrum anticancer strategy called OncoCiDia, in combination with
emerging highly sensitive liquid biopsy, with theoretical curative potential for the management of
solid malignancies, especially at the micro-cancer stage.
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1. Introduction

Cancer covers a wide spectrum of diseases characterized by uncontrolled and mostly aggressive
cell growth, which is driven by down-regulation of tumour-suppressing genes and/or up-regulation of
tumour-promoting genes [1]. Although the first cancer case was systematically reported in 1845, it is
only in recent decades that in-depth understanding of its biology and pathology has gradually been
achieved and tremendous efforts to eliminate cancer have been made [2]. Data from population-based
cancer registries estimate a total of 1,762,450 new cases and 606,880 cancer-related deaths in the US in
2019, making it the second leading cause of death [3]. In China, a country with the world’s largest
population of over 1.4 billion, 4,292,000 new cancer diagnoses and 2,814,000 cancer-related deaths
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were reported in 2015, posing a huge burden on both finance and healthcare systems [4]. To counteract
the alarming mortality rates, the National Cancer Act of 1971 was launched in the US with the aim to
deepen understanding of cancer biology and ultimately prompt the development of more effective
cancer therapeutics, which has been, nearly half a century later, upgraded to a newer cancer moonshot
funding [5,6]. Benefiting from the advances in clinical therapeutics and management, prolongation
in survival for many cancer types has been realized, such as non-small cell lung cancer (NSCLC),
hepatocellular carcinoma (HCC), breast cancer, and multiple myeloma, among others [6–9]. However,
it is still premature for us to celebrate the success of curing cancer, as some flaws do exist, e.g., no
survival improvement was observed over the past four decades in solid malignancies such as sarcoma
and small cell lung cancer (SCLC) [9,10].

The present review, by studying the literature and database, aims to (1) deliver a general
landscape of currently available cancer treatments, along with their advantages and disadvantages
and future perspective; (2) demonstrate the contribution of these methods to the curability of cancer;
(3) quantitatively show the current landscape of cancer diagnosis and prognosis by cancer type, based
on data from a population-based database; and (4) put forward a potential liquid biopsy—OncoCiDia
strategy, which may revolutionize the future of cancer treatment.

1.1. Mortality of Cancer Cells Caused by Therapies

The elimination of cancer cells can be achieved either by complete removal or by induction of
cell death. In terms of cell death, which can be either active or passive, active cell death includes
apoptosis, autophagy, ferroptosis, activation-induced cell death, mitotic catastrophe, and pyroptosis [11].
The disruption of deoxyribonucleic acid (DNA) structure in the nuclei of cancer cells is a major
mechanism for chemotherapy- and radiotherapy-induced apoptosis, and mitotic catastrophe is a
molecular event prior to apoptosis [12–14]. Additionally, necrosis, as a passive form of cell death
following injury and ischemia, can also be induced by chemotherapy, radiotherapy, ablation, and
transcatheter arterial chemoembolization (TACE) [15–18].

1.2. Cancer Staging

Heterogeneous progressiveness at diagnosis necessitates a proper classification of cancer stage,
which is essential for clinical decision-making and treatment planning. The tumour-node-metastasis
(TNM) staging system is the most widely adopted staging system for most cancer types (except for
haematological malignancies and brain tumours), and it categorizes patients into four major categories:
I, II, III and IV [19]. Stage I patients refer to cases harbouring cancers that are confined within the
original organ and are highly curable, whereas stage IV patients are metastatic cases and barely curable.
Stage II and stage III patients are with intermediate potentials to be cured, to whom multidisciplinary
modalities are applied to maximally prolong their survival [20–22]. Due to the futility of single
therapeutics in the most advanced cases, cancer cure in these cases could be realized with the “log-kill”
model, i.e., surgery or the alike removes a great majority of cancer cells, followed by further chemo-
and radiotherapy cleansing; finally, anti-cancer immunity of the patient could be just strong enough to
kill the remaining cancer cells [23].

1.3. Concepts of Cancer Cure

Literally, to cure refers to eliminate a disease or condition without any relapse. However, the
relapsing nature (within months or years) after remission makes the traditional definition of “cure”
impractical and rarely mentioned in oncology. The cure of cancer implies not only numerically long
survival time, but also equal life expectation between properly treated patients and corresponding
cancer-free population. A plausible and empirical criterion for curability is the maintenance of
recurrence-free survival for more than 10 years after effective treatments [24]. However, a widely
accepted notion for cancer cure in clinic refers to the maintenance of complete remission for five
years [25]. Based on this notion, the overall five-year relative survival rate (RSR) for cancer patients
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was 48.9% in the 1970s and this figure climbed to 69.3% in the 2010s, implying that approximately 30%
of cancer patients still fail to be cured [26].

1.4. Measurable for Outcomes of Cancer Patients

Assessment of treatment response is pivotal for evaluation of anti-cancer therapies, subsequent
treatment planning, and prognosis prediction. Currently available measurable includes survival
time/rate and tumour size changes evaluated by imaging. Overall survival (OS), defined as the period
from randomization to death, is the gold standard for evaluation of treatment outcome. However,
it requires a large sample size as well as long-term follow-up, which is labour intensive and costly.
To tackle this and accelerate drug approval, progression-free survival (PFS) or disease-free survival
(DFS) were proposed as surrogates and defined as the interval between randomization and objective
tumour progression [27,28]. In addition, objective response rate, the proportion of patients with
tumour burden reduction classified as either complete remission or partial remission based on response
evaluation criteria in solid tumour (RECIST) criteria, correlates well with PFS and serves as an early
predictive marker for PFS [29]. The RECIST criteria evaluates therapeutic response by assessment
of cancer diameter changes before and after treatment, firstly issued in 2000 [30]. Afterwards, to
counteract with the “pseudoprogression” phenomenon during immune checkpoint inhibitors (ICIs)
treatment, a modified “iRESCIST” was proposed in 2009 [31].

Besides the above-mentioned measurables at an individual level, epidemiologists and healthcare
providers are more concerned about the prevalence of cancer deaths at a population level and thus,
cancer-specific survival and RSR are proposed [32]. Cancer-specific survival is the percentage of
patients who did not die from the index cancer at a specific time point. Alternatively, the RSR is
defined as the ratio between the percentage of cancer patients who survive for a specific period and
the percentage of comparable people (usually with the same sex and age) who survive the same period
of time [32,33]. Of note, both methodologies have their own limitations, including dependence of
accurate classification about cause of death, which is not always possible solely on a basis of clinical
evaluation without autopsy, and dependence of comparable referential life table, respectively. And the
extent of their difference varies by cancer types and age of diagnosis, with a greater deviation in lung
cancer, brain tumour, and the elderly population [34].

2. Current Cancer Therapies and Their Performances

Current common cancer treatments include surgery (and its analogous ablation therapies),
chemotherapy, radiotherapy, targeted therapy, and immunotherapy (Figure 1). The curative potential
for each of these treatments varies and is largely dependent on cancer type, stage, patients’ performance
status, and so forth. Surgery alone can be curative in early-stage solid cancers. For instance, the
current national comprehensive cancer network (NCCN) guideline recommends radical resection with
curative intent and active postoperative surveillance for T1a stage NSCLC [35]. In the hyper-early
stage of solid cancers that are sensitive to chemotherapy or radiotherapy, a monotherapy could also
be sufficient for cancer cure [36–38]. However, a majority of cancer cases are diagnosed at advanced
stages in which multimodality strategies are applied, aiming to maximally eliminate cancer cells and
prolong patients’ survival. Sadly, long-term survival by these methods are dissatisfactory in practice,
and, therefore, the cornerstones of curing cancer still lie in early detection, followed by timely and
sufficient treatment. The animal experiments covered by the current review have been approved by
the KU Leuven University Ethics Committee (P147/2013).
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Figure 1. Current major therapeutics for cancer. In the primary site, local treatments, including 
surgery, imaging-guided interventional procedure, and radiotherapy, can be applied with curative 
intent. In metastatic disease, surgery, radiotherapy, immunotherapy, targeted therapy, and 
chemotherapy can be delivered, with palliative or even curative intent. Abbreviations: TACE: 
transcatheter arterial chemoembolization; APC: antigen-presenting cell; PD-1: programmed death-1; 
PD-L1: programmed death ligand-1; MHC: major histocompatibility complex; TCR: T cell receptor; 
CTLA-4: cytotoxic T-lymphocyte-associated protein 4; CD: cluster of differentiation. 

2.1. The Evolving Role of Surgery 

Surgery is a major pillar for clinical management of cancer. About 80% of 15.2 million newly-
diagnosed cancer patients in 2015 require surgery across the globe and by 2030 this figure will 
increase to 45 million [39]. Besides preventive, diagnostic, and cosmetic purposes, surgery contributes 
substantially to the cure of solid cancer at their infancy by removal of cancer tissue and lymph node. 
It has served as the only curative therapy for most solid tumours at an early stage, such as oesophagal 
cancer, gastric cancer, and colorectal cancer (CRC), to mention only a few (Table 1). However, a 
majority of cancer cases were diagnosed at locally advanced or even metastatic stages, limiting the 
applicability of curative surgery. The development of oncological surgery mainly focuses on 
decreasing its invasiveness that, on a basis of equivalent anticancer efficacy, may help minimize 
perioperative complications and postoperative side-effects, and ultimately improve patients’ quality 
of life. Laparoscopic surgery has shown equivalent anticancer efficacy and lower incidence or 
intensity of complications, compared with open surgery in gastric cancer and colorectal cancer 
[40,41]. However, critics indicate that high-quality evidence from well-designed randomized clinical 
trials with sound methods is needed to justify the routine implementation of laparoscopic 
gastrectomy [42]. Furthermore, laparoscopic surgery in pancreatic or periampullary cancer and 
cervical cancer was associated with an inferior oncologic outcome compared with open surgery [43–
46]. Endoscopic surgery has been applied in early oesophageal cancer, gastric cancer, and colorectal 
cancer in carefully selected patients in expert centres, such as T1a gastric cancer without lymph node 
metastasis [47–50]. Despite versatile flexibility of robotic surgery, its associated survival benefit and 
cost-effectiveness have been disputed, especially in mastectomy and other cancer-related surgeries 

Figure 1. Current major therapeutics for cancer. In the primary site, local treatments, including surgery,
imaging-guided interventional procedure, and radiotherapy, can be applied with curative intent.
In metastatic disease, surgery, radiotherapy, immunotherapy, targeted therapy, and chemotherapy
can be delivered, with palliative or even curative intent. Abbreviations: TACE: transcatheter arterial
chemoembolization; APC: antigen-presenting cell; PD-1: programmed death-1; PD-L1: programmed
death ligand-1; MHC: major histocompatibility complex; TCR: T cell receptor; CTLA-4: cytotoxic
T-lymphocyte-associated protein 4; CD: cluster of differentiation.

2.1. The Evolving Role of Surgery

Surgery is a major pillar for clinical management of cancer. About 80% of 15.2 million newly-
diagnosed cancer patients in 2015 require surgery across the globe and by 2030 this figure will
increase to 45 million [39]. Besides preventive, diagnostic, and cosmetic purposes, surgery contributes
substantially to the cure of solid cancer at their infancy by removal of cancer tissue and lymph
node. It has served as the only curative therapy for most solid tumours at an early stage, such
as oesophagal cancer, gastric cancer, and colorectal cancer (CRC), to mention only a few (Table 1).
However, a majority of cancer cases were diagnosed at locally advanced or even metastatic stages,
limiting the applicability of curative surgery. The development of oncological surgery mainly focuses
on decreasing its invasiveness that, on a basis of equivalent anticancer efficacy, may help minimize
perioperative complications and postoperative side-effects, and ultimately improve patients’ quality of
life. Laparoscopic surgery has shown equivalent anticancer efficacy and lower incidence or intensity of
complications, compared with open surgery in gastric cancer and colorectal cancer [40,41]. However,
critics indicate that high-quality evidence from well-designed randomized clinical trials with sound
methods is needed to justify the routine implementation of laparoscopic gastrectomy [42]. Furthermore,
laparoscopic surgery in pancreatic or periampullary cancer and cervical cancer was associated with an
inferior oncologic outcome compared with open surgery [43–46]. Endoscopic surgery has been applied
in early oesophageal cancer, gastric cancer, and colorectal cancer in carefully selected patients in expert
centres, such as T1a gastric cancer without lymph node metastasis [47–50]. Despite versatile flexibility
of robotic surgery, its associated survival benefit and cost-effectiveness have been disputed, especially
in mastectomy and other cancer-related surgeries [51,52]. Concerns about minimally invasive surgery
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include long learning curve, dependence of centralization of cases in hospital with high volume
of surgeons, limited eligibility (only for highly-selected patients), and higher cost [53–56]. As the
alternatives to the above-mentioned open and minimally invasive surgeries, which make the entire
tumour (and a layer of surrounding tissue as a safety margin) physically excised from the patient,
a series of minimally invasive tumour ablation techniques have been developed. These virtual surgical
techniques (Table 1) instantly kill the tumour (also with an intended 5–10 mm peritumoural safety
margin) in situ without actual tumour removal by local delivery of either lethal temperatures such
as hyperthermal radiofrequency ablation and hypothermal cryotherapy, or caustic chemicals such
as absolute ethanol and acetic acid with resulted tissue necrosis [57–59]. Likewise, imaging-guided
interventions such as TACE have been often applied for the treatment of mainly hepatic malignancies
with palliative expectation [60,61].

2.2. The Pros and Cons of Radiotherapy

Radiotherapy, including external beam radiotherapy (EBRT), internal radiotherapy, and
brachytherapy, has been used in about 50% of cancer patients and exerts its anticancer activities
by ionizing radiation, which structurally damage DNA or other macromolecules, resulting in mainly
apoptosis in all exposed cells (Table 1) [62]. Radiotherapy is limited by complexity of radiobiology,
difficult achievement of perfectly conformal dose distribution, and risk of secondary malignancy [63].
EBRT can be classified as different subtypes, based on the emitted particles: photons, electrons, and
particles (proton, neutron, and heavy ion) [64]. Heavy ion refers to particles having one or more
units of electric charge and a mass exceeding that of the Helium-4 nucleus (alpha particle) [65].
Photon radiotherapy, currently the most frequently used subtype, can generate free radicals and
cause single strand DNA damage [66]. Electron radiotherapy has a short penetration, after which the
energy drops sharply and therefore it is mostly used in superficial cancer [67]. Particle radiotherapy,
delivering high-energy radiation, may form a dose peak near the end of penetration, namely Bragg
peak, which enables higher dose in cancer tissue, induction of double strand DNA damage in a less
oxygen-dependent manner, and better sparing of surrounding normal tissue [68]. Particle radiotherapy
has become increasingly popular, especially over the past two decades [69]. Until the end of 2016,
174,512 patients received particle therapy globally, with 149,345 receiving proton therapy and 21,580
receiving carbon ion therapy [70]. However, widespread use of particle radiotherapy was halted
by its tremendous cost and a paucity of solid clinical evidence [71]. EBRT is usually administrated
in combinatory settings in most cancer cases, except for localized cancer cases with high sensitivity
like lymphoma and seminoma. To achieve a possible curative effect with radiotherapy, a typical
requirement is to reach a cumulative radiation dose ranging from 50–80 Gy for most cancer types, with
30 Gy in lymphoma [72,73]. The development of EBRT mainly focuses on two directions: better sparing
of normal tissue by precise delivery and enhanced cancer control. The preciseness of delivery depends
on the accurate delineation of the extent of tumour, developing from computed tomography (CT) to
positron emission tomography (PET)/CT, a method incorporating metabolic information [74]. Currently,
many linear accelerators are equipped with CT imaging, which can confirm the tumour location
before delivery, namely image-guided radiation therapy [75]. Intensity-modulated radiation therapy
(IMRT), a form of precision radiotherapy, was developed to enable the formation of a high-dose region
with conformal complexity and proximity to vital tissue; an analog to IMRT is volumetric-modulated
arc therapy, which requires short delivery time. Additional technical developments to achieve
both higher conformity and possibly greater anti-cancer efficacy include protons and heavy ions
therapy [76,77]. Enhanced cancer control can be achieved using various methods. Hypofractionation,
namely stereotactic body radiation therapy, was proposed for its additional indirect effects like vascular
collapse and immune effects in intracranial tumours; its application in extracranial tumours, namely
stereotactic ablative radiotherapy, is currently being explored [78–82]. Additionally, combination
therapies have strived to improve efficacy—the concurrent chemoradiotherapy, which is the cornerstone
for a wide spectrum of cancers, is the most successful one. Radiotherapy may synergistically act with
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immunotherapy by releasing tumour antigens and a modulating microenvironment that facilitate
recruitment of immune cells [83]. Another potential combination is with nanoparticles (NP). Gold
NP can enhance radiosensitivity physically (producing photoelectron, Auger electron and low energy
secondary electron), chemically (radical formation and chemical sensitization), and biologically (cell
cycle disruption, oxidative stress, and DNA repair inhibition) [84–86]. For the DNA repair inhibition
effect, nanoparticles exert an inhibitory effect by electric field generated from ionization of nanoparticles
in the irradiated tissue [87]. NP, which can decompose H2O2 to generate O2, may help relieve the
hypoxia, and enhance the immunogenicity of radiotherapy [88,89]. Currently, two NPs are under clinical
trials: NBTXR3, a hafnium-based intratumourally administered NP and AGuIX, a gadolinium-based
intravenously administered NP [90–92]. The addition of NBTXR3 to radiotherapy may help improve
the pathological complete response rate of locally advanced soft-tissue sarcoma (16% vs. 8%); the first
clinical trial of AGuIX (NCT02820454) is finished, awaiting results [93,94]. Internal radiotherapy, which
consists of radioactive isotope and radiopharmacy, was delivered based on intrinsic enrichment, intake
of 131I by thyroid cancer, and 223Ra by bone cancer lesion; or artificial enrichment by intercalating
radioactive isotopes with a receptor for tumour biomarker like CD20 antibody in Zevalin [95–97].
Brachytherapy was given directly or via a catheter implanting radioactive isotopes in or next to the
cancer site, which produces high-energy radiation directly to the tumour [98]. Moreover, it shows
better sparing of surrounding tissue for a sharp dose fall-off outside its limited penetration zone
and a higher radiation dose in the cancer site, compared with EBRT [98]. Brachytherapy for breast
cancer, prostate cancer, and cervical cancer is mainly preformed with 125I, a low dose rate isotope,
which emits photons with energy up to 35.5 keV by gamma decay and X-rays of energy between
27.2–31.7 keV by transition [99]. However, radiotherapy may also affect normal cells and induce
side-effects due to imperfect conformal delivery, especially for fast-proliferative cells, like intestinal
epithelia, bone marrow blood stem cells, etc. [100–102]. Additionally, patients are associated with a
slightly higher incidence of secondary malignancy five years after receiving radiotherapy, especially
those treated for breast cancer, mediastinal B-cell lymphoma, seminoma, prostate cancer, cervical
cancer, and endometrium cancer [103–107]. Similarly, radiotherapy by radioactive iodine (RAI) for
thyroid cancer could be associated with a higher incidence of secondary malignancies, especially in
cases with a cumulative RAI dose over 150 mCi [108]. RAI treatment of well-differentiated thyroid
cancer showed 0.5% risk of developing acute and chronic myeloid leukemia [109].

2.3. The Contribution of and Concerns about Chemotherapy

Chemotherapy aims to eliminate cancer cells or inhibit their growth by altering abnormal
cellular proliferation and metabolism, which are spectacular hallmarks of malignancies (Table 1).
Chemotherapy is limited by a low response rate (except for a few sensitive cancer types), systematic
side-effects, and risk of a secondary malignancy. The therapeutic efficacy of chemotherapy varies
among different cancer types and satisfactory therapeutic effect is only shown for a limited spectrum
of malignancies, including acute leukemia, Wilm’s tumour and Ewing’s sarcoma in children, and
choriocarcinoma, lymphoma, endometrial cancer, and seminoma in adults. The general contribution
of curative and adjuvant chemotherapy to five-year survival in adults is less than 2.5%, providing
an extra survival benefit of merely three months [110]. The addition of adjuvant chemotherapy was
proposed to eliminate the remaining cancer cells after radical surgery and reduce the risk of postsurgical
relapse; its associated survival improvement was practically observed in early stage epithelial ovarian
cancer, esophagus cancer, etc. [111,112]. However, the survival benefit is absent in ypTis-2N0 rectal
cancer and stage II colon cancer [113]. For advanced stage cancer, the complete remission rate for
chemotherapy is generally low (7.4%), regardless of cancer type and drug regimen [114]. Moreover,
most of these cases relapse shortly after treatment. For instance, approximately 90% of metastatic
NSCLC and pancreatic cancer patients progressed within 15 months after chemotherapy, with 90%
of metastatic gastric and advanced esophagogastric cancer progressing within 24 months [115–118].
The contribution of chemotherapy to the survival of advanced hepatocellular carcinoma and pancreatic
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cancer is marginal [115,119]. Escalated chemotherapy is not necessarily associated with improved
survival. The addition of cetuximab to postoperative chemotherapy for Ki-ras2 Kirsten rat sarcoma
viral oncogene homolog (KRAS) exon 2 wild-type colorectal cancer was associated with a shorter
PFS [120]. In contrast, the de-intensified regimen can help achieve equivalent anti-cancer efficacy
in selected low-risk patients with breast cancer, colon cancer, or human papillomavirus–associated
oropharyngeal squamous cell carcinoma [121–124]. The main hindrance to limited anti-cancer activity
in chemotherapy is heterogeneous sensitivity in the diverse cancer cell population: indolent or
insensitive cancer cells is the major resource of relapse [125]. Heterogeneous sensitivity can also be
observed on an individual level: (1) response rate for solid tumours is generally lower than 50%, with
20–30% in NSCLC [126]; (2) highly responsive patients can be identified by biomarkers, including DNA
damage immune response assay, promoter methylation for oesophageal adenocarcinoma patients, and
21-Gene Recurrence Score Prognostic Assay in early breast cancer patients [38,127–129]; and (3) higher
response rate of pemetrexed in lung adenocarcinoma [130]. Accordingly, the role of chemotherapy in
less-responsive cancer types has been challenged by targeted therapy or immunotherapy. In completely
resected stage II-IIIA epidermal growth factor receptor (EGFR)-mutant NSCLC, adjuvant gefitinib is
associated with better DFS than platinum-based chemotherapy [131]. In metastatic NSCLC, the first-line
chemotherapy regimen remained a platinum-based regimen for decades, with a plateau response rate
between 20% and 30% [126]. Currently, in patients with druggable targets (EGFR, anaplastic lymphoma
kinase (ALK), and so on), targeted therapy has been recommended as the first line therapy [132,133].
More recently, the role of chemotherapy as first line treatment in mutation-negative advanced NSCLC
was challenged by dual blockade of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
programmed death 1 (PD1) (median OS: 14.9 vs. 17.1 months) [134].

In addition, chemotherapy is associated with a higher risk of a secondary malignancy, with
increased risk of bone tumours and leiomyosarcoma after addition of an alkylating agent to radiotherapy
for treatment of hereditary retinoblastoma [135]. The side-effects of chemotherapy are often systemic,
especially on organs with rapidly growing cells, such as intestinal epithelia, bone marrow blood stem
cells, and hair follicle cells [136].

2.4. The Contribution of and Concerns about Targeted Therapy

Targeted therapy was developed on the basis of in-depth understanding of cancer biology, and
is frequently used in NSCLC, lymphoma, breast cancer, gastric cancer, and colorectal cancer, among
others (Table 1). The development of targeted therapy in NSCLC has changed the first-line treatment
regimen for druggable mutation-positive patients: from platinum-based chemotherapy to targeted
therapy in advanced and post-operative NSCLC [131–133]. The addition of rituximab to chemotherapy
in CD20+ diffuse large B cell lymphoma significantly prolongs patients’ DFS and OS [137]. However,
the ‘preciseness’ in themselves are Achilles’ heel to some extent: limited eligibility and resistance due
to evolution of cancer cell population from sensitive to insensitive ones. For instance, 50% of Asian
patients and 10–15% of Caucasian patients with lung adenocarcinoma are EGFR mutation-positive,
with 5% of NSCLC being ALK positive and 1% of NSCLC patients being ROS1 positive [138–140].
Moreover, treatment escalation by a newer generation of drugs is an inevitable but a rarely possible
way, except for EGFR-mutated NSCLC, wherein acquired T790M mutation after administration of the
first generation tyrosine kinase inhibitor (TKI) can be successfully targeted by osimertinib, the third
generation TKI [141]. Additionally, therapies that target the growth of tumour blood vessels, rather than
cancer cells are also available [142]. The signaling axis for angiogenesis consists of pro-angiogenetic
molecules, corresponding receptors, and post-receptor signaling pathways, which jointly promote
endothelial cell proliferation, migration, survival, and ultimately angiogenesis [143]. This cascade
reaction can be inhibited at different levels, with Bevacizumab targeting vascular endothelial growth
factor, Ramucirumab targeting vascular endothelial growth factor receptor-2, and TKI (cabozantinib,
lapatinib, and sorafenib, to mention a few) targeting post-receptor signaling pathways. However,
the major limitations for these strategies are the lower response rates, ranging between 2–30%, rare
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but fatal complications like perforation and haemoptysis, and acquired resistance [143]. In addition,
another group of drugs, namely vascular-disrupting agents (VDAs), can hinder the growth of cancer
by either disrupting pre-existing blood vessels in cancer stroma or by having a direct cytotoxic effect
on cancer cells [144]. However, current clinical trials have demonstrated its unsatisfactory competence
in both single and combinatory settings for advanced cancers [145–147]. The bottleneck problem with
VDAs appears to be incomplete tumour necrosis with remnant viable cancer cells that cause tumour
regrowth. However, the new OncoCiDia strategy seems to be able to tackle such a bottleneck problem
(see details in Section 5).

2.5. The Contribution of and Concerns about Immunotherapy

Lastly, immunotherapy, including cellular therapy, cytokines, or ICIs aims to treat cancers by
increasing or restoring anticancer immunity (Table 1). Successful sporadic cure has been reported in
chimeric antigen receptor T cells therapy and ICIs; however, the response rate is low, unpredictable, and
vulnerable to other biological factors. The ICIs are gaining increasing popularity for their uniqueness in
durable response and high response rates in some relapsed cancers. Ipilimumab, the first commercial
monoclonal antibody targeting CTLA-4, was shown to offer a superior survival benefit for metastatic
melanoma in 2011, compared with peptide or combinatory dacarbazine chemotherapy [148,149].
More strikingly, approximately 15% of patients showed a durable response more than 10 years after
therapy discontinuation, which distinguishes immunotherapy from conventional therapies [150–152].
In addition, immunotherapy targeting the PD1/PDL1 axis has been receiving approval since 2014 for
second-line or first-line therapies for an increasing number of malignancies, including melanoma,
lymphoma, NSCLC, renal cell cancer, head and neck squamous cell cancer, bladder cancer, liver cancer,
esophagogastric junction cancer, and micro-satellite unstable cancer of any origin [153,154]. The dual
blockade by both CTLA4 and PD1/PDL1 yield improved survival in melanoma and NSCLC [134,155].
However, the response of ICIs varies among cancer types, with high response rates in melanoma,
NSCLC, Hodgkin’s lymphoma, Merkel cell carcinoma and microsatellite instability-high CRC, and
with low response rate and marginal survival benefit in SCLC, renal cell carcinoma, and head and neck
cancers [156]. More importantly, it is impossible to predict and identify patients that could potentially
benefit from this therapy. Although biomarkers, including tumour mutation burden, programmed
death ligand 1 (PD-L1) expression, lymphocyte infiltration rate, and tumour-immune phenotypes,
were identified, their clinical efficacy for predicting treatment response remains unconfirmed and
controversial [157,158]. Furthermore, the anticancer efficacy of ICIs is vulnerable to prior application
of antibiotics, with significantly worse OS in patients receiving antibiotics (2 vs. 26 months) [159].
Additionally, hyperprogression is a deleterious effect of checkpoint inhibitors, characterized by
accelerating cancer growth with an incidence rate of 9% (12/131) [160]. More importantly, ICIs are
associated with fatal toxicity effect in 0.3–1.3% patients, as reported more recently [161].

Table 1. Summary of the curative potential of currently available cancer therapeutics.

Cancer Therapy * Mechanism Curative Potential Example Limitations

Surgery

Open surgery
Physical removal of cancer,

adjacent tissue, and
involved lymph nodes

For early solid cancer,
+++

Early NSCLC [162], HCC
[163], renal cancer [164]

Surgical injury [165], cancer
dissemination [166]

Laparoscopic
surgery Same as above Same as above Same as above

Surgical injury [165], cancer
dissemination [166],

dependence of centralized
expert surgeons [53]

Robotic surgery Same as above Same as above HCC [167], prostate cancer
[168]

Same as above, imperfectly
confirmed efficacy

Endoscopic
surgery Same as above Same as above Early GI cancer [169,170] Possible second surgery [171],

perforation [172]
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Table 1. Cont.

Cancer Therapy * Mechanism Curative Potential Example Limitations

Interventions

Ablations

In situ necrotizing cancer
and adjacent tissue by local

hyperthermal ablation,
cryotherapy, or absolute

ethanol injection.

For early eligible
cancer, +++

HCC [173], renal cancer [174],
lung cancer [175]

Often incomplete ablation
[176], injury to adjacent tissue

[177,178]

TACE
Embolization of cancer

supplying artery combined
with local chemotherapy

−/+ HCC [179] Often incomplete cell death
[179]

Chemotherapy

Direct
Alteration of DNA synthesis

and structure or
cytoskeleton

For chemotherapy
sensitive cancer, +++

Early lymphoma [180], ALL
[181], seminoma [182]

Pancytopenia, nausea,
infertility, neuropathy [136],

secondary cancer [183]

Indirect Immunomodulation,
vascular disrupting effect −/+ NA Venous thrombosis [184],

recurrence [185]

Radiotherapy

External beam Alteration of DNA structure
via radicals

For radiotherapy
sensitive cancer, +++

Early lymphoma [186], NPC
[187], +++

Unintentional destruction
along entrance channel [188],

secondary cancer [189]

Radioiodine Same as above, for thyroid
cancer with iodine intake

For thyroid cancer
with iodine intake, ++

Thyroid cancer [108] Side-effects [190], secondary
cancer [109]

Radiopharmacy
(Lutetium 177) Same as above −/+ NA Side-effects [191], secondary

cancer [192]

Brachytherapy Same as above −/+ NA Side-effects [193], secondary
cancer [194]

Targeted therapy

Direct
Inhibition of signaling

pathway, ADCC for
monoclonal antibody

−/+ NA
Acquired resistance [195];

narrow spectrum of optimal
patients [196]

Indirect Anti-angiogenesis −/+ NA
Acquired resistance [197], low

response rate [198], rare but
fatal side-effects [198–200]

Immunotherapy

Immune
checkpoint
inhibitors

Restore anticancer immunity
Only possible in

responded cases (about
10%) [201], +

Melanoma [148]
Unpredictability of response

[158], rare but fatal side-effects
[161]

Cellular
immunotherapy

Elimination of cancer cells
by immune cells with or

without engineering
−/+ Leukemia [202] High cost [203], severe

side-effects [204]

Bone marrow
transplantation

Elimination of cancer cells by
intensive chemotherapy and
graft-versus-leukemia effect

Yes, for high-risk
haematological cancer

[205], +++

Leukemia [206]; lymphoma
[207];

High mortality rate (5%) [208]
and extensive

post-transplantation care [209]

Endocrine therapy Inhabitation of growth by
altering hormone signaling

Unknown #, for
hormone receptor

positive patients, ++

Prostate cancer [210], breast
cancer [211] Secondary cancer [212]

Abbreviations: ADCC: antibody-dependent cellular cytotoxicity; ALL: acute lymphoid leukemia; DNA:
deoxyribonucleic acid; HCC: hepatocellular carcinoma; NSCLC: non-small cell lung cancer; NA: non-applicable;
GI: gastrointestinal; ALL: acute lymphoid leukemia; NA: non-applicable; NPC: nasopharyngeal carcinoma; TACE:
transarterial chemoembolization. * We refer to the therapies in each category with curative intention; # hormone is
often used in combinatory settings and therefore its role in single-use remains unclear. -/+: unlikely but possible;
+/-: possible but unlikely; + limited curative potential, only possible in some cases; ++ contribute to the cancer cure
in combination; +++ with curative potential.

3. Curability by Cancer Type and Stage

To quantitatively show what we have achieved with the currently available diagnostic methods
and treatments for different cancers, we present the stage distribution and corresponding five-year
RSR in patients diagnosed in 2010 from the nine registries in the large population-based surveillance,
epidemiology and end results (SEER) database [213]. Table 2 summarizes the curative potential by
cancer type based on currently available therapeutics. To ensure the comparability and consistence of
stage in different cancer types, we adopted the staging system provided in the SEER database, which
contained three categories, including localized, regional, and distant. Here, localized cases refer to
cancer lesion confined within its originated organ, with regional cases referring to cancer lesion spread
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to adjacent tissue (without metastasis) and distant cases referring to metastatic cases. Here, most
patients were diagnosed at an advanced stage (regional or distant) in a majority of cancer types. Thus,
early diagnosis by increased public awareness, widespread screening protocol, and development of
more sensitive and discriminative detection methods may help change the scenario [214]. The prognosis
varies among different cancer types with a five-year RSR of more than 80% in thyroid cancer, melanoma,
breast cancer, and Hodgkin’s lymphoma. However, the prognosis for SCLC, pancreatic cancer, HCC,
oesophageal cancer, acute myeloid leukemia, NSCLC, and gastric cancer is still dismal, with a five-year
RSR ranging between 7% and 28%, emphasizing further endeavours in combating cancers (Figure 2).
Some new drugs merely provide marginal survival benefit: 14 novel regimens approved for solid
tumours by European Medicines Agency (EMA) are associated with a median OS benefit of 1.2 months,
with a median OS benefit of 2.1 months for 48 new regimens approved by FDA between 2002 and
2014 [215,216]. It is estimated that development in treatment options explains only the 20% increase in
five-year survival—from 49–68% over 40 years—whereas development in early diagnosis may have
contributed much more [217–219]. Moreover, among 32 new drugs approved by EMA between 2014
and 2016 on the basis of 54 trials, only 10 randomized trials measured OS, with 19 randomized trials
harbouring high risk of bias [220].

Table 2. Summary of curative potential by cancer type and stage based on currently available
cancer therapeutics.

Cancer Type Current Treatment
Curative

Possibility, 5-Year
RSR

Curative Methods
Stages Distribution

(Localized, Regional,
Distant) ‡

5-Year RSR by Stage ‡

Head and Neck

Surgery, radiotherapy,
chemotherapy, targeted
therapy, immunotherapy

[221]

++, 68.6% Surgery,
radiotherapy 30,2%, 52,4%, 17,4% 85.8%, 67.3%, 40.8%

Thyroid

Papillary
Surgery, radioiodine

therapy (131I), targeted
therapy [222]

+++, 99.7% Surgery, radioiodine
therapy (131I) 63,6%, 33,8%, 2,7% 100.0%, 99.4%, 82.1%

Follicular
Surgery, radioiodine

therapy (131I), targeted
therapy [222]

+++, 94.3% Surgery, radioiodine
therapy (131I) 55,5%, 39,1%, 5,5% 99.1%, 93.2%, 33.8%

Medullary Surgery, targeted
therapy [222] +++, 80.9% Surgery 37,0%, 38,9%, 24,1% 100.0%, 92.2%, 24.4%

Anaplastic *
Surgery, radiotherapy,

targeted therapy,
chemotherapy [222]

+, 4.7% Surgery 9,5%, 42,9%, 47,6% 0.0%, 11.3%, 0.0%

Breast

Breast

Surgery, chemotherapy,
radiotherapy, targeted

therapy, endocrine
therapy [211]

+++, 90.8% Surgery 63,2%, 29,3%, 7,5% 99.1%, 88.3%, 36.3%

Lung

Non-small cell
lung cancer

Surgery, radiotherapy,
chemotherapy,

immunotherapy,
targeted therapy [223]

+, 21.0% Surgery,
radiotherapy [224] § 18,3%, 24,1%, 57,6% 58.3%, 32.2%, 4.7%

Small cell lung
cancer

Surgery, radiotherapy,
chemotherapy,

immunotherapy [225]
+, 7.0% Surgery 19,3%, 80,4%, 0,3% 23.9%, 18.4%, 3.1%

Gastrointestinal cancer

Oesophagus

Surgery, radiotherapy,
chemotherapy,

immunotherapy
[226,227]

+, 22.3% Surgery, endoscopic
resection 21,4%, 32,6%, 45,9% 56.0%, 28.0%, 4.2%

Gastric

Surgery, radiotherapy,
chemotherapy, targeted
therapy, immunotherapy

[42]

+, 20.2% Surgery, endoscopic
resection 22,5%, 28,9%, 48,5% 52.8%, 28.3%, 3.1%
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Table 2. Cont.

Cancer Type Current Treatment
Curative

Possibility, 5-Year
RSR

Curative Methods
Stages Distribution

(Localized, Regional,
Distant) ‡

5-Year RSR by Stage ‡

Gastrointestinal cancer

Hepatocellular
carcinoma

Surgery, intervention,
targeted therapy,

radiotherapy,
chemotherapy,

immunotherapy [228]

+, 21.2%
Surgical resection,

transplantation,
local ablation

53,4%, 31,6%, 15,0% 35.1%, 9.6%, 2.1%

Pancreatic cancer

Surgery, targeted
therapy, intervention,

radiotherapy,
chemotherapy [229]

+, 8.4% Surgery 21,0%, 78,9%, 0,1% 32.5%, 10.8%, 3.3%

Colorectal

Surgery, chemotherapy,
targeted therapy,

radiotherapy,
immunotherapy [230]

++, 66.7% Surgery, endoscopic
resection 42,6%, 35,6%, 21,7% 90.2%, 75.0%, 13.6%

Anal

Surgery, chemotherapy,
radiotherapy (EBRT,

brachytherapy), targeted
therapy [231]

++, 74.3% Surgery 54,6%, 35,3%, 10,2% 83.7%, 67.9%, 44.7%

Genitourinary cancer

Renal

Surgery, chemotherapy,
targeted therapy,
immunotherapy,

ablation, radiotherapy
[232]

++, 74.6% Surgery, local
ablation [174] § 0,2%, 51,8%, 48,0% 92.9%, 70.0%, 11.4%

Bladder

Surgery, chemotherapy,
targeted therapy,

radiotherapy,
immunotherapy [233]

+++, 77.3% Surgery 0,3%, 77,9%, 21,8% 90.8%, 44.9%, 3.7%

Prostate

Surgery, chemotherapy,
radiotherapy (EBRT,

brachytherapy),
endocrine therapy [210]

+++, 99.5% Surgery 95,4% +, 4,6% 100% +, 28.2%

Testicular Surgery, chemotherapy,
radiotherapy [234] +++, 96.4%

Surgery,
chemotherapy,
radiotherapy

71,5%, 17,9%, 10,6% 99.9%, 99.1%, 73.8%

Gynaecological cancer

Ovarian

Surgery, chemotherapy,
radiotherapy, targeted

therapy, endocrine
therapy [235]

++, 46.8% Surgery 64,8%, 35,0%. 0,2% 95.0%, 62.8%, 31.7%

Endometrial

Surgery, chemotherapy,
radiotherapy, targeted

therapy, endocrine
therapy, immunotherapy

[236]

+++, 85.2% Surgery 0,3%, 63,0%, 36,7% 96.5%, 71.6%, 32.5%

Cervical

Surgery, chemotherapy,
radiotherapy (EBRT,

brachytherapy), targeted
therapy, immunotherapy

[237]

++, 69.1% Surgery 48,5%, 36,6%, 14,9% 92.4%, 60.9%, 18.0%

Melanoma

Melanoma

Surgery, chemotherapy,
radiotherapy, targeted

therapy, PDT,
immunotherapy [238]

+++, 93.7% Surgery, PDT,
immunotherapy 0,7%, 68,6%, 30,7% 99.4%, 68.3%, 17.9%

Leukemia $

Acute lymphoid
leukemia

Chemotherapy, targeted
therapy, CAR-T, HSCT

[239,240]
++, 74.0% Chemotherapy,

HSCT NA NA

Acute myeloid
leukemia

Chemotherapy, targeted
therapy, CAR-T, HSCT

[241,242]
+, 28.6% Chemotherapy,

HSCT NA NA

Chronic lymphoid
leukemia

Chemotherapy, targeted
therapy, HSCT,

observation ¶ [243]
+++, 82.2% Chemotherapy,

HSCT NA NA

Chronic myeloid
leukemia

Chemotherapy, targeted
therapy, HSCT,

observation ¶ [244]
++, 70.0% Chemotherapy,

HSCT NA NA
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Table 2. Cont.

Cancer Type Current Treatment
Curative

Possibility, 5-Year
RSR

Curative Methods
Stages Distribution

(Localized, Regional,
Distant) ‡

5-Year RSR by Stage ‡

Lymphoma £

Hodgkin’s

Chemotherapy, targeted
therapy, HSCT,
radiotherapy,

immunotherapy [37]

+++, 86.7% Chemotherapy,
HSCT

15,4%, 42,6%, 22,1%,
20,0%

93.2%, 93.2%, 83.7%,
72.2%

Non-Hodgkin’s

Chemotherapy, targeted
therapy, HSCT,
radiotherapy,

immunotherapy [36]

++, 72.6% Chemotherapy,
HSCT

28,1%, 16,6%, 17,5%,
37,8%

83.6%, 77.0%, 68.3%,
66.5%

Notes: Radiotherapy here refers to EBRT only, unless specified. Curative possibility (five-year RSR) scale:
+—<30%; ++—30%-75%; +++—>75%. Abbreviations: RSR—relative survival rate; PDT—photodynamic therapy;
HSCT—hematopoietic stem cell transplantation. ‡ All data here are accessed from the Surveillance, Epidemiology, and
End Results (SEER) Program (www.seer.cancer.gov) SEER * Stat Database: Incidence—SEER 9 Regs Research Data,
Nov 2018 Sub (1975–2016); The survival data by stage in anaplastic thyroid cancer is biased due to the few cases in
each category. § Equivalent anticancer potential with surgery was only reported in retrospective studies but not in
any randomized clinical trial. + Localized and regional prostate cancer cases together are merged as localized/regional
cases. $ All leukemia cases are categorized as distant cases and therefore stage distribution and corresponding survival
information are blank. ¶ Patients with indolent cancer, based on a risk-stratification system, benefit more from active
surveillance than any further intervention. £ Lymphoma is staged based on Ann Arbor staging system.
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4. Cancer Screenings and Their Pros and Cons

In parallel to the development of therapeutics, the development of screening also contributes
to the improvement of cancer survival by promoting early diagnosis. Currently, the U.S. Preventive
Services Task Force recommends screening in breast cancer by biennial mammogram for persons
aged 50 and 74 years; cervical cancer by Pap test and/or HPV test for persons aged over 21 years;
CRC by stool test, endoscopy or CT colonography for patients with aged between 50 and 75 years or
earlier for high risk patients; and lung cancer by annual low dose CT for heavy smokers or persons
aged between 55 and 80 years [245,246]. The goal of cancer screening is to achieve early diagnosis
of cancer, which is destined to progress, and ultimately to prolong patients’ survival by constantly
emerging treatments. Screening in colon cancer and cervical cancer yields successful results, with a
70% reduction in mortality in cervical cancer and either 26% (data based on 155,000 patients from a
USA trial) or 31% (data based on 170,000 patients from a UK trial) reduction in mortality in colon
cancer [247–249].

However, screening may associate with overdiagnosis—detection of asymptomatic or indolent
cancers that are not deemed to cause harm and therefore no active treatment is needed. Overdiagnosis
is prevalent in breast cancer, prostate cancer, CRC, thyroid cancer, and melanoma [246,250–253].
The estimated overdiagnosis rate for breast cancer by mammography is 25%, with 50–60% in prostate
cancer by prostate-specific antigen (PSA), and 13–25% in lung cancer by low-dose CT [254–256].
Mammography can detect more early-stage breast cancer but fails to induce commensurate incidence
reduction in advanced disease as well as mortality in the population [251,252]. In addition, indolent
breast tumours (slowly growing and estrogen-negative) are more easily detected by screening,
a phenomenon termed length bias [257–259]. In terms of prostate cancer, screening by PSA is
abandoned due to the high false-positive rate about 70% and a false negative rate of 15% [260–262].
Moreover, approximately half of the prostate cancer is indolent and silent, as it can be detected by
autopsy in 36% of white men and 51% of black men who died from other causes [263,264]. In CRC,
a surveillance study by colonography shows a diverse natural history of small polyps, with only 22%
of them growing, 50% being stable, 28% shrinking, and 10% completely regressing [265]. Moreover,
polyps were discovered in 32% of participants aged 60 years and more than 50% in older individuals
from an international, population-based screening study, compared with the much lower risk of
developing CRC (approximately 5%) [266,267]. The futility of screening lies in cancer heterogeneity,
i.e., not every tumour will ultimately progress or proceed at a pace rapid enough to ensure that early
treatment can yield survival benefit during the limited life of a human. Thus, a more discriminative
method based on a deeper understanding of cancer biology may better identify patients harbouring a
rapidly-progressing tumour that necessitates timely treatment. Recently advocated high sensitivity
liquid biopsy techniques are examples of such efforts [268–270].

5. A Newly Proposed Broad-Spectrum Anti-Cancer Strategy Based on a Dual Stroma-Targeting
Approach: Orchestrating with Liquid Biopsy

Unlike therapies that are aimed at heterogeneous cancer cells, we developed a strategy called
OncoCiDia, which targets cancer stroma components, which are more homogeneous and less
mutational than cellular components [271]. The OncoCiDia strategy first applies a VDA that targets the
misstructured endothelia of tumour blood vessels and induces massive (but never complete) ischemic
tumour necrosis in virtually all solid cancers. However, following VDA injection, active angiogenesis
and thereby cancer relapse are triggered due to cellular response to hypoxia, a pathophysiological
phenomenon on which three winners shared the 2019 Nobel Prize for physiology and medicine [185].
To tackle this, in practice overnight after VDA administration, the patient is given radioactive 131I
labeled necrosis-avid hypericin, which selectively sticks to the necrotic tumour site and constantly
irradiates the remaining cancer cells using high-energy beta particles; meanwhile, the emitted gamma
rays facilitate scintigraphy imaging. OncoCiDia represents a one-stop-shop theragnostic strategy:
visualization, therapeutics, and monitoring radiation distribution, as compared to the 177Lu-Dotatate
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strategy, where a pretreatment PET scan is needed to identify optimal patients and predict treatment
response [272,273]. A high percentage of the injected dose per gram of tissue (ID%/g, median: 3.13%;
IQR: 2.92–3.97%) of 131I-hypericin was observed in the tumour site eight days after injection, constituting
a cumulative radiation dose of about 5000 Gy, higher than that of antibody-based immunoradiotherapy
with a concentration of 0.001–0.01% and a cumulative radiation dose of 15 Gy [271,274]. Compared
with 177Lu-Dotatate excreted via the kidney, excretion of 131I-hypericin by liver-bile duct-intestine,
organs with a higher tolerance dose than that of the kidney, appears to be safer [275–279]. Moreover,
targetability of OncoCiDia seems superior to that of 177Lu-Dotatate, which may go ‘off target’ in the
kidney and spleen due to the expression of somatostatin receptors [271,280,281]. Currently, early phase
clinical trials of OncoCiDia are ongoing in both veterinary and human patients [282,283].

OncoCiDia has a few unique features: First, it provides precise but wide-spectrum therapeutics,
compared with conventional molecule-based targeted therapies that merely focus on patients with a
druggable target. For instance, 17% of lung adenocarcinoma shows sensitive EGFR mutation, with 7%
showing ALK mutation and 3% showing MET mutation [223]. Moreover, mutation of ROS1, BRAF,
RET, NTRK1, PIK3CA, and MEK1 occur in only 1% of lung adenocarcinoma [223]. More importantly, in
eligible patients, due to cancer heterogeneity, cancer evolution (and subsequent resistance) ultimately
occurs on shifting from a sensitive cell population to an insensitive one [284]. OncoCiDia, which
targets the abnormal endothelia of tumour blood vessels, a target common to nearly all solid cancers,
can substantially benefit more patients, and its efficacy is less likely affected by cellular heterogeneity.
Second, OncoCiDia enables real-time monitoring of the accumulation of radiation in cancer lesions.
Third, the cost of conventional targeted therapy is enormous, as a tiny proportion of eligible patients
covers the cost for drug development. Forth, the response rate of conventional targeted therapy is
modest in target-positive patients, with 47% in HER-2 mutated gastric cancer [285], 71.2% for gefitinib
in EGFR-mutated NSCLC [133], 71% for osimertinib for EGFR T790M mutated NSCLC [141], etc.

Besides, the curative potential of OncoCiDia in early cancers has been preliminarily implied
by the successful induction of nearly complete necrosis by CA4P in primary [286] and secondary
micro-cancers (Figure 3A). Here, we propose an updated hypothetical utility of OncoCiDia. If cancer can
be detected at an early stage, i.e., micro-cancers of 2–5 mm in diameter undetectable by current imaging
modalities but likely detectable by newly emerging supersensitive liquid biopsy techniques [269,270],
the remaining cancer cells after VDAs in such micro-cancers can be eradicated under the full coverage
of beta radiation emitted by 131I with a 2 mm penetration distance (Figure 3B).

Liquid biopsy provides comprehensive information on the diagnosis, treatment response
monitoring, and prognosis prediction by analyzing circulating tumour cells or cancer cell-derived
fragments, especially DNA (ctDNA) [287]. With regard to early diagnosis, the CancerSEEK panel,
incorporating detections of tumour biomarkers and ctDNA, achieves an overall median sensitivity of
70% and specificity of ≥ 99% in diagnosing cancers of the ovary, liver, stomach, pancreas, esophagus,
colorectum, lung, and breast [268]. The sensitivity for stage I liver cancer is 100%. Liquid biopsy on urine
can empower early diagnosis of bladder cancer and recurrence surveillance [288,289]. In addition, liquid
biopsy may also help identify minimal residual disease (MRD) in solid tumours before conventional
imaging test does. MRD is a major resource for latent late recurrence, with 13% of T1N0 hormone
receptor-positive breast cancer developing recurrence 20 years after therapy with curative intent [290].
In addition, recent reports have confirmed the metastasis of breast cancer and colorectal cancer even at
earlier stages [270,291–293]; thus, OncoCiDia and liquid biopsy could synergistically play a role in
such scenarios. This may open a new horizon for cancer management.
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appears in the left liver lobe (LL); RL, right liver lobe; S, stomach; and C, colon. b: 15 min after contrast 
agent Gd-DOTA administration, left liver (LL) lesion is enhanced with a central dark region (arrow) 
suggestive of necrosis; RL, right liver lobe; S, stomach; and C, colon. c: liver specimen containing the 
micro R1 tumour (arrow) that is too small to be seen from the surface. d: corresponding 
microangiography shows the lesion as a filling defect suggestive of necrosis (arrow). e: the lesion 
(arrow) can be traced on the liver section (upper) and corresponding microangiography (bottom). f: 
low power HE stained microscopy reveals massive and partial hemorrhagic tumour necrosis with 
tissue reaction and possible tumour residues at the periphery of this virtually hypo- to avascular R1 
tumour. g: higher power HE stained microscopy clearly depicts the central necrosis and peripheral 
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Figure 3. (A) A representative example of rats with liver implantation of rhabdomyosarcoma (R1)
12 h after CA4P treatment. This micro R1 tumour measures 3.3 mm and 2.5 mm in long and short
axis diameters, respectively. a: on T2 weighted transverse MRI, an oval hyperintense liver lesion
(arrow) appears in the left liver lobe (LL); RL, right liver lobe; S, stomach; and C, colon. b: 15 min
after contrast agent Gd-DOTA administration, left liver (LL) lesion is enhanced with a central dark
region (arrow) suggestive of necrosis; RL, right liver lobe; S, stomach; and C, colon. c: liver specimen
containing the micro R1 tumour (arrow) that is too small to be seen from the surface. d: corresponding
microangiography shows the lesion as a filling defect suggestive of necrosis (arrow). e: the lesion
(arrow) can be traced on the liver section (upper) and corresponding microangiography (bottom).
f: low power HE stained microscopy reveals massive and partial hemorrhagic tumour necrosis with
tissue reaction and possible tumour residues at the periphery of this virtually hypo- to avascular R1
tumour. g: higher power HE stained microscopy clearly depicts the central necrosis and peripheral
few layers of viable R1 tumour cells without noticeable intratumoural vasculature. h: corresponding
immunohistochemical CD34-PAS dual staining microscopy confirms the findings with HE staining.
(B) A proposed curative OncoCiDia strategy with mathematical algorithms. In early-stage cancer,
after the induction of nearly complete necrosis by systemic administration of a VDA, subsequently
administered 131I labelled hypericin can precipitate in tumour necrosis and the emitted beta particles
can fully cover the remaining cancer cells particularly in small solid malignancies or micro-cancers.
The upper row simulates macro-cancers, with the lower row simulating micro-cancers.
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6. Conclusions

Over the past decades, great progress has been made in cancer diagnosis and therapeutics, which
helps prolong survival in most cancer types. However, prognosis in some cancer types is still dismal
and has only improved marginally over time. Therefore, early diagnosis is pivotal in improving
the cure rate, and screening of the high-risk population seems to be a practical request. Given the
ultra-sensitive characteristics and successfulness in detection of early cancer by liquid biopsy, the
combinatory use of this method and the proposed OncoCiDia approach may be a non-invasive and
curative or preventive strategy, particularly for patients with micro-cancers.
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Abbreviations

ADCC antibody-dependent cellular cytotoxicity
ALL acute lymphoid leukemia
ALK anaplastic lymphoma kinase
APC antigen-presenting cell
CD cluster of differentiation
CRC colorectal cancer
CT computed tomography
PET positron emission tomography
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
DFS disease-free survival
DNA deoxyribonucleic acid
EBRT external beam radiotherapy
EGFR epidermal growth factor receptor
EMA European Medicines Agency
GI gastrointestinal
HCC hepatocellular carcinoma
HSCT hematopoietic stem cell transplantation
ICIs immune checkpoint inhibitors
IMRT intensity-modulated radiation therapy
KRAS Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
MHC major histocompatibility complex
MRD minimal residual disease
NA non-applicable
NCCN national comprehensive cancer network
NP nanoparticles
NPC nasopharyngeal carcinoma
NSCLC non-small cell lung cancer
OS overall survival
PD-1 programmed death 1
PD-L1 programmed death ligand 1
PDT photodynamic therapy
PFS progression-free survival
PSA prostate-specific antigen
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RAI radioactive iodine
RECIST response evaluation criteria in solid tumours
R1 rhabdomyosarcoma
RSR relative survival rate
SBRT stereotactic body radiation therapy
SCLC small cell lung cancer
SEER surveillance, epidemiology and end results
TACE transcatheter arterial chemoembolization
TCR T cell receptor
TKI tyrosine kinase inhibitor
TNM tumour-node-metastasis
VDAs vascular-disrupting agents
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