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Abstract
Coronavirus (COVID-19) is an epidemic that is rapidly spreading and causing a severe healthcare crisis resulting in more 
than 40 million confirmed cases across the globe. There are many intensive studies on AI-based technique, which is time 
consuming and troublesome by considering heavyweight models in terms of more training parameters and memory cost, 
which leads to higher time complexity. To improve diagnosis, this paper is aimed to design and establish a unique lightweight 
deep learning-based approach to perform multi-class classification (normal, COVID-19, and pneumonia) and binary class 
classification (normal and COVID-19) on X-ray radiographs of chest. This proposed CNN scheme includes the combination 
of three CBR blocks (convolutional batch normalization ReLu) with learnable parameters and one global average pooling 
(GP) layer and fully connected layer. The overall accuracy of the proposed model achieved 98.33% and finally compared with 
the pre-trained transfer learning model (DenseNet-121, ResNet-101, VGG-19, and XceptionNet) and recent state-of-the-art 
model. For validation of the proposed model, several parameters are considered such as learning rate, batch size, number of 
epochs, and different optimizers. Apart from this, several other performance measures like tenfold cross-validation, confu-
sion matrix, evaluation metrics, sarea under the receiver operating characteristics, kappa score and Mathew’s correlation, 
and Grad-CAM heat map have been used to assess the efficacy of the proposed model. The outcome of this proposed model 
is more robust, and it may be useful for radiologists for faster diagnostics of COVID-19.
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1  Introduction

The current occurrence of the novel coronavirus named 
as SARS-CoV-2 (coronavirus 19) was epi-centered in the 
Wuhan city, Hubei Province of South China. The committee 

of the UN agency declared an emergency as a world health 
crisis on January 30, 2020, in support of growing case noti-
fication rates in China and international regions. The rate 
of registered cases is growing every day and tracked real-
time on the Johns Hopkins University Web site [1] and other 
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alternative forums. China bore the big burden of mortal-
ity and morbidity up to the middle of the 2020 Gregorian 
calendar, whereas the prevalence of pandemic in different 
Asian countries, North America, and Europe remained low 
formally. Coronaviruses are engulfed, positive fiber large 
ribonucleic acid (RNA) viruses that infect human beings, 
however, additionally a good range of animals. Coronavi-
ruses were initial delineate in 1966 by Tyrell and Bynoe, 
when the viruses were cultivated by the UN agency from 
inmates suffering with symptoms of common cold [2]. Coro-
naviruses got their name basically due to the resemblance of 
a solar corona depending on their morphology as spherical 
virions with a core–shell. There exist four subfamilies of 
coronaviruses namely alpha (α), beta (β), gamma (γ), and 
delta (δ). The α- and β-coronaviruses have emerged from 
mammals, exclusively from bats, whereas the coronaviruses 
γ and δ have emerged from birds as well as pigs. The size 
of the order differs between 26 to 32 KB. Beta-coronavirus 
amid all seven subtypes of coronaviruses may infect humans 
and might cause serious infections and fatalities, while 
α-coronaviruses generate either symptomatic or asympto-
matic infections [3]. Coronavirus succeeded in creating its 
evolution from animals to humans from the Huanan whole-
sale seafood merchandise in China. The early scientific 
sign of the COVID-19 used in recognizing case discovery 
was the signs of pneumonia. The observations made until 
now recommend a mean and median incubation duration 
of 5 and 3 days within the range of 0–24 days, respectively. 
The quantity of those infected people by COVID-19 who 
remains asymptomatic during the virus has not been exactly 
determined until now, whereas the clinical indications of the 
infection in symptomatic patients generally begins after less 
than a week that includes fever, fatigue, cough, and other 
signs of upper respiratory tract diseases. The disease can 
advance to brutal disease with shortness of breath as well as 
severe chest signs consequent to viral pneumonia in around 
75% of inmates. Pneumonia mostly transpires in the second 
or third week of an indicative infection. Major symptoms of 
viral pneumonia contain reduced oxygen saturation, blood 
gas variations, alterations perceptible through chest X-rays, 
and other imaging methods, with ground glass irregularities, 
interlobular connection, alveolar exudates, and patchy con-
solidation ultimately representing deterioration. So, humans 
got a major impact due to COVID-19. The COVID-19 pan-
demic has directed a striking fall of human life globally and 
poses a new challenge to public health, food products, and 
also to labor all over the world. The socioeconomic distur-
bance caused by the current pandemic is distressing. Many 
people are in danger of dropping into severe poverty and 
presently 69 million approximately might increase up to 132 
million by the year ending [4]. Corporate sectors and staff 
are notably vulnerable as a result of the bulk lack of social 
safety and quality healthcare facilities and have misled the 

approach to productive assets. While not the means that to 
earn income throughout lockdowns, several are incapable 
to feed their families and themselves. Border shutting, trade 
limitations, and confinement methods are stopping farmers 
from accessing markets, including for getting inputs and 
commerce their manufacture, and agricultural staff from 
gathering crops, therefore troublemaking domestic and 
international food provide chains and decreasing access 
to healthy, secure, and numerous diets. The epidemic has 
destroyed jobs and placed uncountable livelihoods in danger.

Pandemics and epidemics have been frightening the 
human race. SARS, H1N1, Ebola, and many more have 
shown their result in the past, but with every such outburst, 
novel ways have been discovered to fight and control such 
unanticipated diseases that can gradually kill millions of 
individuals. Technology may not stop the arrival of the epi-
demics, but it can help stop the spread, instruct, notify, and 
allow those on the ground to be conscious of the state, and 
perceptibly reduce the impact. Wrong information about 
the number of sufferers, diagnosis and dealing options, 
vaccines, drugs, government policies, etc., generates more 
fright and unease among the population. The consequence 
can be extensive chaos, fright buying, hoarding of nec-
essary commodities, charge rise, fighting on the streets, 
prejudice, scheme theories, and many more. To decrease 
misinformation, a few companies like YouTube, Face-
book, and Google are untiringly working to direct people 
to the correct, demonstrable data such as that available by 
the World Health Organization (WHO) or local and gov-
ernment authorities. By assembling exact information for 
every individual, a clear scenario can be built and people 
can be knowledgeable about the accurate steps to take. When 
a drug- or vaccine-related query rises to stop the spread of 
the outbreak, the world is anxious to discover ways to slow 
down the extent of the virus and to recover an efficient treat-
ment. Artificial intelligence (AI) presents an essential role 
in advising components of a vaccine by considering viral 
protein methods and serving health researchers search for 
tons of related research documents at an exceptional rapid-
ity. Some social platforms have combined with WHO on 
Pandemic to assist maintaining their user well-informed with 
accurate, timely realities from the WHO, where individuals 
will be capable to ask queries and get responses. Likewise, 
Bigdata Analytics is showing its efficacy in recognizing 
the infected persons by connecting, tracking, and contact-
ing them. Likewise, many technologies and methods have 
showcased their efficacy while dealing with COVID-19.

Shortness of breath, cold, cough, fever are the major sig-
nificant signs in infected persons for the analysis of COVID-
19. These signs may confirm carrier features by not being 
noticed in contaminated persons. For analysis of COVID-19, 
two prevailing techniques are available. One technique is a 
viral check-up via a nasopharyngeal swab to examine the 
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existence of fragments of viral RNA. The collected samples 
are then experienced by utilizing the technique of real-time 
reverse transcription-polymerase chain reaction (rRT-PCR) 
[5]. In several conditions, a sample of swab collected from 
the nasal region may also be utilized. The results of rRT-
PCR are normally accessible either in a few hours or within 
two days. Another technique is analysis of chest radiographs. 
Among the available medical radiographs, the chest X-ray is 
one of the imaging strategies,which can present the utmost 
sensitivity. As pathological tests executed in laboratories are 
enchanting more time, a quick and exact analysis is essen-
tial for an efficient struggle against the pandemic. Due to 
this reason, various specialists began to utilize radiological 
imaging techniques. The major benefits of analyzing medical 
radiographs are that they can assist in accelerating or screen-
ing the speed of analysis, particularly to overcome the defi-
ciencies of RT-PCR. These processes are handled by using 
X-ray or computed tomography (CT) imaging methods. 
Cases of COVID-19 have related characteristics in X-ray 
images in the early as well as late stages. It demonstrates a 
round and innermost dispersion from within the image. So, 
radiological imaging presents the recognition of doubtful 
cases with an accuracy of 90%. Similarly, the specialists 
of radiology identified that the symptoms of COVID-19 as 
observed with CT imaging had their features that are varied 
from those features of the CT radiographs representing other 
viral pneumonia like influenza-A viral pneumonia. There-
fore, medical doctors prefer to restore rRT-PCR with lung 
CT radiographs as one of the early analytic measures for 
identifying this novel kind of coronavirus, with the intent 
of instantly inhibiting spread of infection. However, the 
major blockage that radiologists face in examining radiog-
raphy images is the visual scanning of small facts. Besides, 
a huge amount of CT images has to be assessed in a very 
short time thus raising the possibility of misclassifications. 
With the quick progress of computer knowledge, the digital 
image processing technology has been broadly used in the 
medicinal field, including image improvement, renovation, 
and organ segmentation by giving support for successive 
medical diagnoses. Deep learning (DL) methodologies, such 
as the convolutional neural network (CNN) with its vigorous 
capability of non-linear modeling, is utilized widely in the 
processing of medical images. The architecture of CNN is 
the most well recognized DL advance with greater achieve-
ment in the field of medical imaging. CNN has been utilized 
for both classifications as well as segmentation issues of 
CT images, respectively. The major success of CNN is its 
capability to learn characteristics mechanically from spe-
cific domain images, unlike traditional machine learning 
(ML) techniques. The well-liked approach for training CNN 
is to transmit learned facts from a pre-trained system that 
completed one task into another new task. This technique 
is simple and faster to apply with no need for an enormous 

annotated dataset for training. So, most of the researchers are 
showing interest to use this strategy, particularly with medi-
cal imaging. Consequently, numerous pre-trained techniques 
have won several international image categorization com-
petitions such as VGGNet, ResNet, NASNet, MobileNet, 
Inception, and Xception.

Presently, several radiology images have been exten-
sively utilized for the detection of COVD-19. Abraham and 
Madhu [6] suggested a method that utilizes amalgamation 
of features retrieved from multi-CNN using feature selec-
tion approach based on correlation and BayesNet classifier 
for the screening of COVID-19 quickly from chest X-ray 
radiographs. Hu et al. [7] have designed a weakly controlled 
DL model for quick and completely automated identifica-
tion and classification of COVID-19 with retrospectively 
extorted CT images from multi-centers as well as multi-
scanners. It was found that the proposed model can differen-
tiate between non-pneumonia (NP) and community-acquired 
pneumonia (CAP) patients. The findings of the projected 
model have outperformed better accuracy and precision for 
the classification. Jaiswal et al. [8] has used pre-trained DL 
methods as an automatic tool for the recognition and anal-
ysis of COVID-19infection. The authors have proposed a 
DenseNet201-based deep transfer learning (DTL) approach 
to categorize the inmates as COVID positive or negative. 
The projected technique has been used to extract charac-
teristics by utilizing its individual learned weights on the 
ImageNet dataset CNN framework. Horry et al. [9] has 
illustrated the usage of transfer learning from DL models to 
perform recognition of COVID-19 with three mostly used 
medical radiographs such as CT scan, Ultrasound, and X-ray 
for the chosen VGG19 model, which obtained 86% preci-
sion for X-ray, 84% for CT scans, and 100% for ultrasound. 
Aslan et al. [10] has used X-ray images of the chest to simply 
identify COVID-19. To evaluate the region of the lung for 
the identification of COVID-19, ANN-based segmentation 
was applied to the raw images. The projected model included 
the architecture of the pre-trained AlexNet and found a bet-
ter accuracy rate for identifying COVID-19. Nour et al. [11] 
has proposed an intelligence diagnosis model depending on 
CNN together with rich filters, convolution, abstraction, and 
weight sharing features. Then, the deep features obtained 
from the deep layers of the CNN has been forwarded as input 
to the machine learning models for improving the diagno-
sis of COVID-19 infection. Further, Bayesian optimization 
algorithm has been used for optimizing the hyperparameters 
of the machine learning models. This automated COVID-19 
analytical system developed to contribute to medical trials 
has obtained an accuracy rate of 98.97%, 99.75% as specific-
ity, 95.75% of F1-score, and a sensitivity of 89.39%. Panwar 
et al. [12] has performed various experiments on the clas-
sification of binary image for the identification of positive as 
well as negative COVID-19 patients using Grad-CAM-based 



	 Arabian Journal for Science and Engineering

1 3

color visualization approach. It was found considering both 
CT and CXR scan images and attained an accuracy rate of 
95.61% while identifying COVID-19 cases which is faster 
than the conventional RT-PCR approach. Shalbaf et al. [13] 
has proposed a novel ensemble advance that synergisti-
cally incorporates transfer learning approaches for diag-
nosis of COVID-19 and presented perceptive results on an 
openly obtainable medical radiograph dataset. A framework 
depending on the fusion of graph convolutional network 
(GCN) and CNN known as FGCNet is developed by Wang 
et al. [14] for the adequate categorization of the COVID-19 
images. In this model, a CNN model with several features 
such as batch normalization, dropout, rank-based average 
pooling and multi-way data augmentation was developed to 
obtain individual image-level representation (IIR). The CNN 
model cannot extract relation-aware representation (RAR) 
features. Therefore, GCN was developed to determine the 
connectivity analysis and to retrieve the RAR features. In 
addition, it is used to integrate the features of CNN with the 
features of GCN to enhance the classifier performance. Silva 
et al. [15] has proposed a deep learning model known as 
EfficientCovidNet together with voting-based approach and 
cross-dataset analysis for efficiently detecting the COVID-19 
sequences. Voting-based approach is used for categorizing 
images of a given patient into groups, while the cross-dataset 
analysis is utilized to validate the robustness of the archi-
tectures. A framework depending on three cascade phases 
of the categorization of COVID-19-infected CT images 
has been developed by Kenawy et al. [16]. Initially, a CNN 
model known as AlexNet is used for obtaining features auto-
matically from the trained CT images. In the next phase, 
valuable features are extracted by applying a feature selec-
tion algorithm which makes use of stochastic fractal search 
(SFS) and guided whale optimization algorithm (Guided 
WOA) techniques. For balancing the selected features in 
the second phase, LSH-SMOTE (locality sensitive hash-
ing synthetic minority oversampling technique) has been 
applied. Finally, in the third phase, the selected valuable 
features are classified using a voting classifier algorithm. 
Although the model has been successfully implemented, 
the fine tuning of the CNN parameters has not been per-
formed which can further enhance the overall classification 
accuracy of the model. To categorize the COVID-infected 
images, a novel approach based on multi-objective differen-
tial evolution (MODE) and CNN has been devised by Singh 
et al. [17]. For the classification of the COVID-19-infected 
cases, a multi-objective fitness function is used. Then, the 
MODE algorithm is used for tuning the hyperparameters of 
CNN for improving the overall accuracy of the system. From 
the recent literature study, it has been seen that the most 
of the researchers uses chest X-ray images for diagnosis of 
COVID-19 cases. Recently, it has been found that medical 
imaging techniques such as X-ray and computed tomography 

(CT) play a crucial role in testing COVID-19 cases [18–22]. 
Meanwhile, the coronavirus usually causes infection in the 
lungs, therefore the both chest X-ray and CT images have 
been widely considered [23] by radiologists. Finally, there 
exist various recent studies on the detection of COVID-19 
that used several DL models with CT images [24–27].

The following are some of the limitations observed 
while performing systematic study of the COVID-19 
detection using DL approaches. Firstly, most of the studies 
have not been clinically confirmed by the expert radiolo-
gist. Secondly, the developed approaches may not work 
correctly for other types of medical images. Thirdly, most 
of the studies have been performed with smaller datasets 
due to the unavailability of larger and labeled datasets pub-
licly. Lastly, most of the studies have not concentrated on 
the development of economically feasible ways to combat 
this disease. These challenges need to be addressed to fur-
ther develop more accurate and economical feasible mod-
els for the identification of the COVID-19 disease using 
DL approaches. In connection to this, this paper is aimed 
to design and promote a unique lightweight-based deep 
learning (DL) automated approach called LW-CBRGP-
Net to perform multi-class classification model (Normal, 
COVID-19, and Pneumonia) and binary class classifica-
tion model (COVID-19, Normal) on chest X-ray images. 
This proposed CNN scheme includes the combination of 
three CBR blocks (convolutional, batch normalization, 
Relu) with learnable parameters of global average pool-
ing (GP) layer, fully connected (FC) layer. Apart from the 
design part, the proposed model also investigated various 
hyperparameters in order to validate the proposed scheme 
like batch size, number of epochs, learning rate, different 
optimizer technique, misclassification rate, etc. In continu-
ous to validation, several other performance measures like 
tenfold cross-validation, confusion matrix, evaluation met-
rics, AUROC, kappa score and Mathew’s correlation, and 
Grad-CAM heat map has been used to assess the efficiency 
of the proposed model. Finally, the proposed scheme com-
pared with some recent state-of-the-art techniques along 
with four popular pre-trained models such as ResNet-101 
[28], VGG-19 [29], DenseNet-121 [30], and XceptionNet 
[31]. The experimental result obtained from the proposed 
scheme irrespective of different hyperparameters outper-
forms better when compared with the state-of-the-art CNN 
models and four pre-trained models. The proposed model 
is lightweight as it is composed of three convolutional 
blocks (each block carries one convolution layer followed 
by batch normalization and ReLU layer), alongside one 
GAP followed by one FC layer. The major contributions 
of this research study can be summarized as given below:

•	 A lightweight DL-based methodology has been adopted 
that achieves a balance between parameters used for 
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training and accuracy, making it different from heavier 
models that are compared in the literature.

•	 The proposed lightweight model addresses AI-based 
high-level abstraction from the chest X-ray radiographs 
which avoids the requirement of handcrafted feature 
extraction process.

•	 The recent research trends often consider less number 
of FC layers, as it increases the computation cost of the 
model because FC layer is able to accommodate large 
numbers of parameters in context to other layers. Inspired 
by this literature, it was tried to accommodate only one 
FC layer in the proposed scheme which helps in know-
ingly dropping the learnable parameters.

•	 To measure the effectiveness of the proposed scheme, 
investigation was also done on various hyperparameters 
such as batch size, number of epochs, learning rate, dif-
ferent optimizer technique, misclassification rate, etc.

•	 The validation of the proposed scheme has been achieved 
by analyzing various parameters such as tenfold cross-
validation, accuracy, Kappa score, AUROC and Mat-
thew’s correlation, Gradient-based class activation map 
(Grad-CAM).

•	 Finally, a comparative analysis on four pre-trained trans-
fer learning models along with recent state-of-the-art 
techniques has been studied over the same chest X-ray 
images.

The rest of this paper is organized as follows: In Sect. 2, 
the sample dataset has been presented along with details 
of the proposed architecture for COVID-19 detection. The 
obtained empirical results and comparative analysis of the 
results have been presented in Sect. 3. Finally, the paper ends 
with concluding remarks in Sect. 4.

2 � Material and Methods

This section represents the detailed description of the dataset 
employed for this experiments study along with the proposed 
LW-CBRGPNet model for multi-class and binary class clas-
sification model and also presents the architectural overview 
of four pre-trained models considered for this study.

2.1 � Dataset Used

In this section, a dataset consisting of three classes of chest 
X-ray images (normal, COVID-19, and pneumonia) have 
been considered for accomplishing the complete set of 
experimental analysis. Since COVID-19 is a novel infec-
tion, the total number of available infected images is rela-
tively small. Therefore, in this study a total 750 number of 
chest X-ray samples from each class were collected from 
Figshare repository [32]. This dataset mainly considers 

the COVID-19-infected image from various open source 
sources and has been updated in regular intervals. For the 
model building process, a total number of 2250 frontal-
view chest X-ray radiographs were considered in all three 
classes (normal: 750 numbers, COVID-19: 750 numbers, 
and pneumonia: 750 numbers) to maintain the data bal-
ance. In the final step of analysis, the tenfold cross-valida-
tion was performed to evaluate the proposed scheme. The 
detailed specification and size of images contained in the 
dataset is depicted in Table 1. The sample of chest X-ray 
radiographs from each class is presented in Fig. 1.

2.2 � Preprocessing

The preprocessing stage is one of the most crucial aspect 
of the proposed model, because the classification accuracy 
is directly dependent upon the preprocessing stage. The 
detailed description of preprocessing techniques being 
used in proposed scheme is described as follows:

2.2.1 � Data Augmentation

The CNN model will be performed more effectively only if 
the model is trained by a large dataset to reduce the overfit-
ting problem. However, the majority of biomedical image 
dataset suffer data scarcity problems with limited annota-
tion and randomness. Therefore, data augmentation is the 
most commonly used technique to enhance the efficiency 
of CNN models [33]. Anyhow, the dataset considered for 
this study is a balanced dataset, i.e., equal samples cho-
sen for each class as depicted in Sect. 2.1. Therefore, the 
key concern of this study to implement data augmentation 
over training dataset to enhance the randomness among 
chest X-ray images by using four different spatial trans-
formations such as (i) flipping (horizontal direction), (ii) 
rotation (rotate angle 15 degree clockwise), (iii) zooming 
(10%), (iv) lighting (20%). In this case, 2250 images were 
considered and mini-batches operations were performed 
randomly to enhance both the diversity and random-
ness among all images during the training phase without 
increasing the number of images.

Table 1   Dataset description used in this study

Class Number of images Size

COVID-19 750 224 × 224
Normal 750
Pneumonia 750
Total 2250
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2.2.2 � Image Normalization

The process of normalization is also an essential stage used 
in CNN models to preserve numerical stability. This model 
also ensures faster learning and obtains a stable gradient map 
in the image space [34]. For this reason, the preprocessing 
experimentation is performed using min–max normalization 
process by normalizing the input image pixel in the range 
between 0 and 1. The images used in the considered datasets 
are color RGB images and the rescaling was achieved by 
multiplying 1/255 with the pixel values.

2.3 � Background of CBR Block

Deep learning-based CNN models in the field of AI have 
brought a revolution due to their capability of self-learning 
and higher classification accuracy in multidisciplinary engi-
neering research domain. However, the recent research study 
in biomedical image processing has been achieved by imple-
menting CNN model either from beginning, or by utiliz-
ing transfer learning (pre-trained model) to achieve the best 
accuracy. Though the standard architecture of pre-trained 
models is initially designed for ImageNet classification 
problems with some pertained weight [35], it comprises a 
large number of parameters and more complex hidden rep-
resentation [36]. Hence, there is a need to design a lighter 
weight DL-based CNN model in biomedical image analysis 
in order to gain higher efficiency in comparison with the 
standard ImageNet models. Therefore, this paper presents 
the lightweight CNN model for identification of COVID-19 
infection from chest X-ray radiographs. This proposed model 
is designed by a composition of fewer convolution layers, 
batch normalization layer, and rectified linear unit (ReLU) 
activation layer, accompanied by global average pooling 
layer, and softmax layer. The detailed description of each 
layer is clearly discussed in subsequent paragraphs.

2.3.1 � Convolutional Layer (CONV)

A convolution layer made up of a set of filters that are used to 
convolve the input image, thereby generating several feature 
maps with respect to each filter [33]. In this layer, four major 
hyperparameters are used to estimate output volume dimen-
sion such as no of filters (N), spatial size of filter (F), pad-
ding (P), and stride (S). Mathematically, if the input volume 
dimension as (W1 × H1 × D1) , and output volume dimension 
as (W2 × H2 × D2) , then each terminology will be evaluated 
as shown in Eq. 1.

2.3.2 � Batch Normalization Layer

Batch normalization is a process in which it enhances the sta-
bility of the neural network by normalizing the activation of 
the previous layer throughout the training phase using both 
mean and variance over mini-batch operation [37]. Batch 
Normalization reduces the amount of Covariance shift in 
hidden values, having a regularization affection, thereby pre-
venting overfitting issue. This layer is usually used in between 
convolutional layer and ReLU layer to enhance the learning 
rate. In mathematically, if x is the value of over a mini-batch 
B =

{

x1, x2 … xm
}

 with learning parameter � and � , then batch 
normalization of mean and variance over mini-batch along 
with normalized factor, scale and shift of B will be evaluated 
as given in Eqs. (2–5):

(1)

W2 = (W1 − F + 2P)∕S + 1

H2 = (H1 − F + 2P)∕S + 1

D2 = N

(2)Mini batchmean (�B) =
1

m

m
∑

i=1

xi

Fig. 1   Samples of frontal-view chest X-ray images from the dataset: a Normal case, b COVID-19 case, and c pneumonia
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2.3.3 � ReLU Layer

The output from one hidden layer is fed to another layer 
by applying an activation function to establish the linear 
transformation using weights and biases. ReLU is the most 
common activation function used in DL models as it is com-
putationally efficient than other common activation func-
tions by converting negative input value into zero and keep-
ing positive value the same. The ReLU layer can be defined 
mathematically as shown in Eq. 6.

2.3.4 � Pooling Layer

The pooling layer used in CNN model for downsampling 
the spatial size of feature map to ensure the reduction of 
overfitting issues by reducing both the learnable parameters 
and computational cost as well. This layer is often positioned 
in between two successive convolution layers and operates 
individually on each depth slice of the input, and uses MAX 
operation to perform spatial resizing. This pooling layer 
categorized into three types: (i) max-pooling, (ii) average 
pooling, and (iii) sum pooling. Among all categories, most 
of the recent study uses max-pooling concepts that witness 
in many state-of-the-art literatures [38]. Therefore, in this 
current study, max-pooling (2D) has been used for 2D spa-
tial data, and it takes the maximum value over the window 

(3)Mini batch variance (�2
B
) =

1

m

m
∑

i=1

(xi − �B)2

(4)Normalize (x̂i) =
xi − 𝜇B
√

𝜎2
B
+ 𝜀

(5)Scale and shift (yi) = �xi + �

(6)f (x) =

{

0 for x < 0

x for x ≥ 0

described by pooling size for every magnitude on the feature 
axis. For each dimension, the window is moved by strides. 
The detailed graphical presentation of max-pooling layer 
achieved in this study is clearly depicted in Fig. 2.

2.3.5 � Global Average Pooling Layer

The concept of global average pooling (GAP) is designed to 
replace fully connected layers in traditional CNN models. 
Instead of including fully connected layers on top of the 
feature maps, it considers the average of each feature map 
and the resulting vector is given directly to the softmax layer. 
GAP is more innate to convolution architecture implement-
ing similarity among feature maps and categories. As no 
parameter is needed to optimize GAP, it prevents overfitting 
in this layer. Furthermore, GAP is more potent for spatial 
resizing of input as it sums out the spatial information. The 
reduction of spatial dimension in GAP is similar to max-
pooling layer. However, dimensionality reduction in GAP 
is of extreme type. For example, consider a tensor with 
h × w × d dimension reduced to 1 × 1 × d dimension. GAP 
layer accomplishes this by reducing each h × w feature map 
to a single number by simply considering the average of all 
h, w values.

2.3.6 � Fully Connected Layers

The features extracted by convolution layers after flattening 
are fed forward to the fully connected layers (FC layers). 
FC layers are generally the final layers of any model that 
are responsible for performing classification on the flattened 
extracted features. The properties of FC layers are similar to 
classic ANN (artificial neural network) where weights of the 
neuron are identified by back propagation. Between the FC 
layers, dropout layer is also used to manage the overfitting 
issue that may arise during the training phase. The final FC 
layer uses a softmax activation function where the number 
of classes used in classification is specified.

Fig. 2   Graphical presentation 
of max-pooling layer used in 
this study
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2.4 � Proposed Network Model

The proposed LW-CBRGPNet model is graphically pre-
sented in Fig. 3 which consists of an arrangement of three 
2D convolution layers supervened by 2D batch normali-
zation layer and Relu activation function. The combined 
arrangement of these three layers results in a CBR block. 
Apart from three CBR blocks, three 2D maxpool layers 
used in between two consecutive CBR blocks, supervened 
by Global average pooling layer to handle the overfitting 
problem. Finally, a standalone softmax layer is introduced 
at the last stage of architecture for output vector as final 
class level prediction in terms of both binary class (normal, 
COVID-19), and multi-class problem (normal, COVID-19, 
and pneumonia). The main purpose of this lightweight cus-
tom CNN implementation is to reduce the computational 
cost and learning parameter, and also able to increase the 
learning speed when compared with existing state-of-the-
art CNN techniques and pre-trained transfer learning CNN 
model.

The initial convolutional layer takes a chest X-ray radi-
ograph as input of size 224 × 224 × 3 and convolved it by 
using 96 kernels of 5 × 5 × 3 size and stride 2 along with 
both batch normalization and ReLU activation function 
(i.e., first CBR block), and produce the feature map of size 
110 × 110 × 96. After immediate first CBR block, the max-
pooling is employed with kernel size 3 × 3 and a stride 3 in 
order to produce an output volume (lower-dimensional) of 
size 96 × 36 × 36. The final output volume of the first CBR 
block followed by max-pooling layer is convolved with 256 
kernels of size 3 × 3 × 96 followed by same batch normaliza-
tion, ReLU, and max-pooling layer (i.e., second CBR block). 
Similar to the first and second CBR block, the third CBR 
block is performed with input kernel size of 3 × 3 × 256, 
and produces a feature map of size 12 × 12 × 256. Then, 
the output volume of the third CBR block along with the 

max-pooling layer forwarded to the global average pooling 
layer. Finally, a softmax layer is employed at the end of the 
architecture to produce a classification result. The detailed 
information regarding trainable parameters of each layer in 
the proposed network model is summarized in Table 2.

2.5 � Pre‑trained Transfer Learning for COVID‑19 
Diagnosis

This section presents the quick overview of four popular 
pre-trained transfer learning (TL) model considered for this 
study. Initially, the concept of TL is designed for ImageNet 
classification problems where it can deal with millions of 
images with 1000 prediction classes. Since, COVID-19 
image dataset is available in limited numbers, in order to 
implement these four TL models for COVID-19 image anal-
ysis, only fine-tuning of the last layer of the network with the 
same initial pre-trained weight. Subsequently, the evaluation 
of four TL models such as ResNet-101 [28], VGG-19 [29], 
DenseNet-121 [30], and XceptionNet [31]. ResNet-101 is 
a deep residual network that comprises of 101 layer that 
start with a standalone convolution layer supervened by 33 
residual block and one FC layer. VGG-19 is a deeper CNN-
based architecture which is made up using 19 layers includ-
ing 16 convolution layers (i.e., 5 convolution block) and 3 
FC layer. DenseNet-121 also consists of 121 layers without 
any batch normalization layer, in addition five additional 
layers are used to include the initial 7X7 convolutional layer 
along with three transitional layers and one FC layer. Here 
each layer gets extra input from all of its preceding layers 
and transfers on its own feature map to all the subsequent 
layers. XceptionNet is a depth wise separable convolution 
layer consisting of 72 layers that start with two convolution 
layers followed by depth wise separable convolution layer 
along with four convolution layers and one FC layer.

Fig. 3   Illustration of proposed LW-CBRGPNet model
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3 � Experimental Setup and Result Analysis

In this segment, a complete set of experimental analysis 
along with all the performance measure considered for 
evaluating the effectiveness of proposed methodology 
has been presented. This experiment has been performed 
using three standard dataset of total 2250 frontal-view 
chest X-ray images (normal: 750 numbers, COVID-19: 
750 numbers, and pneumonia: 750 numbers) considered 
from Figshare repository [31]. First, all the considered 
images were rescaled into 224 × 224. The entire devolve-
ment of proposed scheme along with all pre-trained CNN 

model were simulated in Pytroch toolbox. Initially, the 
list of validation experiments analysis were performed in 
order to evaluate the efficiency of suggested LW-CBRGP-
Net scheme by utilizing tenfold cross-validation, confusion 
matrix, evaluation matrices, area under the ROC curve 
(AUROC), kappa score and Mathew correlation, and 
Grad-CAM heat map. However, the overall accuracy of 
both proposed scheme and pre-trained model was verified 
by using tenfold cross-validation, where nine parts deal 
with training the model and remaining one part is used 
for testing the model as depicted in Fig. 4. This process is 
performed for all ten parts and the efficiency of proposed 
scheme was evaluated by considering the average of all 

Table 2   Illustration of proposed 
LW-CBRGPNet model 
architecture

Layer type Output shape Parameters Stride Padding Kernel size Dropout Filter

Input (3,224,224) 0 – – – 0 –
Conv2d (96,110,110) 7296 2 0 5 × 5 0 96
BatchNorm2d (96,110,110) 192 – – – 0 –
ReLU (96,110,110) 0 – – – 0 –
MaxPool2d (96,36,36) 0 3 0 3 × 3 0 –
Conv2d (256,38,38) 221,440 1 2 3 × 3 0 256
BatchNorm2d (256,38,38) 512 – – – 0 –
ReLU (256,38,38) 0 – – – 0 –
MaxPool2d (256,12,12) 0 3 0 3 × 3 0 –
Conv2d (128,12,12) 295,040 1 1 3 × 3 0 128
BatchNorm2d (128,12,12) 256 – – – 0 –
ReLU (128,12,12) 0 – – – 0 –
MaxPool2d (128,4,4) 0 3 0 3 × 3 0
Global Average Pooling (128,1,1) 0 – – 6 × 6 0 –
softmax 3 387 – – – 0 3

Fig. 4   Graphical illustration of 
tenfold cross-validation in both 
Training and Testing Data
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tenfold. The evaluation metrics were evaluated using dif-
ferent metrics such as true positives (TP), false negative 
(FN), true negative (TN), and false positive (FP). The cor-
responding mathematical formulation of each metrics are 
illustrated in Eqs. (7–11). Similar to evaluation metrics, 
kappa score also performed to measure inter-rater reli-
ability among data items as shown in Eq. (12), where p0 
indicate the relative observed agreement, and pe refers to 
hypothetical probability. Matthew correlation Coefficient 
(MCC) is also considered to ensure the more validation of 
proposed models using four categories of confusion matrix 
(TP, FN, TN, and FP) using Eq. (13). It is a correlation 
coefficient value in the range of − 1 to + 1, where perfect, 
average random and inverse prediction is represented by 
using coefficients of + 1, 0 and – 1, respectively. Finally, 
Grad-CAM heat map is also introduced to interpret visu-
ally which part of images is more effective for feature 
map extraction using the gradient information fed into the 
final convolution layer of the CNN model [33]. In sec-
ond phase of experimental setup, two different scenarios 
were performed, where first scenarios deal with multi-
class classification, i.e., three class level prediction (nor-
mal, COVID-19, and pneumonia), where second scenario 
perform binary classification i.e., two class level predic-
tion (normal and COVID-19). The batch size, number of 
epochs, and learning rate have been chosen empirically 
as illustrated in Table 3. Apart from this, the proposed 
LW-CBRGPNet is compared with recent CNN-based 
state-of-the-art approaches such as DarkCovidNet [39], 
DeepBayes-SqueexNet [40], Concatenation of Xception 
and ResNet50V2 [41], Tailored DCNN CovidNet [42], 
fuzzy color and stacking approach [43], CapsNet [44], 
and deep 3D multiple instance learning [45]. Furthermore, 
the comparison analysis has been presented using four 
standard pre-trained transfer learning CNN model such as 

ResNet101 [28], VGG-19 [29], DenseNet-121 [30], and 
XceptionNet [31].

3.1 � Results and Analysis

In this set of experimental analysis, a series of analysis to 
validate the suggested scheme was carried out. Initially, 
tenfold cross-validation was accomplished with the ratio of 
10% for testing the data, where 90% used for training data 
as shown in Fig. 4. The overall accuracy and COVID-19 
accuracy along with precision, sensitivity, F1 score of ten-
fold cross-validation is tabulated in Tables 4 and 5 respec-
tively for both multi-class and binary class prediction, and 
the overlapped confusion matrix of class level prediction is 
depicted in Fig. 5. The kappa score and Mathew correlation 
matrices of the proposed model were evaluated as 97.57% 
and 96.67%, respectively. The both obtained matrices reach 
approximately to 1, which indicates the proposed model 
behaves properly to predict the accurate class. Figure 6 
illustrates the graphical presentation of both kappa score 
and Mathew correlation matrices with respect to multi-class 
overall accuracy in different epoch’s values. The AUROC 
curve of the proposed model along with four pre-trained 
models is depicted in Fig. 7.

Finally, Grad-CAM heat map is also introduced to inter-
pret visually which part of images is more effective for fea-
ture map extraction using the gradient information fed into 
the last convolution layer of the CNN model [33]. This pro-
cess is achieved by sliding a small window of particular size 

(7)Precision =
TP

TP + FP

(8)Sensitivity =
TP

TP + FN

(9)Specificity =
TN

TN + FP

(10)F1 Score =
2TP

2TP + FP + FN

(11)Accuracy =
TP + TN

TP + FP + TN + FN

(12)k =
p0 − pe

1 − pe

(13)MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Table 3   Training parameters used in proposed LW-CBRGPNet model

Training parameter Value

Learning Rate 0.0001
Batch Size 16
Optimizer Adam
Loss function Categorical 

Cross-
entropy

Epochs 50
Flipping Horizontal
Zoom range 15%
Rotation 10 degree
Lighting 20%
Re-scale 1/255
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SXS in original chest X-ray images and then checking the 
occupied area by using a trained model to find out whether 
this particular area is affected by COVID-19 infection or not. 

This process is continued to cover all regions of the input 
image by sliding the window with a particular size of stride 
N to generate heat map, so that the radiologist can easily 

Table 4   Multi-class 
classification result using 
tenfold cross-validation

Folds Precision Sensitivity Specificity F1-Score Overall accuracy COVID-19 
accuracy

1 96.91 96.92 98.44 96.89 97.82 98.22
2 97.39 97.35 98.65 97.36 98.5 99.11
3 96.92 96.93 98.45 96.89 97.94 98.22
4 97.76 97.81 98.88 97.76 98.83 99.56
5 98.16 98.28 99.34 98.2 98.8 99.56
6 98.71 98.64 99.10 98.66 99.11 99.11
7 96.83 96.92 98.70 96.9 98.02 98.67
8 98.23 98.23 98.89 98.52 98.93 99.11
9 95.56 95.65 97.77 95.57 97.54 97.78
10 96.46 96.42 98.22 96.47 97.83 98.22
Average 97.29 97.31 98.64 97.32 98.33 98.75

Table 5   Binary class 
classification result using 
tenfold cross-validation

Folds Precision Sensitivity Specificity F1-Score Overall accuracy COVID-19 
accuracy

1 100 98.65 100 99.32 99.32 100
2 100 97.3 100 98.65 98.66 100
3 97.37 98.66 97.3 98.01 97.99 96.55
4 100 100 100 100 100 100
5 98.65 98.67 98.65 98.65 98.66 98.7
6 98.59 97.22 98.61 97.9 97.92 100
7 98.7 100 98.68 99.35 99.34 100
8 100 98.67 100 99.33 99.32 100
9 95.95 100 96.05 97.93 97.96 98.7
10 100 98.7 100 99.35 99.39 100
Average 98.93 98.78 98.93 98.85 98.86 99.39

Fig. 5   Confusion matrix obtained from proposed LW-CBRGPNet model in both multi-class and binary prediction level
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determine the area of interest where COVID-19 affected. 
Figure 8 illustrated the example images of heat maps in 
COVID-19 infected images. The training and validation loss 
across at different epochs is illustrated in Fig. 9.

3.2 � Proposed Model Comparison with Different 
Optimization techniques

In this experimental setup, various optimization techniques 
were explored to attain the superior classification accuracy. 
Initially, the training phase was performed by empirically 
selecting Adam [48] optimizer. To evaluate the effective-
ness of the proposed scheme using Adam optimizer a com-
parison with three popular optimization techniques namely 
RMSProp [46], AdaDelta [47], and AdamW [49] was evalu-
ated. The detailed classification results using different opti-
mizers are enumerated in Table 6. From these findings, it 

can be noticed that the classification accuracy of proposed 
schemes using Adam optimizer outperform better as com-
pared to other considered optimizers. Hence, the rest of the 
experimental analysis was carried out using Adam optimizer.

3.3 � Optimal Learning Rate Selection

The optimal learning rate is decided based on the minimum 
loss. Figure 10 shows the graphical representation of learn-
ing rate selection between learning rates and the validation 

Fig. 6   Illustration of Kappa 
score, Mathews correlation, and 
accuracy plot of proposed LW-
CNRNet model

Fig. 7   AUROC curve of proposed LW-CBRGPNet model along with 
four pre-trained CNN model

Fig. 8   Sample COVID-19 infected region detected by heatmap analy-
sis
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loss. The red dot indicates the optimal learning rate selection 
where loss decreases by reaching global minima.

3.4 � Results Comparison of Different Batch Sizes

In this section, evaluation of different batch size experi-
ments has been performed to show the impact of batch 

size on testing accuracy. Table 7 shows the test accuracy 
of the proposed scheme when trained using different batch 
sizes such as 8, 16 and 32. From this experiment, it can 
be observed that a higher and stable testing performance 
is obtained by using batch size 16, and hence, a batch size 
of 16 has been chosen in the study.

3.5 � Misclassification Results Analysis

The misclassification samples predicted by proposed LW-
CBRGPNet are depicted in Fig. 11. The misclassification 
possibly occurred due to the similar imaging features 
among three class datasets consisting of normal, COVID-
19, and pneumonia infection cases.

Fig. 9   Loss convergence plot 
obtained for proposed LW-
CBRGPNet between number of 
epoch and loss

Table 6   Comparison of 
classification performance (in 
%) among different optimizers

Model Optimizer Precision Sensitivity Specificity F1-Score Accuracy

Proposed LW-
CBRGPNet

RMSProp 96.05 96.22 96.15 95.96 97.17

AdaDelta 95.39 95.55 96.96 95.3 96.77
AdamW 95.86 96.05 97.74 95.79 97.07
Adam 97.29 97.32 98.64 97.32 98.33

Fig. 10   Plot between learning rate and loss obtained in proposed LW-
CBRGPNet model

Table 7   Testing accuracy (in %) obtained by the proposed LW-
CBRGPNet model with different batch sizes

Model Batch size

8 16 32

Proposed LW-CBRGP-
Net

97.27 98.33 97.76
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3.6 � Comparison with Pre‑trained Transfer Learning 
Models

In this section, the comparison study has been performed on 
four popular pre-trained transfer learning models along with 
a proposed model to provide a comprehensive view for diag-
nosis of COVID-19 infection. The detailed description of 

each pre-trained model considered in this study is illustrated 
in Sect. 2.5, and detailed results of this experimental analysis 
is tabulated in Table 8. As like to earlier experiment analysis, 
here also the same three sets of X-ray images were deployed. 
The result obtained from this analysis is more promising 
and outperforms better as compared to four pre-trained 
models such as ResNet-101 [28], VGG-19 [29], DenseNet 

Fig. 11   Illustration of Misclassification results obtained by proposed LW-CBRGPNet model

Table 8   Comparison of 
classification results (in %) of 
the proposed model with Pre-
trained CNN models

Pre-trained model Precision Sensitivity Specificity Accuracy F1-score AUROC

ResNet-101 [28] 97.46 97.42 98.61 98.1 97.37 97.04
VGG-19 [29] 96.26 96.29 98.09 97.45 96.22 96.02
DenseNet-121 [30] 96.16 96.28 98.09 97.45 96.2 95.09
XceptionNet [31] 95.43 95.53 97.73 96.96 95.46 95.10
Proposed LW-CBRGPNet 97.29 97.31 98.64 98.33 97.32 98.24
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[30], and XcptionNet [31]. However, the proposed model is 
more effective over the pre-trained model, as it requires less 
number of learning parameters, faster training speed, and 
computational cost effectiveness because of lesser Convo-
lutional layer being used as compared to pre-trained model. 
It is worth noting that all pre-trained transfer learning mod-
els are originally designed for ImageNet [33] classification 
problems for a large amount of labeled dataset. Therefore, 
fine-tuned has been in operation on the last layer by employ-
ing a fully connected (FC) layer to implement in chest X-ray 
images to achieve both binary class (Normal, COVID-19) 
problem and multi-class problem (Normal, COVID-19, and 
pneumonia). The FC layer of all these models is trained, 
whereas the remaining layers are initialized with pre-trained 
weights. The detailed explanation of these each model along 
with parameter specification are discussed in Table. 3.

3.7 � Comparison Analysis with State‑of‑the‑Art 
Methods

In this study, a comparative analysis of proposed scheme 
along with alternative state-of-art techniques and four pre-
trained models has been made in both multi-class clas-
sification and binary class classification on chest X-ray 
images. The detailed results of both class level predictions 
are illustrated in Table 9. From this result analysis, it can 
be observed that the suggested framework attains better 
overall accuracy in comparison to state-of-art techniques. 
Furthermore, a separate comparison of the COVID-19 class 
performance of the proposed approach has been made with 
the existing schemes as tabulated in Table 10. The research 
in the literature [33] and [40] has attained 100% COVID-19 
class sensitivity for the use of less number of sample images. 

Table 9   Comparing the efficiency of proposed model with current state-of-the-art deep learning COVID-19 identification approaches (in %) 
using chest X-ray images

References Method Number of chest X-ray samples Binary class 
accuracy (%)

Multi-class 
Accuracy 
(%)

Nayak et al. [33] ResNet34 Total:286 (COVID:143, Normal:143) 98.33 –
Ozturk et al. [39] Dark CovidNet Total:1127 (COVID:127, Normal:500, and 

Pneumonia:500)
98.08 87.02

Ucara et al. [40] Deep Bayes-SqueezeNet Total:5949 (COVID:76, Normal:1583, and 
Pneumonia:4290)

– 98.30

Rahimzadeh et al. [41] Concatenation of Xception and ResNet50V2 Total:15,085 (COVID:180, Normal:6054, 
and Pneumonia:8851)

– 91.40

Wang et al. [42] Tailored DCNN (Covid-Net) Total:13,975 (COVID:398, Normal:8066, 
and Pneumonia:5538)

– 93.30

Togaçar et al. [43] Fuzzy color and Stacking Approach Total:458 (COVID:295, Normal:65, and 
Pneumonia:98)

– 97.06

Toramana et al. [44] Convolutional CapsNet Total:3150 (COVID:1050, Normal:1050, 
and Pneumonia:1050)

97.24 84.22

Han et al. [45] Deep 3D Multiple Instance Learning Total:460 (COVID:230, Normal:100, and 
Pneumonia:130)

97.90 94.30

Proposed LW-CBRGPNet Total:2250 (COVID:750, Normal:750, and 
Pneumonia:750)

98.86 98.33

Table 10   Comparison of 
COVID-19 class performance 
with other state-of-the-art 
approaches

References COVID-19class 
sensitivity (%)

Specificity (%) Precision (%) Class

Nayak et al. [33] 100 96.67 96.77 Binary class
Ozturk et al. [39] 90.65 95.30 98.03 Multi-class
Ucara et al. [40] 100 99.10 98.30 Multi-class
Rahimzadeh et al. [41] 99.50 99.56 90.83 Multi-class
Wang et al. [42] 91.00 – – Multi-class
Togaçar et al. [43] 99.32 99.37 99.66 Multi-class
Toramana et al. [44] 84.22 97.04 97.06 Multi-class
Han et al. [45] – – 95.90 Multi-class
Proposed 98.75 98.64 97.29 Multi-class
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This proposed result again shows superior performance as 
context to the existing models.

4 � Research Discussion

An automated deep learning-based LW-CBRGPNet frame-
work is suggested in this paper for the diagnosis of COVID-
19 infection with respect to pneumonia and normal cases 
by utilizing a dataset consisting of chest X-ray images. A 
Total of 2250 numbers of frontal-view of X-ray radiographs 
(normal: 750 numbers, COVID-19: 750 numbers, and pneu-
monia: 750 numbers) were used in this study to maintain 
the data balance. In context to COVID-19 diagnosis, several 
deep learning-based research outcomes have been reported 
for diagnosis of COVID-19 cases. However, most existing 
approaches are limited in terms of accuracy, utilization of 
limited unbalanced datasets, more computational cost and 
more memory utilization. Therefore, the proposed model 
is designed to address these issues, which is not only capa-
ble of learning feature maps from input images automati-
cally but it also considers less learning parameters during 
the training phase. To evaluate the efficacy of the proposed 
scheme, various extensive experiments were accomplished 
by considering the various hyperparameters such as learning 
rate, different batch size, misclassification rate, and opti-
mizer. Furthermore, several performance metrics were per-
formed to evaluate the proposed scheme like tenfold cross-
validation, confusion matrix, evaluation metrics, AUROC, 
kappa score and Mathew’s correlation, and Grad-CAM heat 
map. Finally, the comparative analysis was made in counter 
to four popular pre-trained models along with recent state-
of-the-art techniques in both binary class and multi-class 
classification. Apart from this, a separate COVID-19 class 
performance along with precision and sensitivity has been 
presented as compared to existing techniques. The outcome 
of the proposed scheme from every set of experimental anal-
ysis outperforms better in every aspect by achieving better 
accuracy as context to state-of-art techniques. This proposed 
model is more robust, lightweight, and it can be suitable 
for radiologists for early diagnostics of COVID-19 cases 
thereby, reducing diagnostic error. The major advantages 
and disadvantages of proposed scheme as follows:

•	 The proposed lightweight CNN architecture was designed 
by using only three CBR blocks accompanied by max-
pooling layer, global average pooling layer and FC layer 
to handle overfitting issues.

•	 The model is capable enough to learn the feature map 
automatically during the training phase. Hence, it does 
not require a handheld feature extraction process. How-
ever, the proposed architecture is more scalable and light-

weight, and hence, it can be easily integrated with any 
smart devices for easy diagnosis.

•	 The computational cost of the proposed model is very 
low when compared with other state-of-art techniques 
and pre-trained models, as a global average pooling layer 
was used followed by one softmax layer.

•	 The proposed framework requires very less parameters 
during training the model as compared to pre-trained 
CNN model. Hence, it can be easily accommodated with 
any smart devices for early diagnosis.

•	 The limitation of this study is that it is validated using 
a limited amount of dataset, and the input image size 
differs in both size and number of channels. Despite its 
different size, it is a challenge for the proposed model.

5 � Conclusion

In this article, an automated and novel LW-CBRGPNet 
multi-class classification model for early and accurate diag-
nostics of COVID-19 patients utilizing chest X-ray radio-
graphs is proposed. The proposed scheme is achieved based 
on a deep learning model, particularly CNN architecture, 
and training from scratch without performing handheld fea-
ture extraction which is completely opposite to a pre-trained 
model. The complete set of experimental analysis was car-
ried out using publicly available chest X-ray radiograph 
dataset. As a result of this study, the proposed model pro-
vides an accuracy of 98.33%. Furthermore, the validation of 
the proposed scheme has been made by considering several 
hyperparameters and several comparisons were studied by 
considering four pre-trained transfer learning models along 
with recent state-of-the-art techniques. The outcome of the 
proposed scheme performs better in all aspects of experi-
mental analysis for detecting COVID-19 infection. This 
proposed model is more robust, lightweight, and it can be 
suitable for radiologists for early diagnostics of COVID-19 
cases thereby, reducing diagnostic error.
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