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ABSTRACT The genome of Shewanella sp. strain ISO12, which was isolated from
the intestine of wild-caught Fundulus heteroclitus, was sequenced and is reported
here. Bioinformatic analysis revealed genes encoding the bacteriocin marinocine and
those potentially associated with probiotic activity. The genome sequence will assist
in further identifying probiotic and other antibacterial processes.

Application of probiotic bacteria to mitigate microbial pathogen proliferation and to
acquire health benefits is a strategy frequently used by the aquaculture industry

(1). As part of a study to identify prospective probiotic bacteria, strain ISO12 was
isolated from a 24-h enrichment culture grown at 28°C in Trypticase soy broth (Difco)
supplemented with 2% NaCl (TSB2) prepared from intestinal extracts of an adult
wild-caught Fundulus heteroclitus specimen according to IACUC protocol 2013-DM-09-
13. Phylogenetic analysis of the 16S rRNA gene (2) identified ISO12 as a Shewanella sp.
(GenBank accession number KT957943). Shewanella spp. have been found to provide
improved immunological response (3), growth (4), stress resilience (5), and enhanced
disease resistance (3) for aquaculture-raised species (6); they also include pathogenic
strains that threaten the health of aquaculture species and their handlers (7, 8). The
ISO12 genome sequence will enhance our understanding of the genetic basis for these
characteristics.

A single colony was grown in TSB2 overnight at 28°C, and DNA was extracted using
the Wizard genomic DNA purification kit (Promega). The genome library was prepared
using the Illumina TruSeq Nano DNA library kit and sequenced with an Illumina MiSeq
sequencer. The read library contained 15,048,082 paired-end reads with an average
length of 245 bp and an average coverage of 49�. After preprocessing and quality
control with FastQC (v. 0.11.7) (9), de novo assembly by the Pathosystems Resource
Integration Center (PATRIC) (v. 3.6.3) (10) using Unicycler (v. 0.4.8) (11) yielded 57
contigs consisting of 4,973,905 bp with an N50 of 293,228 bp and a GC content of 52.9%.
Gene prediction and annotation with the Rapid Annotation using Subsystems Tech-
nology (RAST) toolkit (12) indicated 4,654 coding sequences and 98 RNAs. Default
parameters were used for all bioinformatic applications, and the publicly available
sequence was annotated by the NCBI PGAP.

SEED Viewer (v. 2.0) (12) genome analysis identified lodA and lodB of the marinocine-
producing operon, encoding lysine-epsilon oxidase and a dehydrogenase flavoprotein,
respectively. Lysine-epsilon oxidase generates hydrogen peroxide in the presence of
lysine (13); the role for lodB is unknown but essential for the autolytic and antibiofilm
activities of marinocine (14), a bacteriocin produced by several Gram-negative bacteria
(15).

The ISO12 genome contains motility, adhesion, and aggregation genes associated
with probiotic activity, including flagella (16) and fibronectin (17), as well as bile acid
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resistance factors, e.g., DamX (18) and cholylglycine hydrolase (19), for protection from
the gastrointestinal environment. A 17-gene cluster for mannose-sensitive hemagglu-
tinin may play a role in colonization and adhesion (20). Amylase, lipase, and extracel-
lular serine protease genes important for probiotic activity (21) were also identified.

While ISO12 has not been found to cause disease in fish (22), a hemolysin III
homologue, two putative hemolysins, and a pore-forming RTX exotoxin were identified.
Genomic and phenotypic studies of ISO12 will expand our understanding of probiosis
and pathogenesis in Shewanella spp.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession number JAAUHW000000000. The version
described in this paper is version JAAUHW010000000. Sequence data have been
deposited in the Sequence Read Archive under the accession number SRP254567.
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