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Abstract The key to successful drug discovery and

development is to find the most suitable animal model of

human diseases for the preclinical studies. The recent

emergence of engineered endonucleases is allowing for

efficient and precise genome editing, which can be used to

develop potentially useful animal models for human dis-

eases. In particular, zinc finger nucleases, transcription

activator-like effector nucleases, and the clustered regu-

larly interspaced short palindromic repeat systems are

revolutionizing the generation of diverse genetically-engi-

neered experimental animals including mice, rats, rabbits,

dogs, pigs, and even non-human primates that are com-

monly used for preclinical studies of the drug discovery.

Here, we describe recent advances in engineered endonu-

cleases and their application in various laboratory animals.

We also discuss the importance of genome editing in ani-

mal models for more closely mimicking human diseases.

Keywords Genome editing � Engineered endonuclease �
ZFN � TALEN � CRISPR

Introduction

In the fields of drug discovery and development, in vivo

experiments using appropriate animal models are indis-

pensable for successful clinical translation, which can lead

to the development of preventatives or treatments for

human diseases. Additionally, studies adopting genetically-

engineered animals can also provide us the important clues

for the underlying mechanisms that make us to understand

the pathology of the disease.

Genome editing refers to the manipulation of specific

gene loci with engineered endonucleases in cultured cells

or living organisms to modify the genome (Cong et al.

2013; Gaj et al. 2013; Shao et al. 2016). The key step in

genome editing is the induction of site-specific double-

strand breaks (DSBs) by engineered endonucleases that are

subsequently corrected by one of two competing DNA

repair pathways, non-homologous end-joining (NHEJ) and

homology-directed repair (HDR) (Sander and Joung 2014):

NHEJ is characterized by the direct ligation of two DNA

DSB ends frequently introducing unpredictable patterns of

insertions and/or deletions (in-dels) leading to gene dis-

ruption or ‘‘knockout’’ through frameshift mutation, while

HDR is an error-free mechanism that can be used to induce

sequence-defined mutations or to insert a desired sequence

at the targeted locus (Ceccaldi et al. 2016; Li et al. 2017).

Recent advances in genome editing technologies reflect

the rapid development of engineered endonucleases

including zinc finger nucleases (ZFNs), transcription acti-

vator-like effector nucleases (TALENs), and clustered

regularly interspaced short palindromic repeat (CRISPR)

systems, and now we can rapidly generate disease-associ-

ated animal models for a wide range of species (Dow 2015;

Wang and Qi 2016). The engineered endonuclease-medi-

ated genome editing approach has been established in
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many species, particularly in laboratory animals such as

mice (Carbery et al. 2010; Meyer et al. 2010; Sung et al.

2013; Wang et al. 2013), rats (Geurts et al. 2009; Tesson

et al. 2011; Li et al. 2013a, b), rabbits (Flisikowska et al.

2011; Song et al. 2013; Yang et al. 2014), dogs (Zou et al.

2015), pigs (Whyte et al. 2011; Carlson et al. 2012; Hai

et al. 2014), and even non-human primates (Sato et al.

2016; Niu et al. 2014; Liu et al. 2014). The expanded

application of genome editing to generate transgenic ani-

mals beyond mice will be advantageous in biomedical

research because of its potential to accelerate the devel-

opment of new therapeutic strategies (Wang and Qi 2016).

Here, we summarize the practical applications of three

major engineered endonucleases—ZFN, TALEN, and

CRISPR—that have been successfully used to edit gen-

omes, with an emphasis on those of laboratory animals. In

addition, we describe their advantages, disadvantages, and

recent advances in genome editing. We hope to inform

readers which tools can be useful options for desired tasks

in desired laboratory animals.

Engineered endonucleases frequently used
in generating genetically-engineered animals

An endonuclease must exhibit two characteristics to be

useful for genome editing: (1) specific recognition of target

sequences and (2) sufficient adaptability to target user-de-

fined sequences (Urnov et al. 2010). The four genome-

editing tools—ZFN, TALEN, and CRISPR/Cas including

Cas9 and Cpf1—all satisfy these specifications, but there

are some differences among them in terms of origin,

structure, and action mechanism.

Zinc finger nuclease

ZFN was first devised by Kim et al. in 1996 and was ini-

tially applied to the fruit fly for genome editing (Bibikova

et al. 2002, 2003).

ZFN is composed of the DNA binding domain of zinc

finger protein (ZFP) linked with the endonuclease domain

of the FokI restriction enzyme. ZFN acts through DNA/

protein recognition, as the ZFP region contains 3–6 tandem

fingers, each of which recognize 3 bp of DNA (Miller et al.

1985; Wolfe et al. 2000). As FokI must dimerize to cleave

DNA and this interaction is weak (Vanamee et al. 2001),

ZFN should be designed as a pair, one on the forward

strand and the other on the reverse strand, to permit the

correct orientation and appropriate spacing for FokI

dimerization. Once ZFP regions bind to either side of the

target site (the total of both sides, 18–36 bp), the FokI

domains dimerize and cleave the target DNA sequence

(Urnov et al. 2010), generating a site-specific DSB that is

subsequently repaired via the HDR or NHEJ pathway.

Talen

TAL effector (TALE) represents the largest family of type

III effector proteins from Xanthomonas spp., a group of

gram-negative bacterial plant pathogens that was first dis-

covered in 1989 (Bonas et al. 1989). Its capability to bind

to DNA was first described in plants in 2007 (Romer et al.

2007; Kay et al. 2007), and the codes for recognizing the

target DNA by TALE proteins were decrypted in 2009

(Moscou and Bogdanove 2009; Miller et al. 2011).

The DNA binding domain of naturally occurring TALE

consists of 10–30 tandem repeats of the 34-amino acid

module, which is highly conserved except for two hyper-

variable amino acid residues at positions 12 and 13,

referred to as repeat-variable di-residue (RVD). The first

base of the target recognized by an N-terminus region of

TALE is generally specific for thymine, and the remaining

bases are sequentially bound to RVD, in the manner where

one type of RVD preferentially recognizes a specific

nucleotide. Like ZFN, TALEN is generated by fusing the

FokI endonuclease element to the engineered TALE-

binding domain, and binds to the target sequence as

dimers: each monomer binds to a ‘‘half-site’’ in the target

and the FokI endonuclease domains dimerize to generate a

DSB in the spacer sequence between the two half-sites.

CRISPR/Cas9

The CRISPR/CRISPR-associated protein (Cas) system was

first observed in prokaryotes that mediate a bacterial

adaptive immune defense against viruses or invading

nucleic acids in 2007 (Barrangou et al. 2007). It was

revealed in 2012 that mature dual RNA (crRNA:-

tracrRNA), following co-processing of tracrRNA and pre-

crRNA by RNaseIII, is sufficient for Cas9-catalyzed DNA

cleavage in Streptococcus pyogenes (Jinek et al. 2012), and

subsequently, first evidences of genome editing using the

CRISPR/Cas9 system were reported in mouse and human

cells in 2013 (Cong et al. 2013; Mali et al. 2013b).

The CRISPR/Cas system is characterized by incorpo-

rating fragments of invading nucleic acid as spacers into a

host genome and in the case of later infection, using them

as templates to generate small RNA molecules (crRNA)

that are combined with Cas proteins into an effector

complex to silence foreign nucleic acids (Makarova et al.

2011). According to the latest classification based on the

configuration of their effector modules, the diverse

CRISPR-Cas systems can be divided into two classes: (1)
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class 1 CRISPR systems, which utilize several Cas proteins

and crRNA to form an effector complex that includes type I

and type III CRISPR systems, and (2) class 2 CRISPR

systems, which employ a large single-component Cas

protein in conjunction with crRNAs to mediate interfer-

ence. In particular, type II CRISPR systems only require

Cas9 protein as an effector for DNA interference (Makar-

ova et al. 2015).

In the CRISPR/Cas9 system, single guide RNA (sgRNA

or gRNA) that is engineered as a complex of CRISPR RNA

(crRNA) and trans-activating crRNA (tracrRNA) brings

the endonuclease complex into the specific target site on

the genome and then recruits Cas9 protein for precise DNA

cleavage. sgRNA-guided target selection in the CRISPR/

Cas system, particularly Cas9 from S. pyongenes, requires

a G-rich (NGG) protospacer adjacent motif (PAM)

sequence at the 30-end of the target site, which determines

Cas9 binding specificity to its target region. Once bound to

the target sequence followed by PAM, Cas9 generates DSB

3–4 nucleotides upstream of the PAM site (Mali et al.

2013b). Table 1 summarizes the characteristics of ZFN,

TALEN, and CRISPR/Cas9 in genome editing.

CRISPR/Cpf1

Among class 2 CRISPR systems, a new type V CRISPR-

Cas endonuclease, Cpf1 was first identified in Francisella

and later in other bacteria Prevotella (CRISPR from Pre-

votella and Francisella 1) (Schunder et al. 2013; Vester-

gaard et al. 2014; Makarova et al. 2015). The CRISPR/

Cpf1 system was first applied as a genome editing tool in

human cells in 2016, and it has three main distinct features

from Cas9 (Zetsche et al. 2015): (1) tracrRNA is not

required and thus the crRNA of Cpf1 is notably shorter

than the sgRNA of Cas9. (2) sgRNA-Cpf1 complexes

target DNA to produce DSB distal to a 50-end T-rich PAM

sequence, in contrast to Cas9, which produces DSB prox-

imal to the 30-end G-rich PAM site. (3) Cpf1 produces

staggered DSB with a 4 or 5-nucleotide 50-overhang (sticky

end cut), whereas Cas9 cuts both strands in a DNA mole-

cule at the same position (blunt end cut). Table 2 sum-

marizes and compares the characteristics of Cas9 and Cpf1.

Specificity of engineered endonuclease

The most important hurdle to surmount in engineered

endonuclease-mediated genome editing is its specificity

and the off-target issue; the higher the specificity of the

engineered endonucleases, the lower their off-target

cleavage and hence their toxicity.

In ZFNs, the efficacy is largely dependent on the

specificity of ZFPs. One way of increasing its specificity is

to assemble the ZFP with an increased number of zinc

finger modules to create a longer DNA recognition site, but

this is not always sufficient. Another complementary

approach is to design ZFN in a way such that the dimer-

ization of the FokI cleavage domain occurs in the forma-

tion of a heterodimer rather than a homodimer, which will

actively cleave only at specific heterodimer binding sites

rather than at the homodimer or unintended binding sites

Table 1 Comparison of three engineered nucleases-ZFN, TALEN, and CRISPR/Cas9

ZFN TALEN CRISPR/Cas9

Backbone origin Highly prevalent in

eukaryotes

Bacteria (Xanthomonas spp.) Bacteria (S. pyogenes)

Specificity

module

ZFP TALE sgRNA (crRNA ? tracrRNA complex)

Cleavage

module

FokI FokI Cas9

Target site 18–36 bp (3 nt per zinc

finger module)

30–40 bp (1 nt per RVD; TALE

binding sites should start with a

T)

20 bp ? PAM (NGG) sequence (Cas9 binding sites

should end with G-rich PAM)

Working

mechanism

DNA/protein recognition,

DSB, and its repair

pathway

DNA/protein recognition, DSB,

and its repair pathway

DNA/RNA recognition, DSB, and its repair pathway

Reprogramming

efficiency

Relatively low Relatively low High (easier to design, faster to synthesize, and cost-

effective; furthermore, multiplex genome editing is

available)

ZFN zinc finger nuclease, ZFP zinc finger protein, TALE transcription activator-like effector, TALEN TALE nuclease, RVD repeat-variable di-

residue, CRISPR clustered regularly interspaced short palindromic repeat, Cas9 CRISPR-associated enzyme 9, sgRNA single guide RNA, crRNA

CRISPR RNA, tracrRNA trans-activating crRNA, PAM protospacer adjacent motif
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(obligate heterodimerization) (Miller et al. 2007; Szczepek

et al. 2007). The combination of both approaches has been

successful with high specificity in zebrafish embryos

(Doyon et al. 2008), rat embryos (Geurts et al. 2009;

Mashimo et al. 2010), and mammalian cells (Urnov et al.

2005; Lombardo et al. 2007; Perez et al. 2008; Hocke-

meyer et al. 2009), and there were also some improvements

in the obligate heterodimerization strategy for ZFNs; for

example, to abolish non-specific protein binding to the

DNA backbone via amino acid substitutions (Ramalingam

et al. 2011). These strategies are also beneficial for

enhancing the specificity of TALENs (Huang et al. 2011;

Hockemeyer et al. 2011; Cade et al. 2012).

The off-target issue is also the biggest concern in the

CRISPR/Cas9 system (Fu et al. 2013; Hsu et al. 2013; Mali

et al. 2013a; Pattanayak et al. 2013) and various efforts

have been made to improve its specificity. Two methods

that use distinct types of Cas9 pairs have been developed to

reduce off-target effects in the CRISPR/Cas9 system: (1) A

mutant version of Cas9 ‘‘nickase,’’ in which one of either

the Cas9 endonuclease domain histidine-asparagine-his-

tidine (HNH) or RNase H-like fold (RuvC) is inactivated,

can only introduce single-strand DNA breaks rather than

DSB. Pairing the two nickase with their sgRNAs, allows a

DSB with a 50-overhang to be introduced at the target site,

while single-strand nick at the off-target site would be fixed

(Ran et al. 2013). (2) Another strategy to reduce off-target

effects is to use of a pair of proteins, in which catalytically

dead Cas9 (dCas9) is fused with the FokI domain. When

the two FokI-dCas9 pairs are guided by two sgRNAs and

subsequently positioned on both directions of the DNA

strands, FokI endonuclease domains dimerize to generate a

DSB in the on-target site (Tsai et al. 2014; Guilinger et al.

2014). The applications of the two above methods show

drastically increased on-target specificity with reduced

unexpected mutations in human cells, but it remains to be

elucidated whether they work in vivo. Of course, it is

always necessary to backcross mutant lines with multiple

generations to remove any off-target mutations and/or

verify the phenotypes with more than two independent

lines.

Genome editing using engineered endonucleases
in laboratory animals

Numerous model organisms have been developed and are

now available to researchers, and mammalian models are

now extensively used for studying basic biology and

pathophysiology of human diseases and the development of

novel therapeutics (von Horsten et al. 2003; Golding et al.

2006; Yang et al. 2008; Gilley et al. 2011; Hauschild et al.

2011; Zschemisch et al. 2012; Chan 2013). Studies that

describe the first applications of ZFN, TALEN, and

CRISPR in laboratory animals are summarized in Fig. 1.

Mouse

The mouse is the best-known and has been the most widely

used mammalian model over the past century, particularly

in the field of drug discovery and development, because

therapeutic agents can be tested using mice in expeditious,

cost-effective, and ethical manners. In genome engineer-

ing, it is an ideal animal in many aspects: (1) relatively low

cost to maintain, (2) the short life-span beneficial to breed

enough animals quickly and also suitable for the genetic

studies, (3) it can develop various human-like diseases with

wild-type and genetically-engineered animals, (4) 99% of

its genes are shared with humans (Boguski 2002), and (5)

many genetic resources have been developed and are now

publicly available (Paigen 1995; Eppig 2017).

In the past, traditional genome editing in mice was only

dependent on the HDR technique in embryonic stem (ES)

Table 2 Comparison of the characteristics of CRISPR/Cas9 and Cpf1

CRISPR/Cas9 CRISPR/Cpf1

Backbone origin Streptococcus pyogenes (SpCas9) Francisella novicida (FnCpf1),

Acidaminococcus sp. BV3L6 (AsCpf1),

Lachnospiraceae bacterium (LbCpf1)

Structure of sgRNA crRNA ? tracrRNA crRNA

Nuclease domain RuvC-like ? HNH RuvC-like

PAM site G-rich (50-NGG) T-rich (30-NTT)

Cutting mechanism Blunt cut 3 nt upstream of the PAM

(close to PAM)

Staggered cut (with 4–5 nt overhang) 17 nt downstream of the PAM

(far from PAM)

CRISPR clustered regularly interspaced short palindromic repeat, Cas9 CRISPR-associated enzyme 9, sgRNA single guide RNA, crRNA CRISPR

RNA, tracrRNA trans-activating crRNA, PAM protospacer adjacent motif
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cells (Capecchi 1989). However, this strategy is charac-

terized by multiple complicated steps: maintenance of ES

cells in an undifferentiated state, construction of the tar-

geting vector that should be electroporated into ES cells,

positive and negative selections to enrich homologous

recombinant ES cells, cloning and screening, expansion of

correctly targeted ES cell clones, and the production of

chimeric mice with germline transmission abilities. This

method requires an enormous amount of time- and effort-

consuming work, with no guarantee of success in every

step.

Engineered endonuclease dramatically simplified the

complicated processes for generating genetically-engi-

neered mice (GEM), and was selected by Nature Methods

as the ‘‘Method of the Year 2011’’ (2012). After the initial

observation that genome editing using ZFN became

applicable in the fruit fly (Bibikova et al. 2002, 2003),

ZFN-based genome editing has been applied to both

in vitro and in vivo models of various species, including

CHO cells (epithelial cell lines derived from the ovary of

the Chinese hamster) (Cost et al. 2010; Santiago et al.

2008), plant tobacco (Cai et al. 2009), zebrafish (Doyon

et al. 2008; Meng et al. 2008), rat (Geurts et al. 2009), and

mouse ES cells (Goldberg et al. 2010).

ZFN technology was first applied in mice by two groups

in 2010: (1) Meyer et al. (2010) described how ZFN can

improve HDR efficiency of the targeting vector into target

site fertilized mouse embryos; and (2) Carbery et al. (2010)

reported that gene disruption using ZFN can be achieved

through NHEJ event. Through these studies, it became

obvious that (1) ZFN can be applied and replace mouse ES

cells to generate genetically-engineered mice and (2)

rather, engineered endonucleases must be advantageous

over the classical gene targeting in moue ES cells as gen-

ome editing can be achieved by the single step injection of

ZFN in a strain (or genetic background)-independent

manner.

In 2013, another FokI-based engineered endonuclease

called TALEN was revealed to have specific gene targeting

ability to produce knockout mice (Sung et al. 2013), and

Wang et al. (2013) reported that CRISPR/Cas9 was also

useful for genome editing in mice and that co-injection of

multiple guide RNAs could induce multiple mutations in

mouse genome, simultaneously. Moreover, it is recently

revealed that Cpf1 can be a useful genome editing

approach in mammals including mouse (Kim et al. 2016;

Hur et al. 2016) and rat (data not yet published), but more

researches into this next-generation engineered endonu-

clease are in progress to explore its application in a range

of another mammals.

Rat

The rat is a more widely used model for studying human

normal physiology or diseases and for testing drug efficacy

or toxicity prior to clinical trials in humans (Jacob 1999;

Jacob and Kwitek 2002; Aitman et al. 2008). As an animal

Fig. 1 The timeline for the first

applications of engineered

nuclease technologies in

laboratory animals. The time

points when studies that

describe the first applications of

zinc finger nuclease (ZFN),

transcription activator-like

effector nuclease (TALEN), and

clustered regularly interspaced

short palindromic repeat

(CRISPR) system including

CRISPR-associated enzyme 9

(Cas9) and CRISPR from

Prevotella and Francisella 1

(Cpf1) for genome editing in

various laboratory animals were

published are marked with

colored circles (ZFN, yellow;

TALEN, green; Cas9, blue;

Cpf1, red)
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model for human diseases, the rat model provides many

advantages over mouse: (1) its larger size compared to

mouse provides easier handling and surgery, a larger

sample volume, and high-resolution imaging, (2) the rich

behavioral profile in rat is superior to that of mouse, par-

ticularly for learning and memory (Whishaw 1995;

Whishaw and Tomie 1996), addiction (Jupp et al. 2013),

and juvenile play (Hamilton et al. 2014), which is advan-

tageous in neuroscience research, and (3) most importantly,

rat is more translational than mouse due to its physiological

similarity to human (Aitman et al. 2016).

Before the emergence of ES cell-mediated gene target-

ing, mutant rat strains were generated by random muta-

genesis using a chemical mutagen N-ethyl-N-nitrosourea

(ENU) or by introducing a sleeping beauty transposon (Zan

et al. 2003; Izsvak et al. 2010). As the mutant strains were

identified by phenotype-driven screening, these strategies

require large populations of rats and were costly and time-

consuming processes of high-throughput screening. For the

gene targeting, several methodological attempts have been

made to establish authentic rat ES cells, and a culture

system optimized for maintaining rat ES cells was finally

developed (Buehr et al. 2008; Li et al. 2008), leading to the

production of p53 KO rats (Tong et al. 2010). However, as

the rat ES cells seems to be less robust than mouse ES cell

and now plenty of mutant mouse resources publicly

available (e.g., International Mouse Phenotyping Consor-

tium or IMPC), most of in vivo studies employing mutant

animal models are adopting mouse models.

Considering the importance and the difficulties of ES

cell-based genome editing, it is an inevitable consequence

that the rat is the first mammal species applied for genome

editing with ZFN (Geurts et al. 2009) and TALEN (Tesson

et al. 2011). Pronuclear or intracytoplasmic microinjection

of ZFN or TALEN-encoding DNA or mRNA into fertilized

rat eggs results in targeted gene knockout with a high

efficiency. The CRISPR/Cas9 system was also proved to be

adaptable for rat genome editing, and in particular, the co-

injection of two or more guide RNAs with Cas9 mRNA led

to multiple disruptions simultaneously in the rat genome

(Li et al. 2013a, b).

Rabbit

The rabbit has been used for a long time in experimental

research such as the production of antibodies or recombi-

nant proteins and various toxicological studies for non-

clinical safety studies, and was in fact the first animal

model used for human atherosclerosis more than a century

ago. Rabbit models for human disease have been developed

to study lipid metabolism, atherosclerosis, osteoarthritis

(Fan and Watanabe 2003; Martinez-Calatrava et al. 2010),

and eye researches (Kang and Grossniklaus 2011; Zernii

et al. 2016).

Regardless of the demand for genetically-modified

rabbit, naturally occurring or spontaneous mutant strains

were only available (Bosze and Houdebine 2006). Since

the first transgenic rabbit was produced through the

pronuclear microinjection of a DNA construct (Hammer

et al. 1985), some methodological improvements have been

reported for rabbit transgenesis (Viglietta et al. 1997;

Besenfelder et al. 1998); however, it is still characterized

by too-low transgenic efficiency (Houdebine and Fan 2009;

Bosze et al. 2016). As the lack of fully functional rabbit ES

cells was not produced (Honda et al. 2013; Honsho et al.

2015) and somatic cell nuclear transfer (SCNT) technolo-

gies are not established in rabbits (Zakhartchenko et al.

2011), still the targeted genome editing was not possible

before the application of engineered endonucleases.

Those hurdles are now solved in rabbit by applying

engineered endonucleases such as ZFN, TALEN, and the

CRISPR/Cas9. In particular, in the last 5 years, studies

using CRISPR/Cas9 for genome editing in rabbit have

exceeded those of ZFN or TALEN quantitatively in spite of

the relatively short history of the CRISPR system: there are

only two or three studies of genetically-modified rabbit

with ZFN (Flisikowska et al. 2011; Yang et al. 2013; Ji

et al. 2015) or TALEN (Song et al. 2013, 2016a). However,

we found 15 papers in the Medline applying CRISPR/Cas9

for genome editing in rabbit, and this number is continually

increasing (Yang et al. 2014; Yan et al. 2014; Honda et al.

2015; Song et al. 2016a, b; Yuan et al. 2016; Lv et al. 2016;

Yang et al. 2016; Sui et al. 2016; Guo et al. 2016; Song

et al. 2017b; Yuan et al. 2017; Song et al. 2017a; Liu et al.

2018) due to its simplicity in design, high mutation effi-

ciency, and the ability to simultaneously edit the genome of

multiple genes, which seems superior to ZFN or TALEN in

rabbit.

Dog

Dogs are of great benefit in their service to humankind

including companionship and working activities, and have

been also used as models in biomedical research. The

advantages of using dog as an animal model include its

anatomy, physiology, genetics, behavior, and its relatively

long lifespan and size, which more closely match humans

than other species such as rodents (Chianese et al. 2011).

Indeed, dogs have proven remarkable model systems to

investigate various hereditary human diseases including

leukocyte adhesion deficiency, Leber’s congenital amau-

rosis, Duchenne muscular dystrophy, and hemophilia A

and B (Bauer and Hickstein 2000; Acland et al. 2001;

Kinali et al. 2009; Margaritis 2010) because they have been
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selectively bred, which has resulted in a range of sponta-

neous and complex phenotypic variations that are often

accompanied by undesired pathological genetic variations

that were not observed in other species (Nowend et al.

2011; Switonski 2014). Many hereditary diseases in dogs

naturally occur in very similar clinical manners to analo-

gous human diseases (Shearin and Ostrander 2010).

Regardless of the importance of dogs in biomedical

research and increasing demand for their genetic modifi-

cation, studies into the manipulation of the dog genome are

extremely limited in number. As compared to other

mammals, dogs have certain unique species-specific char-

acteristics that can be obstacles for artificial reproduction;

for example, difficulty in synchronizing the reproduction

stage between donor zygotes and recipient female dogs

(Holst and Phemister 1971; Farstad 2000; Jang et al. 2007).

These limit the application of dogs, particularly in the field

of genome editing.

Finally, Zou et al. modified the dog genome successfully

in 2015 using the CRISPR/Cas9 system, where the asyn-

chronous reproduction stage in the donor and recipient was

overcome via auto-transplantation of guide RNA/Cas9

mixture-injected zygotes into the same female dog (Zou

et al. 2015). Therefore, the CRISPR/Cas9 system may be

the primary choice for the generation of future novel dog

models for biomedical research.

Pig

Pigs are very similar to humans in terms of anatomy,

genetics, and physiology: (1) In terms of anatomy, the

similarities in the size and morphology of their internal

organs to those of humans allows various surgical and non-

surgical procedures in clinical settings such as catheteri-

zation, heart surgery, valve manipulation, endoscopy, and

broncho-alveolar lavages, and thus pigs are frequently used

as the general surgical model for both training and research

over the last 20 years (Swindle et al. 2012). (2) The pig is

phylogenetically closer to primates than rodents and thus

the size and composition of the porcine genome are much

more similar to those of humans. In particular, some inbred

porcine strains with defined genetic background have been

established, which enables us to obtain reproducible results

(Kobayashi et al. 2012; Zhao et al. 2009). (3) In terms of

physiology, the immune system in pigs is similar to that of

humans, and their organs generally have functional features

in common with humans (Swindle et al. 2012). In these

regards, pigs have been considered as one of the major

mammals in translational research, and considering their

frequent application in studying the human diseases

including Huntington’s disease (HD), Alzheimer’s disease

(AD), retinitis pigmentosa, cystic fibrosis, cancer, and

diabetes, the preclinical toxicological and efficacy testing

of pharmaceuticals, and the xenotransplantation of pig

organs to human (Aigner et al. 2010; Whyte and Prather

2011; Meurens et al. 2012), genetically-engineered pigs

will be of great use in bio-medical studies.

The first transgenic pig was established by the

microinjection of DNA construct into zygotes in 1985, and

then various methodological procedures have been devel-

oped for efficient transgenesis in pigs, including sperm-

mediated gene transfer (SMGT) (Lavitrano et al. 1997),

intracytoplasmic sperm injection (ICSI)-mediated gene

transfer (Kurome et al. 2006), and strategies employing

viral vectors (Cabot et al. 2001; Hofmann et al. 2003).

Most importantly, the SCNT technique was historically the

most important advance in porcine genome engineering

(Polejaeva et al. 2000), but the procedure is massive and

complex, and the efficiency is extremely low. Similar to

other species, the lack of functional porcine ES cells

impedes the generation of genetically-engineered pigs.

The first ZFN-mediated knockout pigs were successfully

generated in 2011 (Whyte et al. 2011), after which several

groups generated knockout pigs using TALEN (Carlson

et al. 2012) and CRISPR/Cas9 (Hai et al. 2014). Currently,

engineered endonuclease-based genome editing are

actively used to develop genetically-modified pigs that

recapitulate human diseases in pigs (Watanabe et al. 2013;

Umeyama et al. 2016), donor pigs for xenotransplantation

(Hauschild et al. 2011; Miyagawa et al. 2015), and organ-

deficient pigs for the production of humanized organs by

blastocyst complementation (Nagashima and Matsunari

2016), and agricultural use (Rao et al. 2016; Whitworth

et al. 2016).

Non-human primate

Non-human primates (NHPs) are the ultimate animal

models (phylogenetically closest to humans) that have been

used in the fields of studying psychiatric disorders

(Bachevalier et al. 2001; Yang et al. 2008; Gilley et al.

2011), metabolic function (O’Sullivan et al. 2013), repro-

ductive biology (Wolf 2009; Kundu et al. 2013), and

immunology (Thomas et al. 1982; Gallo et al. 1989), as

those conditions cannot always be recapitulated by the

rodent model. In spite of the cognitive and psychological

superiority of NHPs to the other species, there are some

limitations in using NHPs as an animal model such as

ethical concerns when using higher primates, supply limi-

tations, and relative cost ineffectiveness compared to

smaller mammals, which should be of concern in the

development of genetically-modified NHPs (Chan 2013).

Along with the NHP-specific limitations above, former

technologies established in other species such as rodents
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were inefficient for manipulating the genome in monkeys,

leading to rather slow progress regarding the generation of

transgenic NHPs. In 2014, rhesus and cynomolgus mon-

keys were the first to be genetically modified with

CRISPR/Cas9 (Niu et al. 2014) and TALEN (Liu et al.

2014), followed by genetically edited NHPs using ZFN in

2016 (Sato et al. 2016), and several subsequent NHP

models that used engineered endonucleases have been

successfully developed, opening a new era of genetic

engineering in NHPs.

Strategies for precise laboratory animal model
mimicking human diseases

Till now, we mainly described the studies achieving in-del

mutations with engineered endonucleases. However, pre-

cise genome editing harnessing the power of HDR must be

the main goal regardless of the species. Using this mecha-

nism, animal models mimicking disease-associated single

nucleotide polymorphisms (SNPs) can be modeled in

diverse animal species. Furthermore, considering the future

use of engineered endonucleases as a drug for a gene

therapy, sequence-humanized animal models will be pro-

duced and may be an essential system for preclinical studies

evaluating drug safety and effectiveness. The specific

knock-in (KI) strategy that uses CRISPR/Cas9 is based on

the co-injection of CRISPR/Cas9 components with double-

stranded DNA or single-stranded oligodeoxynucleotides

(ssODN) templates, and ssODN-mediated KI in mam-

malian cells occurs through the HDR mechanism and is

more efficient than using double-stranded donor plasmids

(Radecke et al. 2010; Chen et al. 2011). The utilization of

this platform enables the insertion, deletion, or replacement

of genetic materials of interest into the genome (Ma et al.

2014; Shao et al. 2014). Several small molecules, such as

RAD51-stimulatory compound 1 (RS-1) or Scr7, which

enhance the HDR pathway or inhibit the NHEJ pathway, are

known to increase the HDR efficiency when coupled with

the CRISPR/Cas9 system in mammalian cells (Chu et al.

2015; Maruyama et al. 2015), mice (Maruyama et al. 2015),

and rabbits (Song et al. 2016a), but difficulties remain with

the KI strategy in cell lines and animals due to the low HDR

frequency, which remains to be optimized to attain higher

efficiency. In alignment with efforts for higher efficiency in

modeling SNPs, it is recently revealed that RNA-guided

deaminases including adenine base editors (ABEs) and

cytosine base editors (CBEs), composed of an engineered

deaminase and a catalytically impaired Cas9 variant, can

introduce a single-base-pair conversion A:T to G:C or vice

versa at a target site without DSBs (Gaudelli et al. 2017;

Komor et al. 2016), enabling efficient programmable base

editing. Among these newly designed chimeric nucleases,

base editor 3 (BE3), one of CBEs, was successfully adopted

in generating mice with point mutation at the target site with

high efficiency (Kim et al. 2017), but its application in

another laboratory animals remains to be further elucidated.

Conclusion and perspective

The initial uses of engineered endonucleases have

demonstrated their possible applications for establishing

novel model organisms and genome editing systems are

constantly evolving. Particularly, through genome editing

using these engineered endonucleases, there are tremen-

dous efforts to recapitulate the human disease-associated

mutations in various mammalian species. Precisely-de-

signed animals to mimic the patient-derived mutations can

be more translational and thus narrow down the gaps cur-

rently present between preclinical and clinical studies.

However, the production of mutant animals with pre-

cisely-defined genetic alterations is still challenging. To

enhance the efficiency of HDR in diverse mammalian

species, we need to study the specific physiology involved

in the regulation of HDR in fertilized eggs. There are many

suggestions possibly beneficial to increase the genome-

editing efficiency (e.g., suppressing NHEJ or enhancing

HDR), but their exact underlying mechanisms and appro-

priate strategies of applications for various mammals

remain to be elucidated. Furthermore, each model mam-

mals show species-specific reproductive characteristics

such as estrous cycle and gamete physiology, which may

affect the HDR in fertilized eggs and thus should be taken

into account for mammalian genome editing.

Taken together, the use of genetically-modified mam-

mals generated with engineered endonucleases can provide

both fundamental and advanced model system or platform

to understand physiological and pathological phenomena

and thus help us to develop new drugs and treatments for

human diseases.
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