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Abstract

Computational methods have been developed to
reconstruct evolutionary lineages from tumors using
single-cell genomic data. The resulting tumor trees
have important applications in cancer research and
clinical oncology.

Introduction

Tumors evolve from single cells. As they evolve, clonal
lineages begin to diverge, resulting in distinct subpopula-
tions and intratumor heterogeneity. This genomic diver-
sity fuels tumor growth and enables the population of
cells to survive various selective pressures in the tumor
microenvironment (such as pH, hypoxia, therapy, and
immune surveillance). Intratumor heterogeneity is
generally considered to be ‘bad news’ from a clinical
standpoint because it complicates the diagnosis and
therapeutic treatment of cancer patients. However, from
the perspective of an evolutionary biologist, intratumor
heterogeneity provides a permanent record of the muta-
tions that occurred during tumor growth, providing a
window into time. In the same way that evolutionary bi-
ologists can infer the ancestral lineages of species that
are living on our planet today, so too can cancer biolo-
gists infer the evolutionary history of a tumor by com-
paring clones from a single patient sample. SCITE
(single cell inference of tumor evolution) and OncoNEM
(oncogenetic nested effects model) [1, 2] are two statis-
tical methods that have recently been developed for
reconstructing tumor lineages from single-cell data. The
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trees resulting from these methods will greatly benefit
studies of tumor evolution and are likely to have clinical
applications in the diagnosis and therapeutic targeting of
cancer patients.

Tumor lineages

Tumor lineages are typically represented as tree struc-
tures, of which there are three major classes: 1) phylo-
genetic trees, 2) clonal lineages, and 3) mutational trees
(Fig. 1). Phylogenetic trees show all of the samples (or
single cells) that were sequenced as leaves on the ter-
minal nodes. Clonal lineages are condensed trees that
display the lineages of the major clones and the inferred
common ancestors that occurred during tumor growth.
By contrast, mutational trees order the chronology of
mutations that occurred during tumor growth and do
not display the clones or cells associated with those
mutations.

Resolving intratumor heterogeneity

To resolve intratumor heterogeneity, several different
experimental methods have been developed, including
deep-sequencing, multi-region sequencing, and single-
cell DNA sequencing. Deep-sequencing involves sequen-
cing the genome or exome of a bulk tumor sample at
high coverage depth and clustering mutation frequencies
to identify groups of clones. This method is experimen-
tally straightforward, but is confounded by copy-number
events and overlapping frequencies of clones. Multi-
region sequencing involves sampling different macro-
scopic regions of the tumor mass, from which the data
are compared to infer a phylogenetic lineage. The limita-
tion of this method is that it cannot distinguish clones
that are intermixed within the same spatial region and is
often clinically unfeasible. A limitation of both of the
aforementioned methods is that they analyze bulk se-
quencing data that are a complex admixture of millions
of different tumor cells. To deconvolute these datasets,
several computational methods have been developed
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Fig. 1 Classes of trees used in tumor phylogenetics. a Phylogenetic tree of single cells or macrodissected spatial samples from the tumor. b
Clonal lineage tree with inferred common ancestors displayed in grey. ¢ Mutational tree showing the order of mutations that occurred during

o

that use mutation frequencies to estimate the number of
clonal subpopulations in the tumor mass [3]. Other stat-
istical methods have taken one step further and use
these data to infer the clonal lineages and common an-
cestors that occurred during tumor growth [4, 5].

Single-cell DNA sequencing

Another method for reconstructing phylogenetic line-
ages and resolving clonal subpopulations is single-cell
DNA sequencing (SCS). SCS provides the highest pos-
sible resolution for resolving clonal subpopulations and
can report the precise combination of mutations that
occur in any given clone or cell. However, SCS datasets
are limited by the total number of cells that can be sam-
pled at a reasonable cost and extensive technical errors
that arise during whole-genome amplification (WGA).
This process is necessary in order to amplify a sufficient
DNA quantity from a single cell to perform next-
generation sequencing (NGS). The most common WGA
errors include: allelic dropout (ADO) errors, false-
positive errors (FPs), coverage non-uniformity, and low-
coverage sites (Fig. 2). These errors introduce missing
values, incorrect genotypes, and false positives into the
resulting genotype matrix of single cells that is used for
subsequent phylogenetic analysis. Such errors limit the
direct application of phylogenetic methods that have
been used in species evolution (e.g., maximum parsi-
mony, Bayesian inference and maximum likelihood).

OncoNEM and SCITE

SCITE and OncoNEM are computational tools that were
specifically designed to address technical errors in SCS
data during phylogenetic inference [1, 2]. SCITE infers a

mutation tree from the single-cell sequencing data, using
a Markov chain Monte Carlo (MCMC) algorithm. Onco-
NEM infers a clonal lineage tree from the SCS data,
using a heuristic search for a phylogenetic tree, then
clustering cells into subclones and inferring unobserved
ancestral clones. In contrast to classical phylogenetic
methods (e.g., maximum parsimony), both OncoNEM
and SCITE allow a mismatch between the inferred his-
tory and the empirical data. This is accomplished using
a probabilistic model of the technical errors. The
methods search for the tree with the highest likelihood,
defined as its probability of producing the data under
this model. The model requires specifying parameters
for the exact technical error rates of the single-cell se-
quencing process. However, both methods can estimate
these parameters directly from the data and therefore do
not require the user to specifically set these values. The
probabilistic approach used by SCITE and OncoNEM
has previously been used for phylogenetic inference of
species evolution to handle sequencing error [6] and
degradation of ancient DNA [7]; however, these earlier
methods use different error models that are not appro-
priate for SCS data owing to their unique technical error
profiles. In both SCITE and OncoNEM, the authors ap-
plied their methods to simulated datasets and experi-
mental SCS datasets from human tumors, including an
estrogen receptor breast cancer, invasive bladder cancer,
and essential thombocymia, to evaluate their perform-
ance and benchmark their methods.

Research and clinical applications
Tumor phylogenies have several important applications
in cancer research and clinical oncology. In addition to
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Fig. 2 Technical errors in single-cell DNA sequencing. a Technical errors that occur in single-cell sequencing datasets upon whole-genome
amplification, including allelic dropout, false-positive errors, genomic sites with no coverage, and coverage non-uniformity. b A true biological
genotype matrix of single-cell mutations compared with the observed genotype matrix after technical errors are introduced during single-cell
sequencing experiments. WGA whole-genome amplification

delineating the clonal substructure of a tumor, these
methods provide an inferred chronological order of mu-
tations that occurred during tumor growth, which can
be traced to understand which mutations are involved in
early tumorigenic processes (e.g., initiation, angiogenesis,
and invasion) compared with late cancer processes (e.g.,
metastasis and therapy resistance). Tumor trees can also
address questions of whether tumors evolve from a sin-
gle normal initiating cell, or alternatively from multiple
initiating cells, as would be predicted from a mutagenic
field effect. Tumor trees are also very useful for resolving
clonal dynamics to improve our understanding of
whether mutations occur in early punctuated bursts [8],
or alternatively through the gradual accumulation of
mutations over time. Phylogenetic trees can also help re-
solve highly controversial models that have been pro-
posed, such as ‘neutral evolution’ which posits that
tumors are not under any selection during tumor
growth, leading to highly branched tree structures with
no apparent clonal substructure [9]. In the clinic,

phylogenetic trees of tumors will have direct applications
in estimating the total amount of genomic heterogeneity
in a patient’s tumor. This diversity index is expected to
have prognostic value for predicting which patients will
have poor response to therapy, high risk of relapse, or
poor survival [10]. Tumor lineages can also be used to
inform targeted therapy by directing treatment towards
‘trunkal mutations’ that occur early in the lineages and
are subsequently inherited by all clones in the tumor
mass. Alternatively, oncologists can use the phylogenetic
trees to identify the most malignant subpopulations and
target these clones independently of the other lineages.

Notable limitations

An important limitation of both SCITE and OncoNEM
is that they make the ‘infinite sites assumption;, which
implies that mutations occur only once at a specific
nucleotide site and are never reversed. This assumption
is of course false in human tumors, where genome-wide
aneuploidy is common and often results in loss of



Davis and Navin Genome Biology (2016) 17:113

heterozygosity (LOH) and hemizygous deletions that can
eliminate mutations and reverse the genotype. Another
violation of this assumption is convergent evolution, in
which activating driver mutations can occur at the same
nucleotide site in independent clones or lineages owing
to strong positive selection. An additional criticism of
both studies is that there is no straightforward way to
know whether the clonal lineages or mutational trees
generated from the human tumors truly reflect the bio-
logical lineages in any way. This is admittedly a very diffi-
cult problem to address and would require a ‘gold-standard’
tumor lineage to which different methods can be bench-
marked to determine their accuracy. These experiments
would be difficult to perform on a human tumor sample
(owing to limited tissue), but might be feasible in artificial
lineages that are generated in cell culture systems that are
passaged for many generations, which are intentionally di-
verged and documented.

Concluding remarks

SCITE and OncoNEM are innovative statistical methods
that address a crucial problem in the construction of
phylogenetic lineages from SCS data by using error
models. These methods were shown to improve the ac-
curacy of clonal lineages and mutational trees, as dem-
onstrated in simulated datasets and human tumor
samples. New technologies are on the horizon that will
soon increase the throughput of DNA SCS to thousands
of single cells, which will improve the accuracy of tumor
lineages. OncoNEM and SCITE are well prepared to
analyze these large-scale datasets and greatly facilitate
the interpretation of the resulting lineages. Future ver-
sions of OncoNEM and SCITE could be improved in
several ways. Removing the infinite sites assumption will
be an important next step, which has already been ad-
dressed in classical phylogenetic methods such as max-
imum parsimony. Another important step will be to
incorporate single-cell copy number and LOH into the
tumor lineages, which can lead to missing mutations in
the genotype matrix and violate the perfect phylogenies.
Another avenue of progress will be to improve the prob-
abilistic error models. Both methods currently assume a
fixed probability of error at every site, but could instead
assume higher error probabilities for lower-confidence
mutation calls. However, even without these improve-
ments, SCITE and OncoNEM are a major step forward
in the analysis of SCS data and will have immediate
applications in both cancer research and medicine.
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