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1  | INTRODUC TION

The absence of the fundamental theorem from the unfolding of 
biological ideas is starkly illustrated by its omission from Huxley 
(1942)'s defining Evolution: The Modern Synthesis. Many of Fisher's 
result are cited, but the result Fisher believed stood comparison with 
the Second Law of Thermodynamics (Fisher, 1930, page 30) is not 
mentioned at all in the founding work of modern biology's fusion of 
Darwinism and Mendelism. Here, we help to incorporate it into to-
day's thinking by showing how the theorem encourages a dissection 
of the forces affecting mean fitness, bringing in density dependence 

and deterioration of the environment, and explaining Fisher's con-
cept of fitness.

After passing through various other stages, the consensus 
among mathematical population geneticists is currently that the 
theorem is true mathematically, but that any biological signifi-
cance has yet to be uncovered, following the line of Price (1972b). 
The main reason given is that the left-hand side of the theorem is 
a partial change in mean fitness and not the total change. Price's 
point has been generally adopted, including by Ewens (1989, 1992, 
2004) and Edwards (2002, 2014). These authors see a real point in 
a formula for the total mean fitness, but Fisher's theorem is inad-
equate by that standard, and are unconvinced that Fisher's partial 
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change is meaningful. Grafen (2018) articulates the case (expressed 
characteristically tersely by Fisher himself) that the partial change 
is a natural and powerful way to capture the component of change 
in mean fitness that is due to natural selection, though Lessard and 
Ewens (2019) remain unconvinced. Fisher's significant motivation 
was to provide a mathematical version of Darwin's argument that 
natural selection is an improving process, which evidently requires 
a way to isolate the component due to natural selection: those 
who oppose Fisher's suggestion offer none of their own (e.g., 
Charlesworth, 1994; Walsh & Lynch, 2018).

On the other hand, empirical biologists and less mathematically 
technical modelers continue to draw inspiration from the general 
gist of the theorem. There is currently a new surge in attempts to 
measure fitness in natural populations, and also to measure the 
additive genetic variance in fitness at least partly because of its 
role as the right-hand side of the fundamental theorem (Bonnet 
et al., 2019; Burt, 1995; Hendry et al., 2018; Hunter et al., 2019; 
Reid et al., 2019). The theorem continues to be explained and dis-
cussed in abstract terms (Frank, 1997, 1998, 2012; Queller, 2017, 
2020). The current paper contributes a precise mathematical 
model to add to this more positive literature on the fundamental 
theorem. The kinds of reasons for this divergence between dif-
ferent biologists on the fundamental theorem are considered by 
Welch (2017).

As the theorem provides a partial change, one natural approach 
aimed to "complete" the fundamental theorem by finding an expres-
sion for the total change in fitness. This has most effectively been 
undertaken, so far as complex genetic effects such as linkage and 
epistasis are concerned, by Nagylaki (1993). Earlier, Fisher had himself 
provided such a "completion" in 1930, ten pages after the fundamental 
theorem, incorporating effects of the eco-evolutionary forces of deteri-
oration of the environment and density dependence. His primary mo-
tivation seems to have been to defend the fundamental theorem from 
the charge that it predicts that mean fitness always increases, which 
would be contrary to fact and to logic. More specifically, he proposed 
a model in which the rate of change in mean fitness M equals the sum 
of three terms. The additive genetic variance in fitness W is the partial 
effect calculated by the fundamental theorem. Fisher subtracts a term 
D for the deterioration of the environment, and a further term M/C, 
where C is a constant, for density-dependent effects. This third term is 
initially puzzling, as one would expect the population size rather than 
M itself to appear in such a term, but –M/C turns out to represent the 
Gompertz form of density dependence (Kirkwood, 2015). Thus, Fisher 
(1930, page 42) arrives at

This formula has received rather little attention in the literature, but 
it clearly shows Fisher's view that the fundamental theorem provides 
only part of the change in mean fitness and that other forces will act 
simultaneously. I will refer to this model as the "MWCD model." The 
fundamental theorem itself operates at a very high level of abstrac-
tion, making few assumptions (Ewens, 1989, 2004; Grafen, 2015a; 

Price, 1972b): Any "completion" will inevitably involve a much more 
specific model with restrictive assumptions.

Fisher makes the unrealistic assumptions that both W and D 
do not change over time in his analysis of this equation (though of 
course not in his derivation of the fundamental theorem itself). In 
Section 2, a quantitative genetic version of the model is developed 
that relaxes these assumptions. This extension allows us to make in 
Section 3 some new points about the operation of natural selection, 
and thus demonstrate the utility of separating out the total change 
into different components. For example, the model will show that 
Fisher's identification of the additive genetic variance with the ef-
fect of natural selection is not quite right.

This unearthing of Fisher's ideas and models thus has contempo-
rary relevance in still allowing new points to be made. The discussion 
in Section 4 explains Fisher's concept of fitness, which turns out to 
be very simple and closely connected to contemporary ideas for him 
and for us.

The view proposed here is that the fundamental theorem is es-
sentially a suggestion of two definitions, with the statement of the 
theorem a powerful result available if we adopt them both. The first 
definition is of fitness, and the second is of "due to natural selection," 
which explains how to isolate one component of the total change 
(for a full exposition, see Grafen, 2015a, 2015b, 2018). Under these 
definitions, the theorem tells us that the part of the change in mean 
fitness that is due to natural selection equals the additive genetic 
variance in fitness, which implies that natural selection is an improv-
ing process and tells which quantity is improved by it. Grafen (loc. 
cit.) argues that this link is invaluable in understanding biological de-
sign and formalizing Darwin's core argument.

2  | THE MODEL DERIVED

This section's goal is to construct the simplest quantitative genetic 
(QG) model that allows us to track mean fitness over time, as well 
as the variance of fitness divided into various components, and that 
incorporates a changing environment and density dependence. Our 
starting point is a model of Lynch et al. (1991), extended to allow pop-
ulation size to change over time. We track a population of variable 
size n with a quantitative trait x = xg + xe that affects fitness. Assume 
that the environmental component xe has a normal distribution with 
zero mean and variance �2

e
 conditional on the genetic component xg, 

independently within each individual. The genetic component is dis-
tributed across the population as n times a normal distribution:

The relative growth rate of the subpopulation at x, written as m(x) 
and termed "fitness," is modeled by
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with an intrinsic growth rate r, a quadratic term that implements 
natural selection by penalizing the deviation of x from the opti-
mum x̂ with the inverse strength of selection represented by �, and 
minus a Gompertz density-dependent term logn− logn0

C
(for a review, 

see Kirkwood, 2015) that diminishes all growth rates equally as n 
increases. The change in distribution of xg depends on the mean fit-
ness of individuals with a given value of xg, averaging over the distri-
bution of xe, say mg (xg ), and Equations (11) and (12) in the Appendix 
show that

Then, the rate of change of mean and variance of xg, allowing a sup-
ply �2dt of new mutational variance, is as follows,

These equations were first found by (Lynch et al. (1991, Equations (7) 
and (8) on page 1,304) in a very similar model, and are not reproved 
here. Thus, the change in the variance of xg is negatively related to 
its magnitude, and it approaches zero only as the variance itself ap-
proaches its equilibrium value. Therefore, �2

g
 asymptotes to its equi-

librium value. The independence of the second-order process is a 
standard observation in this area (Lande, 1976).

Again following one of Lynch et al.'s directions, assume that the 
optimal value changes linearly with time, to emulate continuing en-
vironmental change, formally x̂t = x̂0 + �t. For ease of description, 
we assume 𝜆 > 0, though clearly the sign could be switched with no 
substantive consequence. Then, defining b = x̂ − x to stand for how 
far the population lags behind the optimum, the system of ordinary 
differential equations in (b, �2

g
), is

The current treatment adds to Lynch et al.'s that population size n var-
ies, and the equation for fitness implies, as shown in the Appendix's 
Equations (12) and (11), that

Note the use of Price (1972a)'s notation for statistical operators 
over the population (see also Grafen, 2015b), so that avef mg is the f-
weighted average of mg, and we will later use varf mg as the correspond-
ing variance. This completes the set of three differential equations in 

the variables (�2
g
, b, n ). The motion of b does not depend on n, so the 

system moves to an equilibrium with values

This completes the development of the model, and the interpre-
tation of new aspects takes place in the next section. Note that the 
equilibrium variance is larger if there is more mutation, and larger 
if the strength of selection is weaker, both of which make intuitive 
sense. The chronic gap increases as the rate of environmental dete-
rioration is larger, and as selection is weaker, and it decreases as the 
mutational input increases. All of these patterns are to be expected, 
and conform to the results of Lynch et al. (1991).

3  | INTERPRETATION OF THE MODEL

This section compares the new model's formula for the total rate of 
change of mean fitness with Fisher's original, and interprets both. 
I have been unable to find any substantive discussion of Fisher's 
model in the literature, probably because the fundamental theo-
rem on which it is based was so misunderstood, and because the 
Gompertz form of density dependence creates an initial difficulty in 
understanding the equation. The original and new forms are

The left-hand sides are equal, as Fisher's M and our m are both mean 
fitness of the population. On the right-hand side, the first terms cor-
respond directly, as Equation (14) shows 

b2�2
g

�4
 to be the additive ge-

netic variance in fitness. Fisher's value was assumed fixed, but the 
QG model allows the underlying genetic trait to evolve in the stand-
ard way, and so it changes over time as the gap between mean and 
optimum (b) changes, and as the genetic variance �2

g
 in the underlying 

trait varies. This first equivalence therefore shows that Fisher's as-
sumption of constancy did no harm.

The second terms on the right-hand side also correspond directly, 
as Fisher's D is the deterioration in mean fitness due to changes in 
the environment, and �b

�2
 is the only term containing �. Again, Fisher 

assumed D was fixed, but the QG model allows it to vary, and shows 
it is proportional to the gap b. This implies that if the gap is nega-
tive, meaning that environmental change is moving the population 
mean toward the optimum, then the deterioration is negative and 
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environmental change is having a positive effect on mean fitness, 
just as one would expect. (The additive genetic variance does not 
become negative in this case, because it is proportional to the square 
of the gap.) Again, apart from identifying a circumstance in which the 
sign can switch, the analysis shows that Fisher's formula was correct 
despite his assumption of constant D. The third terms also corre-
spond directly and reflect the Gompertz density dependence, which 
tends to increase a negative mean fitness and decrease a positive 
mean fitness.

An exciting difference between the formulae appears in the final 
term of Equation (9), which is missing in Fisher's version. The positive 
term in the difference is the nonadditive genetic variance in fitness, 
which depends on the variance in the underlying genetic trait. From 
this is subtracted the reduction in mean fitness that arises through 
the continuing mutational input—this effect arises because spread-
ing the genetic trait will move some of the distribution toward the 
optimum, and some away, but on balance, it results in a reduction in 
mean fitness. The interpretation is simply that mutational input re-
duces fitness by spreading the distribution, and nonadditive genetic 
variance increases fitness by tightening it up.

How does this point affect the fundamental theorem itself? 
If we accept Fisher's definition of "due to natural selection" for 
the left-hand side, then no change is necessary, as the derivation 
is correct. That definition includes only change due to changing 
gene frequencies, which correspond to directional selection. 
Stabilizing selection is a matter of linkage disequilibrium, with a 
tendency to place strong positive alleles in the same individuals 
as strong negative alleles. However, selection does bring about 
linkage disequilibrium, in a way that in turn does increase fitness. 
The simplest reaction is to understand that the left-hand side of 
the fundamental theorem is "the rate of change in mean fitness 
due to the directional effects on traits brought about by natural 
selection," and recognize that there is a systematic force due to se-
lection that is not included. It would be impossible to include that 
force at the level of generality of the fundamental theorem, as the 
minimal model that produces the theorem lacks necessary genetic 
details. It is also important to recognize that any "completion" 
of the fundamental theorem, aiming at the total change in mean 
fitness, such as the current model, must include these effects of 
stabilizing selection and nondirectional mutation. Mutations that 
are directional on underlying traits, which are typically assumed 
outside quantitative genetic models, are already included in the 
theorem. A question of potential interest to philosophers of biol-
ogy is to ask whether Darwin's arguments should be thought of as 
applying only to directional natural selection, excluding its purify-
ing component, or whether this restriction applies only to Fisher's 
formalizing of it.

Thus, the new model helps us understand Fisher's model better. 
It is curious that the QG model shows that the total genetic variance 
in fitness can be regarded as increasing mean fitness, and this may 
link to a similar finding by Morrissey and Bonnet (2019). The import-
ant methodological conclusion is that pursuing the idea of analyz-
ing the change of mean fitness into components, corresponding to 

different causes, continues to improve our understanding of natural 
selection.

One further point is worth making about the QG model. The 
role of mutation is nicely displayed in the formula for the equilib-
rium population size in Equation (8). Mutation helps the population 
mean keep up with the optimum, and so increases population size, as 
reflected in the term �2

2�2
, which enters with a negative sign into the 

exponent. The larger the ratio of rate of change to mutational input, 
the smaller the population size. Mutation also tends to spread out 
the population, increasing the variance of the trait, and this effect 
reduces the mean fitness, as reflected in the �

2�
 term, also with a neg-

ative sign: The higher the ratio of mutation rate to strength of the 
stabilizing selection, the lower the population size.

The QG model is clearly very special, as it assumes distributions 
are all normal and selection is Gaussian. I concur with Morrissey 
and Bonnet (2019) that further work could usefully explore how 
varying these special assumptions affects the conclusions. For ex-
ample, how widely is it true that the whole genetic variance in fit-
ness contributes to increasing the mean fitness? Does the balance 
between additive genetic variance and deterioration of the envi-
ronment hold with other patterns of changing environment, and 
with genetic architectures that do not conform to QG? One further 
assumption within the QG model is that there is only one underly-
ing trait. Allowing multiple traits, but having them combine addi-
tively to make a single "summary trait" that then determined fitness 
through the same quadratic machinery as the model here, would 
make little difference except that linkage disequilibrium between 
the traits would cause complications; allowing nonadditivity would 
clearly represent a significant increase in biological complexity, and 
there are reasons this is rarely attempted in quantitative genetics.

The analysis of the total change in mean fitness shows the signifi-
cance of Fisher's model in contextualizing the fundamental theorem by 
adding environmental change and density dependence, but also refines 
our understanding of the fundamental theorem itself, and so improves 
our formal understanding of Darwin's arguments. The next section con-
siders Fisher's definition of fitness in light of the MWCD model.

4  | DISCUSSION

Fisher's concept of fitness has often seemed obscure. This cru-
cial concept appears on both the left- and right-hand sides of the 
fundamental theorem, but Fisher offers no explicit definition. 
Even when I presented a fully explicit derivation of the theorem 
in precisely Fisher's context (Grafen, 2015a), or in a generalization 
(Grafen, 2015b), the definition of fitness was complicated by the 
class structure of the model. The quantitative genetic version of the 
MWCD model from Section 2 has no class structure, and so offers an 
opportunity for a simple explanation of Fisher's idea. The concept is 
explained first, and then, the justification will be given for regarding 
this as Fisher's definition.

In order to match other uses, we start afresh in defining nota-
tion. Fisher's fitness is an individual-level quantity, so we represent 
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the fitness of individual i  as mi. In a nonstructured model, it is 
simply

where bi is the instantaneous birth rate, and �i is the instantaneous 
death rate. This is a standard formulation in continuous time unstruc-
tured models, and Fisher may easily have come across very similar for-
mulae in Equations (5) and (6) in Chapter IX of Lotka (1925): though 
Lotka does not interpose the term or concept of "fitness" between 
the rate of change of population size and the difference between birth 
and death. mi represents the net rate of growth of i 's lineage, with the 
crucial qualification that sexual diploidy implies there are no separate 
lineages. A value of 0 is neutral, and an individual's genes are dimin-
ishing in frequency with negative values, and increasing with positive 
values. At a population level, the population growth rate is the mean 
value of the mi. This neat connection between the average of an indi-
vidual-level quantity and the population growth rate was already used 
by Lotka. Fisher's special addition was to use this definition, by itself 
entirely straightforward in an asexual context, to obtain meaningful 
results under sexual diploidy and a general genetic architecture.

It is worth pointing out that the property that the average of 
an individual quantity equals the population growth rate emerges 
from the Gaussian fitness function first employed within quantita-
tive genetics by Latter (1960), who himself attributes it to Haldane 
(1954), and subsequently much used (e.g. Lande, 1976; Lande 
et al., 2009, 2017; Lande & Shannon, 1996; Rousset, 2004; Rousset 
& Ronce, 2004), and is of central significance in evolutionary res-
cue models (Anciaux et al., 2018; Gomulkiewicz & Holt, 1995). The 
special genetic architecture assumed in quantitative genetics is the 
reason for this similarity with asexual models.

Let us now make the promised return to showing that we have in 
fact been discussing Fisher (1930)'s definition of fitness. We have to 
remove age from the second formula on his page 30, namely

where x is a subscript indicating age. vx is the per-capita reproductive 
value, bx the birthrate, and �x the death rate, all appropriate to age x. 
An informal way to remove age from the model is to set reproductive 
value to 1 and drop the age subscript. A more formal way is to note that 
without age structure, b and � cannot depend on x. It then follows from 
Fisher (1958)'s formula for reproductive value (preferred to the first 
edition because of the erroneous omission of v0 there) that vx also does 
not depend on x, and is positive. We arrive at the same point as the less 
formal approach, which yields

where it is important to note that these are three population average 
quantities. Fisher then introduced breeding values (which he calls "ge-
netic expectations") on pages 30–34, in relation to stature as an exam-
ple of a quantitative trait. Later on page 34, he wrote

mi = bi − �i,

dvx − �xvxdx + bxv0dx = mvxdx,

(10)b − � = m,

The definitions [sc. of average excess, average effect 
and genetic expectation] given above may be applied 
to any characteristic whatever; it is of special interest 
to apply them to the special characteristic m which 
measures the relative rate of increase or decrease. 

(p34, the brackets are added)

The reader's conundrum is that Fisher had not defined his m as an 
individual property, but only in terms of averages over age groups. 
Grafen (2015a) proposed that the obvious way for Equation (10) 
to deliver an individual-based mi for individual i  is to suppose that 
birth rate and death rate are individual characters bi and �i, and that 
mi = bi − �i. The average property then holds if we define b, �, and m 
as the averages of the respective individual variables. Fisher did not 
spell this step out, but it seems simple enough, and Grafen showed 
that it leads to a coherent mathematical development that recov-
ers all of Fisher's results in that section, including the fundamental 
theorem. To adopt this suggestion that mi = bi − �i is to regard the 
definition used earlier in this section as indeed that of Fisher.

Thus, Fisher's definition of fitness turns out to be very simple 
in unstructured populations. The first sophistication in age-struc-
tured populations is that an individual has a fitness at each mo-
ment of time: while this is also true in the unstructured model, that 
instantaneous fitness remains constant over time, while with age 
structure, an individual's fitness changes over time. Thus, fitness 
is not a "tombstone evaluation" of an individual's reproductive 
success, but a dynamic quantity indicating success at a particular 
moment. Essentially, at each moment, its own possibly surviving 
self is treated as a special kind of offspring. The second sophisti-
cation is that the gain through reproduction and loss through mor-
tality of individuals must be weighted by their reproductive value, 
so that bxv0 − �xvx is still birth rate minus mortality rate, but takes 
into account the influence on the future gene pool, and is not just 
a head count (this quantity is sometimes called "Williams’ repro-
ductive value" Grafen, 2015a; Grafen, 2020). The third and final 
sophistication is to divide this quantity by the reproductive value 
an individual expects by virtue of its age, yielding fitness for indi-
vidual i  of age x as

The division by vx has the consequence that the average fit-
ness of each age class is the same, and equal to the Malthusian 
parameter. Thus, fitness is interpreted as how much an individual 
spreads her alleles, compared with others of the same age, with a 
value of zero meaning her alleles are not increasing in number at all. 
Computationally, we can regard bxv0 − �xvx as counting the change 
in gene copies, and realize that we need to add this up over indi-
viduals to find the success of an allele; but given we are going to 
follow Fisher's advice to weight fitness by the individual's reproduc-
tive value when taking the average, we need to divide bxv0 − �xvx by 
vx so that once weighted, we are indeed adding up the numerators. 

mi =
biv0 − �ivx

vx
.
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See Grafen (2015a, b) for more discussion, or a much less technical 
account by Grafen (2020).

The rest of biology has continued to use the idea of birth rate 
minus death rate as rate of increase whenever the assumptions are 
plausible, for example, clonal populations and quantitative genet-
ics. The benefit of using the fundamental theorem is obtaining the 
desirable quantification of Darwin's central argument that natural 
selection is an improving process, and discovering what quantity is 
improved. The cost of using it is (a) adopting Fisher's very reason-
able definition of fitness, shown above to be simple and direct, and 
(b) adopting Fisher's understanding of which part of the change in 
the mean of a trait should be counted as "due to natural selection," 
argued above to be a device for obtaining a simple unifying concept 
under a general genetic architecture and sexual diploidy.

To sum up, the MWCD model has been expanded and shown 
largely to confirm Fisher's conclusions even when his assumptions of 
constant W and constant D are relaxed, but we now understand the 
fundamental theorem to deal not with all of natural selection, but to 
exclude stabilizing selection and deal only with natural selection that 
is directional on the underlying traits. The opportunity to encounter 
Fisher's fitness in an unstructured model has allowed its very simple 
definition as birth rate minus mortality rate to be explained. Fisher 
was the first to "complete" the fundamental theorem by adding extra 
terms to determine the total rate of change in mean fitness. We have 
seen that this exercise reinforces the purpose of the fundamental 
theorem, which is to isolate from the total change a component to 
be regarded as "due to natural selection." Without such a quantifi-
cation, it is impossible to formalize Darwin's main point that natu-
ral selection is an improving process. Generalizations about natural 
selection need to be able to isolate this component, and say what 
quantity is improved: Fisher's theorem shows us how to do both, 
and the logic of his age-structured model can be straightforwardly 
extended to general structured populations (Grafen, 2015b).
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APPENDIX 
One basic result and the new results are derived here. The average 
growth rate of individuals with a given value of xg is the average over 
the environmental component of m (x) given in Equation (3). Splitting 
the square (x − x̂ ) 2 into

and taking the average over the distribution of xe, relying on the con-
ditional independence of xe and its zero mean, gives the average 
value as

which we will use below in the expression for mg

(
xg
)

The weighted averages will be with respect to the distribution of 
the trait's genetic component xg, denoted f  and defined in Equation 
(2). Note that f  integrates to the population size n, and not to 1. The 
average fitness m (obtained by averaging over the average fitness mg 
for each xg) is

The per-capita change in population size equals this value, as 

An expression for the genetic variance of fitness mg is found by 
expanding as follows,

where the covariance equals zero because all central odd moments of 
the Gaussian distribution equal zero, and later making use of the fact 
that the uncorrected kurtosis of a normal distribution is three times 
the variance squared (Abramowitz & Stegun, 1972; see 26.1.18 and 
26.1.26).

The partition of the variance in fitness into additive and nonad-
ditive components is easily found, by calculating the slope across 
values of xg of mean fitness on trait from covf

(
mg, xg

)
= b�2

g
∕�2, and 

then the additive component as the squared slope times trait vari-
ance, to be

(xg + xe − x̂ ) 2 = (xg − x̂ ) 2 + 2xe
(
xg − x̂

)
+ x2

e
,

(xg − x̂ ) 2 + �2
e

(11)

m = avef mg = avef r −
�2
e

2�2
−

xg − x̂
2

2�2
−

logn − logn0
C

= r −
logn − logn0

C
−

�2
e

2�2
−

�2
g
+ b2

2�2

(12)

n= ∫ fdx,

1

n

dn

dt
=

∫ df

dt
dx

∫ fdx
=

∫ 1

f

df

dt
dx

∫ fdx
=

∫ mgfdx

∫ fdx
= avefmg.

(13)

varf mg = varf

(
r −

�2
e

2�2
−

(xg − x̂ ) 2

2�2
−

logn − logn0
C

)

= varf

(
−

(xg − x ) 2

2�2
− 2

(
xg − x

) (
x − x̂

)

2�2
−

( x − x̂ ) 2

2�2

)

=
varf

(
(xg − x ) 2 + 2

(
xg − x

) (
x − x̂

))

4�4

=
varf

(
(xg − x ) 2

)
+ 4b2varf

(
xg − x

)
− 4bcovf

(
(xg − x ) 2,

(
xg − x

))

4�4

=
avef

(
(xg − x ) 4

)
− ( avef

(
(xg − x ) 2

)
) 2 + 4b2�2

g

4�4

=
3�4

g
− �4

g
+ 4b2�2

g

4�4

=
�2
g

(
�2
g
+ 2b2

)

2�4
,

(14)varf mg =
�2
g
�2
g
+ 2b2

2�4
=

b2�2
g

�4
+

�4
g

2�4
.
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The rate of change of mean fitness is established by differenti-
ating Equation (11), and then substituting using Equations (12), (4) 
and (5) for terms in n, �2

g
, and b, respectively, and then employing 

Equation (13), to find

The final form in the text relies on the equality of the means of m and 
mg, which was established in Equation (11), and on the partition just 
established into additive and nonadditive components of the genetic 
variance in fitness.

(15)davefmg

dt
= varfmg −

�b

�2
−

avefmg

C
−

�2

2�2
.


