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Continuous flow ventricular assist devices (cfVADs) constitute a viable and increasingly

used therapy for end-stage heart failure patients. However, they are still operating at a

fixed-speed mode that precludes physiological cfVAD response and it is often related to

adverse events of cfVAD therapy. To ameliorate this, various physiological controllers have

been proposed, however, the majority of these controllers do not account for the lack of

pulsatility in the cfVAD operation, which is supposed to be beneficial for the physiological

function of the cardiovascular system. In this study, we present a physiological data-

driven iterative learning controller (PDD-ILC) that accurately tracks predefined pump flow

trajectories, aiming to achieve physiological, pulsatile, and treatment-driven response

of cfVADs. The controller has been extensively tested in an in-silico environment

under various physiological conditions, and compared with a physiologic pump flow

proportional-integral-derivative controller (PF-PIDC) developed in this study as well

as the constant speed (CS) control that is the current state of the art in clinical

practice. Additionally, two treatment objectives were investigated to achieve pulsatility

maximization and left ventricular stroke work (LVSW) minimization by implementing

copulsation and counterpulsation pump modes, respectively. Under all experimental

conditions, the PDD-ILC as well as the PF-PIDC demonstrated highly accurate tracking

of the reference pump flow trajectories, outperforming existing model-based iterative

learning control approaches. Additionally, the developed controllers achieved the

predefined treatment objectives and resulted in improved hemodynamics and preload

sensitivities compared to the CS support.

Keywords: LVAD, heart failure, data driven control, iterative learning control, VAD physiological control, ventricular

assist devices, ILC, pulsatile blood pump

INTRODUCTION

The prevalence of advanced heart failure (HF), a complex heart syndrome that has long been
associated with significant mortality and morbidity rates, has been continuously rising worldwide
over the last decades (1–3). For the afflicted patients who account for approximately 1–2% of the
general adult population, (3) heart transplantation (HT) is considered the gold standard therapy;
however, despite the increased number of heart transplantations performed yearly, the number of
recipients continues to significantly outpace the supply of donors (4).

An alternative surgical treatment to mitigate donors’ shortage and allow better management of
end-stage HF patients is the implantation of ventricular assist devices (VADs) (5, 6). VADs are

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.922387
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.922387&domain=pdf&date_stamp=2022-07-13
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:marischm@ethz.ch
https://doi.org/10.3389/fcvm.2022.922387
https://www.frontiersin.org/articles/10.3389/fcvm.2022.922387/full


Magkoutas et al. Physiologic DD-ILC for VADs

mechanical pumps that relieve the native heart and restore
a fragment of the cardiac output. Their major deployment is
complementary, serving as bridge to transplantation or bridge
to recovery (7). However, recent studies have shown that VADs
are increasingly used as destination therapy, achieving 1- and
2-year survival rates of 82.3 and 73.1%, respectively, which are
comparable to HT (8, 9).

Since their initial approval, VADs have been evolved and
matured, with the continuous flow turbodynamic VADs
(cfVADs) superseding the bulky and failure-prone volume
displacement, pulsatile VADs (10, 11). Despite the notably
improved reliability and implantability, cfVADs are still
associated with right-heart failure, gastrointestinal bleeding,
hemorrhagic strokes, and aortic valve insufficiency, which
reduce the survival rates and increase hospital readmissions
(5, 12–14). These adverse events are often related to the inability
of the currently used cfVADs to respond physiologically to the
changing perfusion demands of the patients. To ameliorate this,
various research groups have been investigating cfVAD control
strategies that restore the physiological response of cfVADs
(15, 16). The majority of these strategies aim to imitate the
Frank-Starling mechanism (17) by adapting the rotational speed
of the cfVAD based on feedback provided by hemodynamic
parameters that act as preload surrogates (18–21). More complex
strategies utilize norm-optimal iterative learning control (22, 23)
to regulate the end-diastolic volume. They exploit the repetitive
nature of the heart and, hence, use information of previous cycles
to deduce the control input for the new cycle. These approaches
are promising; however, their performance can be restricted by
the accuracy of the cardiovascular system and cfVAD models
that are integrated in the control structure to allow the prediction
of the control function.

All control strategies mentioned above improve the
responsiveness of VADs, however, they do not address the
diminished blood pulsatility induced by cfVADs support.
Whether or not the diminished pulsatility is among the major
contributors of adverse events of cfVADs is still a controversial
issue (24). Nonetheless, recent studies have reported strong
evidence that the lack of pulsatility can negatively affect
the endothelial and peripheral vascular function (25–27)
and, hence, increase the risk of non-surgical bleeding (28).
Additionally, various studies highlight the better control of
ventricular unloading and patient’s hemodynamics when VADs
that effectively resemble the pulsatile flow conditions are
deployed (29–32).

In an attempt to imitate the pulsatile blood pressure and flow
waveforms, while exploiting the reliability and implantability of
cfVADs, various approaches of cfVAD speed modulation have
been proposed in literature (33–38). A recent review shows that
predefined speed profiles implemented in synchrony with the
native heart can systematically manipulate the ventricular load
and the pulsatility in the arterial tree, confirming the positive
effect of speed modulation (39). These approaches focus on the
modulation of the speed-profile which is readily available in
the clinical setting. However, cfVAD speed-profiles are greatly
influenced by the VAD design, hindering the deduction of a
direct relation to hemodynamics, as well as, their transferability

to different VADs. A more intuitive approach is the modulation
of cfVAD speed based on predefined pump flow-profiles. By
utilizing an iterative learning control (ILC) scheme, Rüschen et
al. (40) provided evidence that accurate tracking of optimized
pump flow-profiles can be achieved, resulting in a significant
reduction of the left ventricular stroke work (LVSW). For the
latter study, a detailed model of the VAD is necessary to enable
the accurate flow-profile tracking.

In this study, we introduce a physiologic data-driven iterative
learning controller (PDD-ILC) for left ventricular cfVADs.
The proposed PDD-ILC enables the generation of preload-
adaptive reference pump-flow trajectories based on the Frank-
Starling mechanism and treatment objectives, such as pulsatility
maximization or LVSW minimization, selected by the clinicians.
The tracking of the reference flow trajectories is achieved by
measuring left ventricular pressure (LVP) and pump flow (PF),
and then implementing the data-driven ILC (DD-ILC). The DD-
ILC exploits the recurrent nature of the heart cycle to incorporate
the errors identified in previous cycles to the control input of
the new cycle and, hence, enhance the tracking performance
without requiring a system model. Finally, to enable feedback in
the time-domain, a proportional-derivative controller is coupled
with the PDD-ILC. The performance of the proposed PDD-
ILC was assessed with respect to physiologic responsiveness
and trajectory tracking with in-silico experiments that emulated
various physiologic conditions, and compared with a constant
speed (CS) controller and a newly developed physiological pump
flow proportional-integral-derivative controller (PF-PIDC).

METHODS AND MATERIALS

Cardiovascular System Model
In this work, the performance of the PDD-ILC was assessed
solely with in-silico experiments, wherein the deployed human
cardiovascular system (CVS) was modeled based on the lumped-
parameter representation proposed by Colacino et al. (41). In
this representation, the systemic and pulmonary circulations
were divided into the arterial and venous systems. The arterial
and venous systems were modeled with five-element and classic
Windkessel models, respectively. The CVS model incorporated
autoregulatory mechanisms for the adaptation of the flow
resistance in the systemic and pulmonary arterial systems, as
well as the adaptation of the unstressed volume in the systemic
veins. All four chambers of the heart were included as actively
contracting elements and they were defined by a non-linear
time-varying elastance model and an energy dissipation term.
A detailed description of the model and its validation in
physiological and pathological states can be found in the work of
Colacino et al. (41). In all simulations, the pathologic conditions
defined by Ochsner et al. (42) were used.

Numerical Models of Blood Pumps
The conditions of a cfVAD supported patient were imitated
by coupling the CVS model described above with a numerical
model of a non-implantable mixed-flow turbodynamic blood
pump (Deltastream DP2, Medos Medizintechnik AG, Stolberg,
Germany). The later model was based on the work of Amacher
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et al. (37). In detail, the mathematical description includes two
differential Equations that define the acceleration of fluid (1) and
the acceleration of the rotor (2):

dQ

dt
=

1

L

(

H
(

Q(t),ω(t)
)

− (pds(t)− pus(t))
)

(1)

dω

dt
=

1

Θ

(

− (Q (t) ,ω (t)) + k · I(t))
)

(2)

where Q, ω, and I are the flow-rate, the rotational speed and the
current of the pump, respectively. pds and pus are the pressures
downstream and upstream of the pump, which correspond to the
aortic and left ventricular pressures, respectively. L and Θ are
the fluid inertance and the rotor inertia, while k is the torque-
constant of the pump motor. H and T are matrices containing
two-dimensional maps of the pressure across the pump and the
hydraulic torque applied on the shaft. The values of the these
parameters were retrieved from Amacher et al. (37).

Overview of PDD-ILC
The proposed PDD-ILC scheme for LVADs aims to provide
an accurate reference tracking of predefined, therapy-oriented,
PF profiles while it achieves physiological VAD response when
preload changes are encountered. A schematic overview of the
PDD-ILC structure is depicted in Figure 1 and it can be divided
into four main subsystems, namely, signal processing and feature
extraction, reference PF trajectory generator, DD-ILC, and time-
domain PD-controller.

Signal Processing and Feature Extraction
The function of the PDD-ILC is based on the LVP, specifically
the end-diastolic (LV-EDP) value, and the PF. The acquisition of
these variables is envisaged by integrating two pressure sensors
into a tapered inflow cannula and exploiting the difference in
the dynamic pressure component between the measuring ports
to estimate the PF, as proposed by von Petersdorff-Campen et al.
(43). However, in this in-silico study, the simulated signals were
used instead and white noise was added in specified experiments
to emulate a realistic sensor signal and challenge the PDD-
ILC, as described in the section “Experiments for Performance
evaluation.” Both LVP and PF signals were low-pass filtered with
a first-order filter with cut-off frequency of 25 Hz.

The extraction of the LV-EDP and left ventricular systolic
pressure (LV-SP) from the entire time sequence of the LVP was
based on the work of Petrou et al. (34). In detail, the LVP was
further low-pass filtered with a second-order filter with a cut-off
frequency of 8Hz. From the timeseries data, the indices of the
local maxima corresponding to the LV-SP were extracted and the
heartbeat was defined as the interval between two consecutive
LV-SP indices (Figure 2A). As it is shown in Figure 2A, for
each heartbeat, the local minima of the LVP as well as the
points of inflection, where the curvature changed from concave
to convex, were identified as possible LV-EDP candidates. From
the inflection points, only the points where the first derivative of
the LVP was below a certain threshold (here 40 mmHg/s) were

qualified as possible LV-EDP candidates. From all candidates, the
one closest to the LV-SP index was identified as LV-EDP.

Although this approach is accurate, the changes in the LVP
waveform due to the in-cycle speed modulation of the cfVAD can
increase the LV-EDPmisdetections. To address this, an extension
for the LV-EDP extraction process was developed in this work.
Specifically, as it can be seen in Figure 2, the LV-EDP values
identified in the last three heartbeats are used to estimate through
linear regression the LV-EDP value of the new heartbeat. The
LV-EDP identified for the new heartbeat is compared with the
estimate and if it lies within predefined boundaries (here ± 1
mmHg) it is extracted as the LV-EDP. When the identified LV-
EDP lies outside the boundaries (Figure 2C), it is considered an
outlier and the mean LV-EDP value of the last three heartbeats is
extracted as LV-EDP of the new cycle. The latter value is used
along with the LV-EDP of the previous two heartbeats for the
estimation of the LV-EDP of the next heartbeat. The outlier is
saved in memory and if three consecutive outliers have been
identified, a flag is created that the LV-EDP has indeed changed
significantly and the new LV-EDP estimate is projected from
these three outliers (Figure 2C). The latter step is incorporated
to ensure that rapid changes in the LV-EDP are not obscured.

Reference Pump Flow Trajectory Generator
In this work, reference PF trajectories were used to modulate
the pump speed since they provide more intuitive control of the
hemodynamics and the interactions between the cfVAD and the
CVS, (40, 44) while at the same time, they are highly transferable
to different cfVAD designs when a sufficiently accurate tracking
performance is guaranteed. The generation of these trajectories
followed a two-step approach. As a first step, the Frank-Starling
mechanism was imitated to obtain a physiological preload
response of the cfVAD. More precisely, the LV-EDP extracted at
each heartbeat was used as a surrogate of the preload (EDPLV )
and, by assuming that the flow from the aortic valve is negligible
and the PF approximates the cardiac output (CO), the linear part
of the starling-relationship between the LV-EDP and the CO was
used to provide the necessary average PF (q̄∗

bp
) as follows:

q̄∗bp = qbp, ref + kFs(EDPLV − EDPLV ,ref ) (3)

Here qbp, ref and EDPLV ,ref are reference values for the PF
and LV-EDP, respectively, identified from the healthy heart at
rest conditions and a CO of 5 L/min during calibration. The
parameter kFs denotes the preload sensitivity which can be
selected by the clinician. This ability to directly select the preload
sensitivity is paramount to achieve a patient-specific response of
the controller and constitutes a major advantage compared to
speed-based controllers, where the control gain needs to be tuned
to reach a satisfying preload sensitivity.

The second step to obtain the reference PF trajectories was
to incorporate an in-cycle pulsatile profile that enables the
accomplishment of treatment-based objectives selected by the
clinician. These pulsatile trajectories were based on trapezoidal
profiles, wherein the minimum PF was selected to be q∗

bp,min
=

20 mL/s to provide a safety margin against backflow, and the
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FIGURE 1 | Schematic overview of the physiological data-driven iterative learning controller. The input signals LVP and PF are filtered and the EDP and SP indices are

extracted from the LVP. Based on the Frank-starling mechanism, the desired average PF is calculated based on the LV-EDP that is used as a preload surrogate, and

the reference pulsatile PF trajectory is obtained based on the objectives of the therapy. A data-driven iterative learning controller is implemented to achieve accurate

tracking of the reference PF without requiring modeling of the CVS or the pump. Finally, a proportional-derivative (PD) controller is coupled coupled to enable feedback

in the time-domain. The desired pump speed is the output of the controller. Bold letters define vectors. LVP, left ventricular pressure; EDP, end-diastolic pressure; SP,

systolic pressure; PF, pump flow; qbp, measured pump flow; q̄*bp, heart cycle average pump flow; q*
bp, time vector of the desired pump flow trajectory; n*bp,FF , feed

forward desired pump speed; n*bp,FB, feedback desired pump speed; n*bp, desired pump speed output.

maximum PF was calculated based on the q∗
bp,min

and the

necessary average PF provided by the starling-relation (q̄∗
bp
).

For each trajectory, the minimum flow was applied for 30% of
the cardiac cycle, the maximum flow for 50% of the cardiac
cycle, while each transition phase had a duration of 10% of
the cardiac cycle. This proportion was chosen to prevent short
spikes of desired maximum flow, since such trajectories could
not be tracked using cfVADs and would be susceptible to
high blood damage. For the pulsatile trajectories, various phase
shifts (45) with respect to the onset of cardiac cycle can be
applied to achieve different concurrent objectives; however, in
this work, only copulsation and counterpulsation trajectories
were investigated to achieve maximization of the aortic pulse
pressure and minimization of LVSW, respectively, as proposed
by Ising et al. (44). The maximum PF was applied during the
entire systole for the copulsation trajectory, whereas for the
counterpulsation trajectory the maximum PF was applied during
diastole. In Figure 3 the reference PF trajectories for an average
PF of 85 mL/s are depicted.

Data-Driven Iterative Learning Controller
To achieve the desired response of the PDD-ILC, accurate
reference tracking of the PF trajectory is required. Considering
the repeating disturbances applied on the cfVAD in each cardiac
cycle by the changes in the head pressure (difference between
pressure at the outlet and pressure at the inlet of the cfVAD)
from the remaining heart function, as well as the periodic changes
in the preload, ILC schemes are suitable for reference trajectory
tracking. More precisely, in repetitive process, ILC strategies can
exploit the knowledge obtained in previous iterations to produce
a feed-forward control input that progressively enhances the
tracking performance. In this study, the DD-ILC was developed
based on the approach proposed by Chi et al. (46) wherein a
pseudo partial derivative (PPD) computed from the input and
output signals serves as system model in the iteration domain,

where one iteration stands for one heartbeat. The model is then
used in a quadratic optimization procedure to minimize a cost
function subject to input and output constraints.

The implementation of the DD-ILC is illustrated in Figure 4.
Initially, a memory block is incorporated to store the per-cycle
vectors of the pump speed setpoint n∗

bp
and the PF qbp, with

varying number of samples N:

n∗bp,j = [n∗bp,j (0) , n
∗
bp,j (1) , . . . , n

∗
bp,j (N − 1) , n∗bp,j(N)] (4)

qbp,j = [qbp,j (0) , qbp,j (1) , . . . , qbp,j (N − 1) , qbp,j(N)] (5)

These vectors contain the information of the entire time
sequences of the previous cycles (iterations). They are used to
obtain a representation of the CVS and the cfVAD system in the
iteration domain through dynamic linearization. Specifically, the
dynamic linearization model is based on the identification of the
PPD Φj by relating the difference in the output signal qbp and the
input signal n∗

bp
between consecutive iterations:

1qbp,j = Φj∆n∗bp,j

with ∆qbp,j = qbp,j − qbp,j−1 , ∆n∗bp,j = n∗bp,j − n∗bp,j−1 (6)

where j denotes the iteration index. Since the system is causal, Φj

is a lower triangular matrix. To compute an estimate of the PPD,
denoted as Φ̂j, the update formula described by Chi et al. (46)
was used:

ϕ̂t
j+1 = ϕ̂t

j +
η(∆qbp,j

(

k+ 1
)

− ϕ̂t
j∆n∗

bp,j
(k))∆n∗T

bp,j
(k)

µ +

∥

∥

∥
∆n∗

bp,j
(k)

∥

∥

∥

2
(7)
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FIGURE 2 | Schematic representation of the LV-EDP extraction process and the extension for the minimization of misdetections. (A) Identification of all local minima

(cyan circles) and inflection points (red rectangles) as LV-EDP candidates. The inflection points with large first LVP derivative (dLVP/dt > 40 mmHg/s) are excluded and

the candidate with the smaller distance from the SP index (dtmin) is identified as the LV-EDP. (B) Comparison of the identified LV-EDP (filled circles) with the LV-EDP

estimated (filled rectangles) based on linear regression of the LV-EDP extracted on the previous three heartbeats. If the identified LV-EDP is within the boundaries, it is

extracted as LV-EDP value. (C) Based on the comparison described in b, if the identified LV-EDP is outside the boundaries it is considered an outlier and the mean

value of the last three LV-EDPs is extracted as LV-EDP (filled triangles) of the investigated heartbeat. The outliers are stored in memory and if three consecutive

identified LV-EDPs constitute outliners a flag is raised and the new LV-EDP estimate is based on the outliers (LRn+3) instead of the extracted LV-EDPs. In this way,

physiological rapid changes in preload are not obscured. LVP, left ventricular pressure; EDP, end-diastolic pressure; LR, linear regression; EM, extracted mean value;

E, extracted; UpB, upper boundary; LB, lower boundary.

where ϕ̂t
j+1 denotes the nonzero vector of the (t + 1)th row

of Φ̂j+1. Accordingly, n∗
bp,j

(k) contains the PF setpoints

at iteration j up to time index k and based on Equation
(4) is a varying dimension vector with k elements. The
learning process can be tuned by selecting the normalization
value µ and the learning gain η. The values of the

later parameters were identified through the controller
gain optimization described in section “Optimization of

Controller Parameters”.
For the first iteration, the initial values for the pump speed

setpoint, the PF and the PPD required from the algorithm were

selected as:
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Φ̂0 = 10−4











1 0
1 1

. . . 0

. . . 0
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. . .

1 1
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. . . 1











, n∗bp,0 =











0
0
...
0











, q∗bp,0 =











0
0
...
0











(8)

Hence, no model knowledge is required to initialize the
controller. None of the previously converged solutions were
used in the initialization procedure, and no model knowledge
was included.

As a next step, the estimated PPD is used in a quadratic
optimization problem to minimize the predicted PF tracking
error under actuator constraints. The cost function in this
optimization problem comprises two terms, namely the predicted
PF tracking error (Jq) and the change in the input vector (Ju). The
Ju cost component provides robustness against undesirably high
changes in the pump speed setpoint during the transient behavior

FIGURE 3 | Reference PF trajectories that incorporate a physiological

response to preload changes based on the Frank-Starling mechanism and

therapy-oriented pulsatile PF profiles. A copulsation and a counterpulsation PF

trajectory along with the LVP for one cardiac cycle are depicted. For both PF

trajectories, the minimum PF is q*bp,min = 20 mL/s and the maximum PF is

calculated based on the q*bp,min and the necessary average PF provided by the

starling-relation (q̄*bp). PF, pump flow; LVP, left ventricular pressure; Co-PF,

copulsation pump flow; Counter-PF, counterpulsation pump flow.

of the learning algorithm. The predicted PF tracking error to be
minimized is described as:

ej = q∗bp,j+1 − q̂∗bp,j+1 (9)

where q̂∗
bp,j+1

denotes the predicted PF at cycle j + 1 using the

updated PPD given by:

q̂∗bp,j+1 = q̂∗bp,j + Φ̂j+1 ∆n∗bp,j (10)

Hence, by combining the two cost components, the cost function
can be written as:

Jj+1 = Jq,j+1 + Ju,j+1 = eTj Q ej + ∆n∗Tbp,j+1R∆n∗bp,j+1 (11)

where Q and R are positive definite weighting matrices that, in
this work, are identified during the controller gain optimization
described in section “Optimization of Controller Parameters”.

Additionally, to avoid unrealistic pump speed setpoints, the
pump speed is constrained between a minimum and maximum
value defined based on the pump design. Hence, the final
optimization problem can be written as:

min∆n∗
bp,j+1

( Jj+1) (12)

s. t. ∆n∗bp,j+1 ≥ nbp,min − n∗bp,j (13)

∆n∗bp,j+1 ≤ nbp,max − n∗bp,j (14)

The optimization problem is solved using the quadprog function
provided by MATLAB R2020b (The MathWorks Inc., Natick,
MA, USA). The optimized change in the pump speed setpoint
vector is added to the speed setpoint vector of the previous
iteration to provide the new control input vector as:

nbp,j+1 = nbp,j + ∆n∗bp,j+1 (15)

FIGURE 4 | Schematic overview of the DD-ILC algorithm. The pump speed setpoint and the PF are stored in a memory block. Then, they are used at the beginning of

each cycle to update the system model through dynamic linearization. The model is used in a quadratic optimization problem to minimize the PF tracking error under

pump speed constraints. The time index counter operates continuously to extract and output the feedforward pump speed setpoint at every time step within an

iteration. Bold letters define vectors. n*
bp,j , pump speed setpoint vector of the jth cycle; qbp,j , measured PF vector of the jth cycle; Φ̂j , pseudo partial derivative denoting

the linearized system model; q*
bp,j+1, PF reference trajectory; n*bp,FF , feedforward pump speed setpoint in the time domain.
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Finally, since the dynamic linearization and the quadratic
optimization are executed only at the beginning of each cycle,
an additional module that operates at the full control frequency
extracts the feedforward pump speed setpoint n∗

bp,FF
at every

time index.

Time-Domain Proportional-Derivative Controller
The DD-ILC incorporates feedback in the iteration domain;
however, it is a feedforward controller in the time domain.
Therefore, an additional PD controller that operates in parallel
to the DD-ILC is introduced (Figure 1). The PD controller
showed to deteriorate the convergence speed of the DD-ILC
during transient phases. However, it restricts the tracking error
to become unbounded when the desired average PF changes
rapidly due to changes in LV EDP. Hence, to exploit the
latter characteristic without compromising convergence, the
time domain PD controller is only activated if the desired
average PF changes by at least 1 mL/s and, therefore, it is
described as:

n∗bp,FB(k) =






kp

(

q∗
bp

(

k
)

− qbp(k)
)

+ kd
d
(

q∗
bp(k)−qbp(k)

)

dk
if

∣

∣

∣
q̄∗
bp,j+1

− q̄∗
bp,j

∣

∣

∣
≥ 1

0 Otherwise

(16)

Finally, by incorporating the feedback in the iteration domain
provided by the DD-ILC and the feedback in the time domain
provided by the PD controller, the pump speed setpoint at time
index k is given by:

n∗bp
(

k
)

= n∗bp,FF
(

k
)

+ n∗bp,FB(k) (17)

Physiological Flow PID Controller
A PID controller was also developed to achieve PF tracking and
it was used to further evaluate the performance of the PDD-ILC.
This controller uses the LVP and the PF to regulate the pump
speed and achieve a physiological response to preload changes
while it tracks specific PF profiles. The signal processing and
feature extraction blocks, as well as the flow trajectory generator
are the same as described for the PDD-ILC. As it can been seen
in Figure 5, a time index counter is used after the flow trajectory
generator to extract the feedforward PF setpoint at every time
step. The measured PF is compared with the PF setpoint and
the error is used as feedback to the PID controller. The output
of the PID controller corresponds to the desired change in the
pump speed. This change is added to a pump speed constant
and the desired pump speed is defined. The pump speed is not
constrained between a minimum and maximum value as in the
PDD-ILC, however, the step-change in pump speed is constraint
to 2,500 rotations per minute.

Experiments for Performance Evaluation
The assessment of the PDD-ILC was based on in-silico
experiments that simulate a pathologic CVS supported by
a cfVAD, using the numerical models described in sections

“Cardiovascular SystemModel” and “NumericalModels of Blood
Pumps”. Additionally, to allow a detailed evaluation, several
clinical conditions and everyday scenarios emulating resting
(Exp0), preload variations (Exp1), afterload variations (Exp2),
sleep-to-wake (Exp3), contractility variations (Exp4) as well as
rest-to-exercise (Exp5), were tested with the PDD-ILC regulating
the cfVAD speed. The parameters of the CVS, as well as the
specific values used to simulate the aforementioned conditions
are based on the experimental procedure described by Petrou
et al. (19) and they are given in Supplementary Tables S1–S3

of the supplementary material. To test the robustness of the
PDD-ILC when real measured signals are used instead of the
simulated ones, all experiments were repeated with white noise
with a variance of 0.86 mmHg2 (Exp0n−5n) and 1.72 mmHg2

(Exp0nn−5nn) on the LVP or/and a variance of 0.86 (mL/s)2

(Exp0n−5n) and 1.72 (mL/s)2 (Exp0nn−5nn) PF signals.
To benchmark the performance of the proposed PDD-ILC in

comparison to the state of the art, the same experiments have
been conducted with a simulated healthy heart (HH), wherein the
contractility parameter was set to 1, a constant speed controller
(CS), and the developed PF-PIDC. All experiments were executed
on MATLAB/Simulink R2020b (The MathWorks Inc., Natick,
MA, USA) for 200 s.

Optimization of Controller Parameters
The performance of the PDD-ILC, as well as the PF-PIDC, is
highly dependent on the selection of the control parameters.
Although for PID controllers the Ziegler-Nichols approach (47) is
most commonly used to fine-tune their parameters (KP, KI , KD),
its applicability to non-linear, time-variant systems, such as the
CVS system, is prohibited. For the developed PDD-ILC, which
includes six control parameters (µ, η, Q, R, kp, kd), there is no
intuitive method to fine-tune these parameters.

In this work, the genetic algorithm-based optimization
framework (GAOF) described by Magkoutas et al. (48) was used
to obtain a set of optimal parameters for each controller. In
this framework, the user defines the VAD control structure,
the numerical model of the CVS coupled with the numerical
model of the selected VAD, the objective function (OF) to be
evaluated, the experiments for the evaluation of the OF, and the
genetic algorithm (GA) parameters. During the execution, each
individual, defined as a set of control parameters, is fed to the
controller and the numerical model of the VAD-supported heart
is simulated. The simulation results are used for the evaluation
of the OF and the obtained value is assigned to the respective
individual as “score.” As long as the convergence criterion of
the optimization problem is not met and the maximum number
of generations (each generation includes multiple individuals)
is not achieved, the scores of the individuals are fed to the
genetic algorithm. Based on those scores, the GA uses genetic
operations, namely elitism, crossover, and mutation, to create
new individuals for the next generation. The process continues
for each individual and each generation until an optimum (or
multiple) set of control parameters has been identified.

To enable the execution of the GAOF for the PDD-ILC
and the PF-PIDC, the numerical model of the CVS and the
cfVAD described in sections “Cardiovascular SystemModel” and
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FIGURE 5 | Schematic overview of the physiological flow PID controller. The input signals LVP and PF are filtered and the EDP and SP indices are extracted from the

LVP. Based on the Frank-Starling mechanism, the average PF is calculated based on the LV-EDP that is used as a preload surrogate, and the reference pulsatile PF

trajectory is obtained based on the objectives of the therapy. A time index counter operates continuously to extract and output the feedforward PF setpoint at every

time step. A PID flow controller (included in the orange dashed-line box) provides the necessary change in the pump speed setpoint based on the error between the

measured and the desired PF. The desired pump speed is the output of the controller. Bold letters define vectors. LVP, left ventricular pressure; EDP, end-diastolic

pressure; SP, systolic pressure; PF, pump flow; PID, proportional-integral-derivative; qbp, measured pump flow; q̄*bp, heart cycle average pump flow; q*
bp, time vector

of the desired pump flow trajectory; q*bp,FF , feed forward desired pump flow; eq,bp, feedback error between the measured and the desired PF; ∆n*bp, desired pump

speed change; nbp,constant, pump speed constant; n*bp, desired pump speed output.

“Numerical Models of Blood Pumps” were used. The contractility
parameter of the CVS was set to 34% of the value described
for the healthy heart, emulating a pathological circulation. The
experiments Exp1–Exp5 described in section “Experiments for
Performance Evaluation” were used for the evaluation of the OF.

For each controller, a two-objective optimization problem was
defined, aiming to minimize the overall error in tracking the
reference PF trajectory. For the first objective, the root-mean-
square-error (RMSE) of the tracking error was initially calculated
for each cardiac cycle by:

RMSEj =

√

√

√

√

∑N
k=1

(

qbp,j(k)− q∗
bp,j

(k)
)2

N
(18)

where j denotes the index of the cardiac cycle, k denotes the
time index and N the total number of time indices within the
cardiac cycle j. As a next step, to ensure that only converged cycles
are considered, the last 80 cycles of each experiment (m) were
obtained and the mean value of RMSE was calculated as:

RMSEm =

√

∑80
j=0 RMSEj

80
(19)

Hence, the first objective function including the mean value of
the RMSE for the six experiments was defined as:

J1 = a1RMSE1 + a2RMSE2 + a3RMSE3 + a4RMSE4 +

a5RMSE5 + a6RMSE6 (20)

where a1 = 0.2, a2 = 0.2, a3 = 0.15, a4 = 0.15, a5 = 0.15, and
a6 = 0.15 are weighting factors corresponding to experiments

Exp1–6. The latter factors allow the experiments that account for
a major fraction of the everyday life of a patient to have a greater
influence on the value of the OF.

The second objective of the optimization problem was
developed to evaluate the individuals regarding the convergence
of the tracking error. Hence, the standard deviation of the RMSE
in the last 80 cycles of each experiment (m) was calculated as:

stdm =

√

∑80
j=1 (RMSEj − RMSEm)

2

80
(21)

Accounting the terms of all experiments and using the weighting
factors described for J1, the second objective function is
defined as:

J2 = a1std1 + a2std2 + a3std3 + a4std4 + a5std5 + a6std6 (22)

To avoid unrealistic control parameters, their values were
constrained between a minimum and a maximum value given
in Supplementary Table S4 in the Supplementary Material.
Hence, the final optimization problem for the PDD-ILC was
described as:

minx( J1(x), J2(x)) (23)

s. t. µmin ≤ µ ≥ µmax (24)

ηmin ≤ η ≥ ηmax (25)

Qmin ≤ Q ≥ Qmax (26)
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Rmin ≤ R ≥ Rmax (27)

kp,min ≤ kp ≥ kp,max (28)

kd,min ≤ kd ≥ kd,max (29)

where x denotes the set of control parameters (µ, η, Q,R, kp, kd).
The optimization problem for the PF-PIDC, wherein the set of
control parameters was x = (KP,KI ,KD), was described as:

minx( J1(x), J2(x)) (30)

s. t. KP,min ≤ KP ≥ KP,max (31)

KI,min ≤ KI ≥ KI,max (32)

KD,min ≤ KD ≥ KD,max (33)

where the minimum and maximum constraint values are given
in Supplementary Table S4 in the Supplementary Material.

The solution of the described two-objective optimization
problem did not provide a single optimum solution, but a set
of non-dominated solutions (pareto front) that were chosen
as optimal if any of the objectives could not be improved
without sacrificing the other objective. Hence, from the several
individuals included in the pareto front of each controller, the
final control parameters (Table 1) were selected after evaluating
the overall performance of several sets of optimum parameters
under the dynamic tests described in section “Experiments for
Performance Evaluation”.

For both controllers, the optimization problem was solved
by using the multi-objective genetic algorithm provided in the
global optimization toolbox of MATLAB. The default parameters
of the genetic algorithm were applied for the genetic operations,
while the initial population and the size of each generation was
500 individuals. The convergence criteria were met when for 15
consecutive generations any new individual was included in the
pareto front, or when a maximum number of 50 generations
was reached.

TABLE 1 | Optimized control parameters for PDD-ILC and flow PID controllers.

PDD-ILC Flow PID

µ 0.7315 KP 401.23

η 0.7859 KI 67.51

Q 120.7388 KD 19.15

R 0.1365

kp 3.2155

kd 3.1926

RESULTS

Trajectory Tracking and Convergence
The performance of the PDD-ILC and the PF-PIDC in
tracking the PF reference trajectories was evaluated under
all physiological conditions simulated with the experiments
described in section “Experiments for Performance Evaluation”
for copulsation and counterpulsation modes (Figures 6–8). In
Figure 6, the tracking performance during rest conditions (Exp0,
Supplementary Table S1, Supplementary Material) is shown
for one cardiac cycle with both controllers being converged.
When the copulsation mode is selected (Figure 6A), both
controllers show excellent performance with the minimum and
maximum PF values being achieved without overshoot and time
delay. During the counterpulsation mode the tracking is accurate
and without time delays in the transition phases (Figure 6B).
However, the highly changing pressure conditions applied on the
cfVAD during the contraction of the LV deteriorate the tracking
performance in the region of low PF of both controllers.

In Figure 7, the RMSE calculated based on Equation (18) as
well as the maximum instantaneous tracking error computed for
each cardiac cycle are depicted for all physiological experiments
(Ex0–5, Supplementary Table S1, Supplementary Material)
under copulsation mode. During the rest-conditions experiment

FIGURE 6 | Reference trajectory tracking performance of the PDD-ILC and

the PF-PIDC during one cardiac cycle of the rest-conditions experiment (Exp0,

Supplementary Table S1, Supplementary Material) under (A) copulsation

and (B) counterpulsation. The reference trajectories, along with the left

ventricular pressure profile that corresponds to the main source of disturbance

are given for both modes. Both controllers are able to track accurately the

reference trajectory during copulsation, reaching the maximum and minimum

PF values without time lag. During the counterpulsation, the high disturbance

of the fast change in LVP cannot be compensated completely from any of the

controllers, however, the overall tracking is adequate. PDD-ILC, physiologic

data-driven iterative learning controller; PF-PIDC, pump flow

proportional-integral-derivative controller; Ref. Traj., reference trajectory; LVP,

left ventricular pressure.
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FIGURE 7 | Transient performance of the PDD-ILC and the PF-PIDC in terms of RMSE and maximum instantaneous error in tracking the reference trajectory under all

physiological conditions and scenarios executed with the copulsation mode. (A) Rest-conditions (Exp0): The PDD-ILC converged after 100 iterations, obtaining an

RMSE of 0.07 L min−1 and maximum error of 0.19 L min−1. The PF-PIDC obtained an RMSE of 0.06 L min−1 and maximum error of 0.11 L min−1. (B) Preload

variation (Exp1): Last variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was 0.07 L min−1 and 0.23 L min−1, respectively. The

RMSE and maximum error for the PF-PIDC was 0.05 L min−1 and 0.08 L min−1, respectively. (C) Afterload variation (Exp2): Last variation at 85 seconds. The

converged RMSE and maximum error for the PDD-ILC was 0.20 L min−1 and 0.73 L min−1, respectively. The RMSE and maximum error for the PF-PIDC was

0.11 L min−1 and 0.38 L min−1, respectively. (D) Sleep-to-wake (Exp3): Last variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was

0.05 L min−1 and 0.21 L min−1, respectively. The RMSE and maximum error for the PF-PIDC was 0.06 L min−1 and 0.11 L min−1, respectively. (E) Contractility

variation (Exp4): Last variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was 0.05 L min−1 and 0.18 L min−1, respectively. The

RMSE and maximum error for the PF-PIDC was 0.06 L min−1 and 0.10 L min−1, respectively. (F) Rest-to-exercise (Exp5): Last variation at 85 seconds. The

converged RMSE and maximum error for the PDD-ILC was 0.68 L min−1 and 2.46 L min−1, respectively. The RMSE and maximum error for the PF-PIDC was

1.56 L min−1 and 4.63 L min−1, respectively. RMSE, root mean square error; maxE, maximum error; PDD-ILC, physiologic data-driven iterative learning controller;

PF-PIDC, pump flow proportional-integral-derivative controller.

(Exp0), the PDD-ILC obtained an RMSE below 0.33 L min−1

after 30 iterations and converged to 0.07 L min−1 after 100
iterations (Figure 7A). Except for the initial 10 iterations,
wherein the system was not settled, the maximum tracking
error remained below 1.21 L min−1 and reduced continuously
to achieve 0.19 L min−1 after convergence. During the same
experimental conditions, the PF-PIDC obtained an RMSE of
0.06 L min−1 and a maximum error of 0.11 L min−1. During the
preload variations (Exp1), the controllers showed an increase in
both the RMSE and the maximum error during the transition
phases of the experiment, however after the last transition (at
about 75 s) both reached the error values achieved in Exp0,
with the PDD-ILC converging in <60 iterations. As depicted
in Figure 7C, the PF-PIDC showed a slightly increased RMSE
of 0.24 L min−1 during the afterload experiment (Exp2). In
this setting, the PDD-ILC also presented higher RMSE and
maximum error throughout the entire experiment, achieving
an RMSE of 0.87 L min−1at the end of the experiment. During
the sleep-to-wake (Exp3) and contractility variation (Exp4)
settings both controllers showed excellent tracking performance,

resulting in RMSE and maximum error values similar to the
rest-conditions experiment (Figures 7D,E). In Figure 7F, the
tracking performance during the rest-to-exercise experiment is
illustrated for both controllers. During this experiment, wherein
the pump has to provide the major fraction of the CO, the RMSE
obtained with the PF-PIDC remained at a level of 1.56 L min−1,
while the maximum error converged to 4.63 L min−1. The
PDD-ILC although showed a reduction in the tracking accuracy,
it considerably outperformed the PF-PIDC. More precisely, the
RMSE and the maximum error obtained by the PDD-ILC after
convergence was 0.68 L min−1 and 2.46 L min−1, respectively.

The tracking performance of the controllers under
counterpulsation mode is illustrated in Figure 8 for the
conducted simulations. During Exp0 (Figure 8A), the PF-PIDC
reached an RMSE and maximum error of 0.42 L min−1 and
1.32 L min−1, respectively. In this setting, the PDD-ILC required
50 iterations to converge at an RMSE and maximum error of
0.88 L min−1 and 2.64 L min−1, although it obtained similar
error values already after the thirtieth iteration. During Exp1
(Figure 8B), Exp3 (Figure 8D), and Exp4 (Figure 8E) both
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FIGURE 8 | Transient performance of the PDD-ILC and the PF-PIDC in terms of RMSE and maximum instantaneous error in tracking the reference trajectory under all

physiological conditions and scenarios executed with the counterpulsation mode selected. (A) Rest-conditions (Exp0): The PDD-ILC converged after 50 iterations,

obtaining an RMSE of 0.88 L min−1 and maximum error of 2.64 L min−1. The PF-PIDC obtained an RMSE of 0.42 L min−1 and maximum error of 1.32 L min−1. (B)

Preload variation (Exp1): Last variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was 0.94 L min−1 and 2.60 L min−1, respectively.

The RMSE and maximum error for the PF-PIDC was 0.43 L min−1 and 1.32 L min−1, respectively. (C) Afterload variation (Exp2): Last variation at 85 seconds. The

converged RMSE and maximum error for the PDD-ILC was 0.50 L min−1 and 1.67 L min−1, respectively. The RMSE and maximum error for the PF-PIDC was

0.19 L min−1 and 0.50 L min−1, respectively. (D) Sleep-to-wake (Exp3): Last variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was

0.90 L min−1 and 2.30 L min−1, respectively. The RMSE and maximum error for the PF-PIDC was 0.43 L min−1 and 1.34 L min−1, respectively. (E) Contractility

variation (Exp4): Last variation at 85 seconds. The converged RMSE and maximum error for the PDD-ILC was 1.08 L min−1 and 2.36 L min−1, respectively. The

RMSE and maximum error for the PF-PIDC was 0.48 L min−1 and 1.41 L min−1, respectively. (F) Rest-to-exercise (Exp5): Last variation at 85 seconds. The

converged RMSE and maximum error for the PDD-ILC was 1.61 L min−1 and 3.06 L min−1, respectively. The RMSE and maximum error for the PF-PIDC was

1.88 L min−1 and 4.18 L min−1, respectively. RMSE, root mean square error; maxE, maximum error; PDD-ILC, physiologic data-driven iterative learning controller;

PF-PIDC, pump flow proportional-integral-derivative controller.

controllers obtained tracking errors similar to those in Exp0
after convergence, however, the tracking error was increased
during the transition phases of the experiments. During Exp2
both controllers converged to error values lower than Exp0
(Figure 8C). More precisely, the PDD-ILC converged to an
RMSE and maximum error of 0.50 L min−1 and 1.67 L min−1

and the PF-PIDC to 0.19 L min−1 and 0.50 L min−1, respectively.
Similar to the copulsation mode, during the rest-to-exercise
experiment (Exp5), the tracking error was increased for both
controllers. As it can be seen in Figure 8F, the PDD-ILC obtained
an RMSE and maximum error of 1.61 L min−1 and 3.06 L min−1,
outperforming the PF-PIDC that converged to 1.88 L min−1 and
4.18 L min−1, respectively.

The addition of noise in the simulated LVP and PF signals had
infinitesimal effect on the reference trajectory tracking. In the
Supplementary Material, the detailed results for white noise of
0.86 variance can be found in Supplementary Figure S1 for all
experiments under copulsation and Supplementary Figure S2

under counterpulsation, while for white noise of 1.72
variance can be found in Supplementary Figure S3 for all

experiments under copulsation and Supplementary Figure S4

under counterpulsation.

Ventricular Unloading, Pulsatility and
Hemodynamic Response
In this study, the reference PF trajectories were obtained by using
copulsation and counterpulsation as support modes, aiming to
increase the pulsatility or reduce the LVSW, respectively. The
influence of both modes on the LVSW is illustrated in Figure 9

for the executed experiments and is compared with the LVSW
produced by the simulated diseased heart (DH) and the DH
supported with a cfVAD with a constant speed controller (CS).
During the experiments Exp0 (Figure 9A), Exp3 (Figure 9D),
Exp4 (Figure 9E), and Exp5 (Figure 9F), using copulsation
mode, both the PDD-ILC and the PF-PIDC controller followed
the LVSW values obtained with the CS controller. In the same
experiments, under counterpulsation, both the PDD-ILC and the
PF-PIDC controller reduced the LVSW by 54.3, 55.9, 69.8, and
24% compared to the CS support. During the preload variation
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FIGURE 9 | Influence of the copulsation and counterpulsation modes on the left ventricular stroke work (LVSW) of the diseased heart (DH) during: (A) Rest-conditions

(Exp0), (B) Preload variation (Exp1 (C) Afterload variation (Exp2) (D) Sleep-to-wake (Exp3) (E) Contractility variation (Exp4) (F) Rest-to-exercise (Exp5). DH, diseased

heart; CS, constant speed control; PDD-ILCco, physiologic data-driven iterative learning controller copulsation; PF-PIDCco, pump flow proportional-integral-derivative

controller copulsation; PDD-ILCcc, physiologic data-driven iterative learning controller counterpulsation; PF-PIDCcc, pump flow proportional-integral-derivative

controller counterpulsation.

(Figure 9B), the PDD-ILC and the PF-PIDC controller showed
similar responses, reducing the LVSW by 56% compared to the
CS and by 57.2% compared to the copulsation modes. However,
during the low preload conditions, applied after the last transition
point of Exp1, the CS reduced the LVSW by 26.3% compared to
the PDD-ILC and PF-PIDC controller under counterpulsation.
As it can be seen in Figure 9C, during low afterload conditions
(between 40 and 80 seconds), the PDD-ILC and the PF-PIDC
controller under counterpulsation, as well as the CS controller,
obtained similar LVSW values, while the copulsation modes
resulted in 31.2% higher LVSW values. However, during the high
afterload conditions in Exp 2 (after 80s in Figure 9C), the PDD-
ILC and the PF-PIDC controller under counterpulsation resulted
in 75.7 and 72.7%, respectively, compared to CS support. Overall,
both the PDD-ILC and the PF-PIDC achieved the intended
LVSW reduction during counterpulsation modes.

The influence of the copulsation and the counterpulsation
modes on the pulsatility is evaluated based on the aortic pulse
pressure (PP= systolic aortic pressure – diastolic aortic pressure)
and is illustrated in Figure 10 for all experiments. During
Exp0 (Figure 10A) and Exp3 (Figure 10D) the CS diminishes
significantly the pulsatility, obtaining a PP of only 10.1 mmHg.
Both the PDD-ILC and the PF-PIDC under the counterpulsation
mode increased the PP to 16.2 and 17.9 mmHg for Exp0 and
Exp3, respectively, while under copulsation, the PDD-ILC and
the PF-PIDC further increased the PP to 21.1 and 20.9 mmHg

for Exp0 and Exp3, respectively. During the preload experiment
(Figure 10B) and after the convergence of all controllers, the
CS resulted in the lowest PP of 4.0 mmHg, the PDD-ILC
resulted in 14.6 and 15.2 mmHg for counterpulsation and
copulsation, respectively, while the PF-PIDC resulted in 9.4 and
11.6 mmHg for counterpulsation and copulsation. During the
transition phases of the afterload experiment (Figure 10C), the
CS reduced the PP to only 4.1 mmHg, however, the PDD-
ILC resulted in significantly increased PP values of 8.4 and
18.7 mmHg with counterpulsation and copulsation, respectively.
During the same settings, the PF-PIDC increased further the PP
with respect to CS and PDD-ILC, achieving a PP of 13.8 and 29.9
mmHg under counterpulsation and copulsation, respectively. At
high afterload conditions in Exp2 (after 110 s in Figure 10C),
all controllers resulted in similar PP value of approximately
14.9 mmHg. During the Exp4 (Figure 10E) both the PDD-
ILC and the PF-PIDC with copulsating mode resulted in PP
of 19.8 mmHg, while the CS, as well as the PDD-ILC and the
PF-PIDC under counterpulsation showed reduced pulsatility,
obtaining a PP of 10.5, 20.0 and 18.9 mmHg, respectively. The
PDD-ILC presented an oscillating PP when the contractility
reached 17% of that of the HH. During the rest-to-exercise
experiment (Figure 10F), the PDD-ILC with counterpulsation
resulted in the lowest PP of 17.5 mmHg, while the CS and
the PF-PIDC resulted in 19.5 and 19.1 mmHg. Under the
same settings, the PID-controller and the PDD-ILC under
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FIGURE 10 | Influence of the copulsation and counterpulsation modes on the aortic pulse pressure (PP) of the diseased heart (DH) during: (A) Rest-conditions (Exp0),

(B) Preload variation (Exp1) (C) Afterload variation (Exp2) (D) Sleep-to-wake (Exp3) (E) Contractility variation (Exp4) (F) Rest-to-exercise (Exp5). HH, healthy heart; DH,

diseased heart; CS, constant speed control; PF-PIDCco, pump flow proportional-integral-derivative controller copulsation; PDD-ILCcc, physiologic data-driven

iterative learning controller counterpulsation; PF-PIDCcc, pump flow proportional-integral-derivative controller counterpulsation.

TABLE 2 | Preload and afterload sensitivity of the healthy heart (HH), the constant speed (CS) controller, the PDD-ILC, and the PF-PIDC calculated in experiments Exp1

and Exp2.

System
Preload (increase)

(L min−1/mmHg)

Preload (decrease)

(L min−1/mmHg)

Afterload (increase)

(L min−1/mmHg)

Afterload (decrease)

(L min−1/mmHg)

Healthy heart 0.502 0.481 −0.015 −0.016

CS controller 0.039 0.040 −0.046 −0.057

PDD-ILCco 0.496 0.466 −0.019 −0.024

PDD-ILCcc 0.177 0.386 −0.030 −0.030

PF-PIDCco 0.488 0.377 −0.018 −0.011

PF-PIDCcc 0.470 0.411 −0.026 −0.019

copulsation increased significantly the PP achieving 28.0 and 30.0
mmHg, respectively.

Preload and Afterload Sensitivity
The sensitivity of the developed controllers in preload and
afterload changes was evaluated in Exp1 and Exp2, respectively,
and it was comparedwith the sensitivities of the CS controller and
the HH. Based on the equations given in Supplementary Text T1

in the Supplementary Material, the end-diastolic LV pressure
and the mean aortic pressure (MAP) were used as surrogates
of the preload and the afterload, respectively, and a summary
of all sensitivities is provided in Table 2. As it can be seen
in Table 2, both the PDD-ILC and the PF-PIDC showed
physiological sensitivities compared to the HH, while the

CS support resulted in highly non-physiological sensitivities
in all cases. More precisely, during preload increase the
HH showed a sensitivity of 0.502 L min−1/mmHg. The
PDD-ILC in copulsation mode followed closely this value,
resulting in 0.496 L min−1/mmHg, while the PF-PIDC showed
0.488 L min−1/mmHg and 0.470 L min−1/mmHg under
copulsation and counterpulsation, respectively. The PDD-ILC in
counterpulsation mode had a lower preload sensitivity of 0.177
L min−1/mmHg and the CS showed a highly non-physiologic
sensitivity of 0.039 L min−1/mmHg. Similar to preload increase,
during preload decrease the developed controllers followed
closely the sensitivity of the HH, while the CS showed again
a sensitivity of 0.040 L min−1/mmHg. The sensitivity of the
HH was −0.015 L min−1/mmHg and −0.016 L min−1/mmHg
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during afterload increase and decrease, respectively. The PDD-
ILC in copulsation mode showed a sensitivity of −0.019
L min−1/mmHg and −0.024 L min−1/mmHg during afterload
increase and decrease, while in counterpulsation showed high
sensitivity values of L min−1/mmHg in all afterload changes. The
PF-PIDC in copulsation and counterpulsation modes responded
with a sensitivity of −0.018 L min−1/mmHg and −0.011
L min−1/mmHg to afterload increase, and with a sensitivity of
−0.026 Lmin−1/mmHg and−0.019 L min−1/mmHg to afterload
decrease. The CS controller showed more than three times
higher afterload response that the HH, resulting in sensitivities of
−0.046 Lmin−1/mmHg and−0.057 Lmin−1/mmHg to afterload
increase and decrease, respectively.

DISCUSSION

In the current work, we presented a data-driven iterative learning
physiological controller and a pump flow PID-controller that
accurately track predefined pump flow trajectories, aiming to
achieve physiological, pulsatile and treatment-driven response
of cfVADs. A trajectory generator, which can be incorporated
as a standalone block in other cfVAD control approaches, was
also developed and by exploiting the LV-EDP it provided preload
adaptive reference trajectories. In the case of the PDD-ILC, the
reference PF trajectories were tracked by a model-free, data-
driven ILC that used the time-sequences of LVP and PF to
obtain a model. To the best of our knowledge, this is the
first application of such a DD-ILC for cfVAD control. Both
control approaches have been extensively tested in an in-silico
environment under various physiological conditions, including
rest, pre- and afterload variations, contractility variations, as
well as everyday scenarios like sleep-to-wake and rest-to-exercise.
Additionally, two treatment objectives were investigated, termed
minimization of LVSW (counterpulsation) and maximization
of pulsatility (copulsation). Under all experimental conditions,
the PDD-ILC and the PF-PIDC demonstrated highly accurate
tracking of the reference PF trajectories, outperforming existing
model-based iterative ILC approaches, (40) while they also
achieved the predefined treatment objectives and resulted in
improved hemodynamics and preload sensitivities compared to
a CS controller that is the current state-of-the-art in the clinical
practice (Table 2) (49).

The reference trajectories constituted a critical component
of the DD-IILPC and the PF-PIDC since they were responsible
to provide preload adaptivity and incorporate the treatment
objectives. To obtain preload adaptivity, the Frank-Starling
mechanism was imitated by selecting the preload sensitivity of
the controller in Equation (3). To our knowledge, this is the first
time that the preload sensitivity can be directly selected based
on clinical input, constituting a great improvement compared
to CS controllers and speed-based controllers, where fine-tuning
of the control gains is necessary to achieve adequate sensitivity
(19, 34, 50). Based on the results in section “Preload and
Afterload Sensitivity”, the PDD-ILC and the PF-PIDC were able
to follow the set value and provide preload sensitivities similar to
the healthy heart, while the CS controller showed infinitesimal

sensitivity. Hence, based on our approach, a patient-specific
preload sensitivity is feasible for both controllers, offering new
opportunities in cfVAD treatment management.

The treatment objectives incorporated in the reference
trajectories were the minimization of LVSW and the
maximization of pulsatility. To minimize the LVSW, a
counterpulsating pump modulation with respect to the
native heart has been applied as proposed in the literature
(35, 37, 44). By accurately tracking the counterpulsation
PF trajectories developed in section “Reference Pump Flow
Trajectory Generator”, the PDD-ILC and the PF-PIDC were
able to substantially reduce the LVSW by more than 50%
compared to the CS support in the majority of the investigated
physiological conditions. This is important when treatment
approaches for LV training are considered. To maximize the
pulsatility, a copulsation trajectory was developed and tracked
by the PDD-ILC and the PF-PIDC controller. During all
physiological conditions studied, both controllers increased
drastically the PP compared to the CS support. These results
agree with the literature (35, 37, 44) and, consequently,
they can be implemented to enhance the pulsatility and
investigate its effects and its necessity on cfVAD supported
patients. It is important to mention that the effectiveness of
our pipeline in reducing the LVSW and increasing the PP is
mainly dependent on the developed PF reference trajectories.
The difference in LVSW reduction and PP increase between
the PDD-ILC and the PFPIDC are a result of their slightly
different tracking performance. By exploiting the accurate
trajectory tracking achieved from both the PDD-ILC and
the PF-PIDC, various phase shifts can be investigated to
deduce a better understanding of the interactions between the
cfVAD and the native heart to improve the treatment of heart
failure patients.

The tracking performance of the DD-ILC and the PF-PIDC
was excellent for the copulsation mode, regardless of the
physiological conditions applied and the rapid changes in the
hemodynamics and the heartbeat. During the counterpulsation,
both controllers demonstrated lower tracking accuracy in
all experiments compared to the copulsation. However, they
significantly outperformed existing ILC approaches (40).
The inferior tracking performance of the controllers under
counterpulsation can be attributed to two reasons. Firstly,
during the counterpulsation, a rapid change of head pressure
is applied on the pump from the heart contraction, which
cannot be counteracted by the slower dynamic response of
the pump. Secondly, the controller parameters were optimized
for the copulsation mode, hence better tracking performance
during counterpulsation could be achieved with the further
optimization of the control parameters.

The control parameters have a strong influence on the stability
and the tracking performance of both the PDD-ILC and the
PF-PIDC; hence, their selection is of high importance. In this
work, we implemented the genetic-algorithm-based optimization
framework proposed by Magkoutas et al. (48) to obtain the
optimum parameter sets for our control approaches. By using
the latter optimization framework, intuitive tuning of the control
parameters can be achieved based on the selection of the objective
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functions to be minimized. Hence, by exploiting the GAOF,
the gains of the PDD-ILC and the PF-PIDC controller can be
further optimized to facilitate patient-specific treatment goals
and, consequently, enhance the prognosis of cfVAD supported
patients. However, it has to be mentioned that, depending on
the selected objective functions and the experiments in the
optimization process, the development phase of the controller
can be prolonged since the completion of the optimization might
take up to 20 days.

Although the superiority of the PDD-ILC and the PF-PIDC
over the CS controller with respect to hemodynamics and pre-
and afterload sensitivities has been demonstrated, the proposed
control approaches have also limitations. The development of
the reference trajectories assumes negligible flow through the
aortic valve, however, when a phase shift between the pump
pulsation and the native heart has to be incorporated in the
reference trajectory (e.g., counterpulsation) the assumption of
negligible flow through the aortic valve is violated. This affects
the development of a feasible PF trajectory. Additionally, the
assumption of negligible aortic valve flow results in reference
trajectories that aim to achieve the necessary CO only through
the cfVAD operation. Consequently, the flow through the aortic
valve is minimized and the risk of aortic valve insufficiency
increases. Although such pathological consequences were not
within the scope of this study, to ameliorate the risk of aortic
valve insufficiency we envisage the addition of a support level
parameter to manipulate the percentage of the CO delivered by
the pump and the CO expected from the remaining contraction
of the native heart.

The excellent tracking performance of both the PDD-ILC
and the PF-PIDC necessitates the accurate measurement of LVP
and PF signals. We are aware that no reliable, long-term blood
pressure and flow sensors are currently available for cfVADs;
however, the approach developed by von Petersdorff-Campen
et al. (43) is promising and could pave the way toward the
realization of LVP and PF measurements. In this study, we have
accounted for the inherent noise of real measurement and its
effect on the tracking performance by assessing the PDD-ILC and
the PF-PIDC tracking ability when white noise was added on the
LVP and the PF signals. Additionally, the overall performance
of the proposed control approaches has been evaluated only
in an in-silico environment with a numerical model of a non-
implantable mixed-flow turbodynamic blood pump. In-silico,
studies with the numerical model of the current state of the
art blood pump HeartMate 3 have to be also performed.
Furthermore, to prove the performance of the controllers in

the real-time setting and allow the translation of the controllers
into the clinical practice, in-vitro and in-vivo studies have to
be conducted.

Finally, considering the high complexity of the presented
control schemes, suction prevention features were not included
in the main control structures. Although no suction events were
identified in the executed experiments, safety controllers similar
to those proposed by Petrou et al. (34) could be incorporated.
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