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Gelsemium elegans (Gardner and Champ.) Benth. (Gelsemiaceae) (GEB) is a toxic plant
indigenous to Southeast Asia especially China, and has long been used as Chinese folk
medicine for the treatment of various types of pain, including neuropathic pain (NPP).
Nevertheless, limited data are available on the understanding of the interactions between
ingredients-targets-pathways. The present study integrated network pharmacology and
experimental evidence to decipher molecular mechanisms of GEB against NPP. The
candidate ingredients of GEB were collected from the published literature and online
databases. Potentially active targets of GEB were predicted using the
SwissTargetPrediction database. NPP-associated targets were retrieved from
GeneCards, Therapeutic Target database, and DrugBank. Then the protein-protein
interaction network was constructed. The DAVID database was applied to Gene
Ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment
analysis. Molecular docking was employed to validate the interaction between
ingredients and targets. Subsequently, a 50 ns molecular dynamics simulation was
performed to analyze the conformational stability of the protein-ligand complex.
Furthermore, the potential anti-NPP mechanisms of GEB were evaluated in the rat
chronic constriction injury model. A total of 47 alkaloids and 52 core targets were
successfully identified for GEB in the treatment of NPP. Functional enrichment analysis
showed that GEB was mainly involved in phosphorylation reactions and nitric oxide
synthesis processes. It also participated in 73 pathways in the pathogenesis of NPP,
including the neuroactive ligand-receptor interaction signaling pathway, calcium signaling
pathway, and MAPK signaling pathway. Interestingly, 11-Hydroxyrankinidin well matched
the active pockets of crucial targets, such as EGFR, JAK1, and AKT1. The 11-
hydroxyrankinidin-EGFR complex was stable throughout the entire molecular dynamics
simulation. Besides, the expression of EGFR and JAK1 could be regulated by koumine to
achieve the anti-NPP action. These findings revealed the complex network relationship of
GEB in the “multi-ingredient, multi-target, multi-pathway” mode, and explained the
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synergistic regulatory effect of each complex ingredient of GEB based on the holistic view
of traditional Chinesemedicine. The present study would provide a scientific approach and
strategy for further studies of GEB in the treatment of NPP in the future.

Keywords: Gelsemium elegans (Gardner and Champ.) Benth, neuropathic pain, network pharmacology, molecular
docking, molecular dynamics simulation

INTRODUCTION

Chronic pain condition is a major health issue that comprises
five of the 11 top-ranking conditions lived with disability and
is responsible for economic burden worldwide (Vos et al.,
2012; Andrew et al., 2014). The prevalence of neuropathic pain
(NPP) as a feature of chronic pain was estimated to range from
1 to 17.9% (van Hecke et al., 2014). NPP is defined as an injury
or disease of the somatosensory system involving complex
pathogenesis according to the 2011 International Association
for the Study of Pain (Jensen et al., 2011). Overall, the current
pharmacological interventions in NPP primarily consist of
antidepressants or antiepileptics as the first-line treatments
(Lunn et al., 2014; Moore and Gaines, 2019), lidocaine plasters,
capsaicin high concentration patches, and tramadol as the
second-line treatments (van Nooten et al., 2017; Kim et al.,
2018), and strong opioids and botulinum toxin A as the third-
line treatments (Sommer et al., 2020). Unfortunately, patients
with NPP conventional have an inadequate response with only
40–60% of patients achieving partial relief to the current
pharmacological therapy and suffering from side effects
include sedation, anticholinergic effects, nausea, and
orthostatic hypotension (Dworkin et al., 2007; Cavalli et al.,
2019). Therefore, there is a necessity to explore more effective
analgesics with novel mechanisms and low side effects for the
treatment of NPP.

Traditional Chinese medicine (TCM) is an abundant
resource for drug development and provides innovative
insight into therapeutic approaches. Gelsemium elegans
(Gardner and Champ.) Benth. (Gelsemiaceae) (GEB) is a
toxic plant indigenous to Southeast Asia especially China,
which has long been used as Chinese folk medicine for the
treatment of various types of pain, such as neuralgia, sciatica,
rheumatoid arthritis, and acute pain (Rujjanawate et al.,
2003; Lin et al., 2021). Phytochemical studies have
revealed that the main active ingredients of GEB are
alkaloids, especially the indole alkaloids, such as koumine,
gelsemine, gelsenicine, and gelsevirine (Jin et al., 2014).
These alkaloids are distributed throughout the whole
plant, especially rich in the roots. GEB and its active
alkaloids have been studied increasingly and exert
promising pharmacological effects in NPP. It was reported
that a crude alkaloidal extract solution from GEB could
significantly increase the pain thresholds of mice in both
hot plate and writhing tests at the dose of 0.5, 1.0, and
2.0 mg/kg (Rujjanawate et al., 2003). As an important
active ingredient, previous studies indicated that koumine
exhibited a significant analgesic effect in vitro and in several
animal models of NPP. These studies suggested that koumine

alleviated NPP may through a wide variety of mechanisms,
including enhancing 3α-hydroxysteroid oxidoreductase
mRNA expression and bioactivity (Qiu et al., 2015) in the
spinal cord, upregulating allopregnanolone (Xu et al., 2012),
and inhibiting astrocyte activation as well as M1 polarization
while sparing the anti-inflammatory responses to NPP (Jin
et al., 2018a; Jin et al., 2018b). Other active ingredients,
gelsemine, gelsenicine, and gelsevirine may produce
antinociception by activating the spinal α3 glycine/
allopregnanolone pathway (Zhang and Wang, 2015).
However, all the existing studies focused on limited
ingredients, targets, and pathways, and lacked the integral
thoughts and exploration on TCM with multiple ingredients
and targets. Hence, the interactions between ingredients-
targets-pathways and other underlying molecular
mechanisms of GEB against NPP remain unclear.

Network pharmacology is mostly used to screen the active
ingredients, predict the corresponding target, and explore the
comprehensive molecular mechanisms of TCM. The key ideas
of network pharmacology are based on the theory of system
biology and multi-direction pharmacology, which are
consistent with the holistic philosophy of TCM (Li and
Zhang, 2013). Molecular docking simulation is a
computational method for exploring the ligand
conformations adopted within the binding sites of
receptors in the intermolecular recognition process
(Ferreira et al., 2015). Different from traditional
pharmacological research methods of TCM, network
pharmacology-based analysis combined with molecular
docking technology could provide a new perspective for the
study of the molecular mechanism of TCM. In the present
study, we proposed an “ingredient-target-pathway” network
to reveal the potential material basis and compatibility
molecular mechanisms of GEB against NPP based on the
network pharmacology and experimental evidence. The
flowchart of our work is shown in Figure 1.

MATERIALS AND METHODS

Identification of Active Ingredients in GEB
The potential active ingredients in GEB were retrieved from
the published literature (Jin et al., 2014) and the online public
databases, including the Traditional Chinese Medicines
Integrated database (TCMID) (http://www.megabionet.org/
tcmid/) (Huang et al., 2018), Bioinformatics Analysis Tool for
Molecular mechanism of Traditional Chinese Medicine
(BATMAN-TCM) (http://bionet.ncpsb.org/batman-tcm/)
(Liu et al., 2016), and Traditional Chinese Medicine
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database@ Taiwan (http://tcm.cmu.edu.tw/zh-tw/) (Chen,
2011). Active ingredients with oral bioavailability (OB) ≥
30% and drug-likeness (DL) ≥ two of five features
(Lipinski, Ghose, Veber, Egan, and Muegge) were selected,

which was recommended by SwissADME (http://www.
swissadme.chwebsite) (Daina et al., 2017). The final cluster
of chemical ingredients of GEB was determined after
removing duplicates.

FIGURE 1 | The flowchart of network pharmacology analysis.
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Identification of Ingredients-Related
Targets
Targets of the active ingredients were predicted using
SwissTargetPrediction (http://www.swisstargetprediction.ch), a
popular online server that could accurately predict the targets
of bioactive molecules with known ligands (Gfeller et al., 2014).
3D structural SDF formats (.sdf) of active ingredients of GEB
were acquired from the PubChem database (https://pubchem.
ncbi.nlm.nih.gov/) and imported into SwissTargetPrediction for
identification of potential drug targets in humans. After removing
duplicate targets, the targets of ingredients with
SwissTargetPrediction probability ≥0.1 were chosen as
potential targets, and compounds without target information
were excluded.

Identification of Disease-Associated
Targets
The disease-associated targets of NPP were collected from
GeneCards (https://www.genecards.org/) (Safran et al., 2010),
the Therapeutic Target database (https://db.idrblab.org/ttd/)
(Wang et al., 2020a), and DrugBank (https://go.drugbank.com)
(Wishart et al., 2018). “Neuralgias”, “Neuropathic Pain”,
“Neurodynia”, and “Nerve Pain” were used as keywords in the
three databases and Homo sapiens targets with a disease
relevance score ≥ of three were selected for the study.

Topology Analysis of the Protein-Protein
Interaction (PPI) Network
The intersection of ingredients-related targets and disease-
associated targets was visualized by overlapping with a Venn
diagram. Then, a PPI network was constructed through the String
database (https://stringdb.org/) to explore the core regulatory
genes (Szklarczyk et al., 2019). PPI information was extracted
with an interaction score of 0.4 and the species was only limited to
“Homo sapiens”. The topology analysis of the PPI was performed
with Cytoscape 3.7.2 (http://cytoscape.org/.ver.3.7.2).
NetworkAnalyzer analysis was used to screen key targets
according to the degree value. The top 15 important proteins
with a higher level of degrees in the interaction network were
considered as the key targets for GEB in the treatment for NPP.
Furthermore, the Molecular Complex Detection (MCODE)
plugin was used to detect cluster modules from the complex
network with the node score cutoff of 0.2, K-core of 2, and degree
cutoff of 2.

Gene Ontology (GO) and Kyoto
Encyclopedia Genes Genomes (KEGG)
Enrichment Analysis
The GO and KEGG enrichment analysis were performed to
explore the signaling pathways and bioprocesses involved in
the key targets. The database for Annotation, Visualization,
and Integrated Discovery (DAVID, https://david.ncifcrf.gov/.
ver.6.8) was applied to conduct the enrichment analysis
(Dennis et al., 2003). The species was limited to “Homo

sapiens”, and the enrichment of pathway was considered
significant when the modified fisher exact false discovery rate
(FDR) < 0.01. The results of the KEGG pathway and enriched GO
terms of biological processes (BP), cell composition (CC), and
molecular function (MF) were visualized by the R software
package (3.5.2).

Construction of
“Ingredient-Target-Pathway” Network
The “ingredient-target-pathway” networks including the
potential ingredients-targets network of GEB against NPP and
targets-pathways network of GEB against NPP were constructed
by Cytoscape (Shannon et al., 2003). In the network, nodes
represent the final active ingredients and targets, while the
connections between the nodes represent the interactions
between these biological processes and signaling pathways.
Three key topological parameters were used to evaluate the
topological coefficients between nodes: “degree" (the number
of connections between the molecular and target in the core
architecture of the network), “betweenness” (the number of
shortest paths of a node to the total number of paths through
all nodes), and “closeness” (the inverse of the sum of the shortest
paths from a node to other nodes in the network).

Ingredients-Targets Molecular Docking
Molecular docking was used to predict the interactions between
core active ingredients of GEB and proteins selected from the
center targets from a molecular perspective. 3D structures of
active ingredients in SDF (.sdf) format were selected from the
PubChem database (https://pubchem.ncbi.nlm), and the crystal
structures of the target proteins were downloaded from the PDB
database (https://www.rcsb.org/) with a crystal resolution of less
than 2 Å. Molecular docking was performed by importing the
crystal structure into the Pymol 2.4.1 Software (https://pymol.
org/2/) for dehydration, hydrogenation, and ligand separation.
Thereafter, Autodock Vina 1.1.2 software was used to construct a
crystal structure docking grid box for each target. Then the
molecules with the lowest binding energy for each active
compound in the docking conformation were allowed for
semi-flexible docking by comparing with the original ligands
and intermolecular interactions (hydrophobicity, cation-π,
anion-π, π-π stacking, hydrogen bonding, etc.). Box center
coordinates and size of the box were determined for
evaluating the interaction. The results were analyzed and
visualized using Pymol, and the numbers of grid points in the
three dimensions used in this study were 40 40 40 0.375.

Molecular Dynamics Simulation of Ligand
Complex
The molecular dynamics simulation study is employed to assess
the stability and interaction between the protein and ligands after
docking. The simulation run was performed for 100 ns using the
NVIDIA RTX 1060 GPU accelerated GROMACS 2020 software
molecular dynamics package. In the preliminary stage, the
Charmm36 force field was used for the protein parameters.
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The CGenFF server was used for the ligand topology, and a TIP3P
water model with appropriate Na+/Cl− ions was subsequently
generated and neutralized the charge of the system. The system
converged to a minimum energy level using the steepest descent
method of 50,000 steps and <10.0 kJ/mol force. Then, the
equilibration process was conducted with 100 ps for constant
NVT (number, volume, and temperature) heating to 300 K,
followed by 100 ps for constant NPT (number of particles,
pressure, and temperature) with a time step of 2 fs. The bonds
of atoms were restrained by recruiting the LINCS algorithm. After
the processes of energy minimization and equilibration, the
molecular dynamics simulation was conducted the leap-frog
algorithm for 100 ns with a time step of 2 fs. The geometrical
parameters of the systems, such as root mean square deviation
(RMSD) and root mean square fluctuation (RMSF), were
determined and compared with the primitive ligand complex.

Experimental Verification in Chronic
Constriction Injury (CCI) Rat Model
Koumine (99% purity) was isolated from GEB as described by Su
et al. (Su et al., 2011), and it was dissolved or diluted in sterile
physiological saline (0.9% w/v NaCl).

Male Sprague–Dawley rats (180–200 g) were purchased from
Shanghai Laboratory Animal Center, Chinese Academy of Sciences.
The rats were adapted in the condition of 25 ± 2°C with a 12-h light/
dark cycle (lights on at 8:00 am) and free access to standard
laboratory food and water. The experiments met the
requirements of guidelines for animal care and the use of Fujian
Medical University. The experimental protocols were reviewed and
approved by the Committee of Ethics of the Fujian Medical
University (Fujian, China). Animals were assigned into different
groups: the sham control group (rats underwent the surgical
procedures without any manipulation related to nerve injury), the
CCI model group (rats received the vehicle, 0.28, 1.4, 7.0 mg/kg of
koumine). The dose used in the experimental assay was based on the
published literature (Jin et al., 2018b), and no adverse effects and
sedative effects were observed in the rats. The CCI rat model was
performed according to the method described by Bennett et al.
(Bennett and Xie, 1988).

Behavior tests consist of thermal hyperalgesia and mechanical
allodynia tests. The thermal hyperalgesia test using a commercial
thermal paw stimulator (PL-200, Chengdu Technology and
Market Co., Ltd., Sichuan, China) was evaluated before
operation (baseline), drug administration (pre-dosing), and 6,
8, 10, 12, and 14-days after drug administration (post-dosing),
and paw thermal withdrawal latency (TWL) was calculated as
described by Hargreaves et al. (Hargreaves et al., 1988). The
mechanical allodynia test was measured with a commercially
available electronic von Frey apparatus (Model 2390; IITC Life
Science Inc., Woodland Hills, CA), and each hind paw and
mechanical withdrawal latency (MWL) was calculated 30 min
after the TWLmeasurement according to the published literature
(Mitrirattanakul et al., 2006). The observer measuring the
behaviors was blind to drug pretreatments in all behavioral tests.

Then, rats were anesthetized by chloral hydrate, and the
lumber segments (L5-L6) of the spinal cord were dissected,

weighed, and stored at −80°C. Then, the lumber segments
were homogenized for 30 min in an ice bath with RIPA lysis
buffer (CoWin Biosciences, China) containing phosphatase
inhibitor (CoWin Biosciences, China) after ultrasonic
crushing. Protein concentrations were determined using an
enhanced BCA protein assay kit (Beyotime Biotech Inc.,
China), and the protein samples were stored at −80°C until
use. Total protein samples were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis and transferred onto
the nitrocellulose membrane. The membrane was blocked with
5% non-fat dried milk in tris buffer for 1 h at room temperature
and washed with tris-buffered saline and tween 20 every
10 minutes for three times. Then, the membrane was
incubated with antibodies (EGFR rabbit pAb: A11577, 1:500,
ABclonal; JAK1 rabbit pAb: A5534, 1:500, ABclonal; AKT1 rabbit
mAb: A17909, 1:500, ABclonal; β-actin rabbit mAb: AF1186, 1:
1,000, Beyotime) overnight at 4°C. After incubation with the
appropriate secondary antibodies (HRP-labeled goat anti-rabbit
IgG: A0208, 1:1,000, Beyotime) at room temperature for 1 h, the
protein blots were visualized in the ChemiDoc XRS imaging
system (Bio-Rad, CA).

RESULTS

Putative Targets of GEB Against NPP
A total of 98 compounds in GEB were retrieved from published
literature and online databases, and 57 potentially active ingredients
were filtered by OB and DL provided by SwissADME (Table 1). 679
potential targets were eventually predicted based on the
SwissTargetPrediction after eliminating duplicate targets
(Supplementary Table S1). 1,047 targets related to NPP were
obtained through the Gene Cards database. Out of these targets,
367 potential targets were finally screened out with a disease
relevance score ≥3 (Supplementary Table S2). Subsequently, as
shown in Figure 2, 679 GEB ingredients-related targets were
intersected with 367 NPP disease-related target genes using Venn
diagrams to identify 52 putative targets between GEB and NPP,
which were considered candidate targets of GEB against NPP.

PPI Network of Targets for GEB
Against NPP
PPI analysis was performed on 52 putative common targets with
String database as illustrated in Figure 3. The numbers of edges were
corresponding to the strength of correlation between two target
proteins. The top 15 proteins in the center of the PPI network
(Table 2), namely AKT1, ENSG00000196689, TNF, CASP3, CXCL8,
MAPK8, OPRM1, EGFR, OPRL1, CNR1, PTGS2, CTNNB1, REN,
OPRD1, and OPRK1. These proteins were speculated as the core
target to play a significant role in the treatment of NPP.

GO Function and KEGG Pathway
Enrichment Analysis
The GO and KEGG pathway analysis were performed on the 52
common targets to further explore the possible mechanisms of
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GEB against NPP. A total of 184 BPs, 34 CCs, and 35 MFs were
obtained in GO analysis (Supplementary Table S3). The top
10 terms in BPs, MFs, and CCs were shown in Figure 4A. It

was suggested that GEB attenuated NPP may be through the
sensory perception of pain, positive regulation of gene
expression/protein phosphorylation/nitric oxide

TABLE 1 | Information of the active compounds in GEB for network analysis.

NO. Name Compound CID MW MF Source

1 N-methoxyanhydrovobasinediol 102004539 338.4 C21H26N2O2 References
2 Humantenirine 11,132,403 370.4 C21H26N2O4 TCMID, TCMSP, Reference
3 N-desmethoxyrankinidine 5316594 310.4 C19H22N2O2 TCMID, TCMSP, References

4 Humantendine 5490912 342.4 C19H22N2O4 References
5 11-Methoxygelsemamide 5319437 355.4 C21H25NO4 TCM-Taiwan, References

6 Gelsevirine 14217344 352.4 C21H24N2O3 TCMID, BATMAN-TCM, TCM-Taiwan, References
7 Gelsenicine 21123652 326.4 C19H22N2O3 References
8 19-Oxogelsenicine 102185549 398.4 C21H22N2O6 References
9 Gelsedine 21589070 328.4 C19H24N2O3 TCMID, BATMAN-TCM, TCM-Taiwan, References
10 Gelsemamide 5317542 340.4 C20H24N2O3 TCMID, TCMSP, References
11 19-Z-akuammidine 44583830 352.4 C21H24N2O3 References
12 Dihydrokoumine 5316727 308.4 C20H24N2O BATMAN-TCM, References
13 (19R)-kouminol NA 324.2 C20H24N2O2 References
14 (19S)-kouminol NA 324.2 C20H24N2O2 References
15 19-(R)-hydroxydihydrokoumine 50278496 324.4 C20H24N2O2 TCMID, BATMAN-TCM, TCM-Taiwan, References
16 19-(S)-hydroxydihydrokoumine 5318193 324.4 C20H24N2O2 References
17 20-hydroxydihydrorankinidine 101606432 358.4 C20H26N2O4 References
18 N-desmethoxyhumantenine 5316593 324.4 C20H24N2O2 References
19 15-hydroxyhumantenine 101606434 370.4 C21H26N2O4 TCMID, TCMSP, References
20 Rankinidine 6439112 340.4 C20H24N2O3 TCMID, TCMSP, References
21 Humantenmine 158212 326.4 C19H22N2O3 TCMID, BATMAN-TCM, TCM-Taiwan, Reference
22 11-Hydroxyrankinidine 5318332 356.4 C20H24N2O4 TCMID, References Lin et al. (2021)
23 11-Hydroxyhumantenine 5318224 370.4 C21H26N2O4 TCMID, References Lin et al. (2021)
24 11-methoxyhumantenine 44583832 384.5 C22H28N2O4 TCMID, TCMSP, BATMAN-TCM, References Lin et al. (2021)
25 19R-hydroxydihydrogelsevirine 5318192 370.4 C21H26N2O4 References Lin et al. (2021)
26 19S-hydroxydihydrogelsevirine 5318192 370.4 C21H26N2O4 References Lin et al. (2021)
27 Gelseoxazolidinine 102297300 428.5 C23H28N2O6 References Lin et al. (2021)
28 Gelsevanillidine 136811988 460 C27H28N2O5 References Lin et al. (2021)
29 Gelselegine 10948335 358.4 C20H26N2O4 TCMID, References Lin et al. (2021)
30 11-Methoxy-19-R-

hydroxygelselegine
5319453 404.5 C21H28N2O6 References Lin et al. (2021)

31 19α-hydroxygelsamydine 102003053 524.6 C29H36N2O7 References Lin et al. (2021)
32 gelsamydine 5317540 508.6 C29H36N2O6 TCMID, References Lin et al. (2021)
33 gelegamine E 101467881 370.4 C20H22N2O5 References Lin et al. (2021)
34 gelegamine C 101467879 514.4 C21H27IN2O5 References Lin et al. (2021)
35 Gelegamine A 101467877 384.4 C21H24N2O5 References Lin et al. (2021)
36 Gelegamine B 101467878 384.4 C21H24N2O5 References Lin et al. (2021)
37 19Z- 16- epi- voacarpine NA 368.2 C21H24N2O4 References Lin et al. (2021)
38 11-Methoxyhumantenmine NA 356.2 C20H24N2O4 References Lin et al. (2021)
39 GELSENINE NA 358.19 C20H26N2O4 References Lin et al. (2021)
40 21- Oxokoumine NA 320.1 C20H20N2O2 References Lin et al. (2021)
41 Furanokoumine NA 322.1 C20H22N2O2 References (Lin et al., 2021)
42 Koumidine 44584550 294.4 C19H22N2O TCMID, TCMSP, BATMAN-TCM, References Lin et al. (2021)
43 Gelebolines A NA 320.15 C20H20N2O2 References Lin et al. (2021)
44 Gelebolines B NA 334.2 C21H22N2O2 References Lin et al. (2021)
45 Gelebolines C NA 334.1 C20H18N2O3 References Lin et al. (2021)
46 19E- 16- epi- voacarpine NA 368.2 C21H24N2O4 References Lin et al. (2021)
47 19- Z- taberpsychine 5321582 310.4 C20H26N2O References Lin et al. (2021)
48 Koumicine N- oxide NA 322.4 C20H22N2O2 References Lin et al. (2021)
49 Nb-methylgelsedilam NA 328.14 C18H20N2O4 References Lin et al. (2021)
50 15-hydroxy-Nb-methylgelsedilam NA 344.1 C18H20N2O5 References Lin et al. (2021)
51 Gelsesyringalidine 136704418 490.5 C28H30N2O6 References Lin et al. (2021)
52 14-Dehydroxygelsefuranidine 1,02417029 404.5 C24H24N2O4 References Lin et al. (2021)
53 Humantenoxenine NA 368.17 C21H24N2O4 References Lin et al. (2021)
54 15-Hydroxyhumantenoxenine 101606434 370.4 C21H26N2O4 TCMID
55 Kounaminal 102260292 363.5 C22H25N3O2 References Lin et al. (2021)
56 Dehydrokoumidine 119077162 292.4 C19H20N2O References Lin et al. (2021)
57 Koumine 91895267 306.4 C20H22N2O TCMID, TCMSP, BATMAN-TCM, TCM-Taiwan, References Lin et al. (2021)

NA, not applicable.
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biosynthetic/cytosolic calcium ion concentration, and
phospholipase C-activating G-protein coupled receptor
signaling pathway. Meanwhile, the target protein was
mainly distributed in the plasma membrane and involved in
protein homodimer activity, enzyme binding, transmembrane
receptor protein tyrosine kinase activity, etc.

KEGG pathway analysis identified 73 pathways, including
neuroactive ligand-receptor interactions, calcium signaling
pathway, MAPK signaling pathway, HIF-1 signaling pathway,
cGMP-PKG signaling pathway, Rap1 signaling pathway,
inflammatory mediators regulating TRP channels, and TNF
signaling pathway (Supplementary Table S4). The top 15
KEGG pathways based on their p-values were selected to
generate a bubble chart for visualization (Figure 4B).

“Ingredient-Target-Pathway” Network
Construction
Based on the active ingredients related to the target genes,
the active ingredients–disease targets–pathway network
with 114 nodes and 556 edges was constructed
(Figure 5). Of the 99 nodes, 47 active ingredients nodes,
52 target nodes, and 15 pathways were involved. The top
three active ingredient nodes with the most edges were 11-
hydroxyrankinidine, 11-hydroxyhumantenine, and
gelseoxazolidinine. The average values of the degree
values, node betweenness, and closeness of the three
topological features of these active ingredients were 13.8,
0.0402, and 0.4424, respectively. The top three target nodes

with the most degrees were EGFR, JAK1, and AKT1. The
average values of the degree values, node betweenness, and
closeness of the three topological features are 23, 0.0855,
and 0.4658, respectively.

Ingredients-Targets Molecular Docking
Themolecular docking technology was used to further evaluate
the interaction between the ingredients and the targets, and
verify the accuracy of the network analysis. The binding
strength of the ligand and the receptor depends on the
change in the binding energy. The lower the binding energy
between the ligand and the receptor, the more stable and
greater the possibility of interaction of ligand-receptor
binding. The top three core active ingredients and three
targets were used as receptors and ligands, respectively. In
addition, koumine was also acted as a receptor for target
docking simulation since it was one of the most studied
ingredients of GEB (Table 3). The molecular docking
results demonstrated that each ingredient could match well
with each target to verify the accuracy of the prediction
network construction. 11-Hydroxyrankinidine had the
highest affinity for the target of EGFR (PDB: 5HG7), AKT1
(PDB: 3L9M), and JAK1 (PDB: 4E5W), and had the lowest
binding energy with EGFR, which indicated that 11-
hydroxyrankinidine had a strong affinity with the active
pocket of EGFR.

Multi-conformation molecular docking results were
visualized using Pymol software in Figure 5. The 11-
hydroxyrankinidine-EGFR complex was stabilized by three
hydrogen bonds with potential residues including MET-793
(2.8 Å) and CYS-797 (3.3 Å) (Figure 6A). The 11-
hydroxyrankinidine- JAK1 complex was mainly through
three hydrogen bonding interactions of ARG-1007 (2.7 Å),
LEU-959 (2.8 Å), and LEU-959 (2.5 Å) (Figure 6B). The 11-
hydroxyrankinidine- AKT1 complex interacted with the
residue GLU-170 (2.8 Å) through one hydrogen bond
(Figure 6C). The results of virtual docking between
koumine and the targets EGFR, JAK1, and AKT1 were
denoted in Figure 6D–F respectively.

FIGURE 2 | The Venn diagram illustrating the intersection of the GEB
target genes and NPP target genes. The blue circle is the GEB target genes,
the red circle is the NPP target genes, and the overlap of the two circles
indicates GEB target genes prediction for NPP treatment.

TABLE 2 | Key targets of the PPI network.

NO. Common name Degree

1 AKT1 29
2 ENSG00000196689 27
3 TNF 25
4 CASP3 25
5 CXCL8 24
6 MAPK8 24
7 OPRM1 23
8 EGFR 23
9 OPRL1 20
10 CNR1 20
11 PTGS2 18
12 CTNNB1 18
13 REN 16
14 OPRD1 16
15 OPRK1 16
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Molecular Dynamics Simulation of Ligand
Complex
Since 11-Hydroxyrankinidine has the lowest binding energy with
EGFR, 11-hydroxyrankinidin-EGFR complex was selected for
molecular dynamics simulation to elaborate the dynamic
interactions between the protein-ligand complex and confirm the
molecular docking results. The system’s potential energy converged
within 100 ps (Figure 7A), which indicated that the simulation
system was well prepared. The RMSD graph shown in Figure 7B
demonstrated that a consistently stable structure of 11-
hydroxyrankinidine-EGFR complex throughout the simulation
period. The mean (±SD) RMSD of the 11-hydroxyrankinidine-
EGFR complex (0.254 ± 0.018 nm) was similar with primitive
ligand complex (0.263 ± 0.026 nm), even lower than that of the
reference ligand after 26 ns. Meanwhile, the RMSF shows
comparatively restricted fluctuation in the protein residues
(Figure 7C). Mean (±SD) RMSF values of 11-
hydroxyrankinidine-EGFR complex and primitive ligand complex
were 0.147 ± 0.097 nm and 0.141 ± 0.095 nm, respectively. There
were no apparent differences for all complexes in the ligand RMSF.
This observation demonstrated that the molecules were capable of
forming stable interactions with the protein during simulation.

Anti-NPP Effects of Koumine in CCI Rat
Model
In the current study, the TWL to thermal stimulation and the
MWL tomechanical stimulation of the CCI rats were significantly
decreased compared with the sham group (p < 0.001). Koumine

attenuated the CCI-induced NPP effect in the dose-dependent
and time-dependent manner (Figure 8). The results indicated
that the maximum anti-NPP effect was reached on day 10 and
administration of koumine (7 mg/kg) exhibited the maximum
pharmacological effect to reverse NPP.

Validation of Predicted Target Protein With
Western Blotting
As shown in Figure 9, the relative protein expression of EGFR in
koumine treated group was higher than that in sham control and
CCI + vehicle groups, which indicated that koumine reversed the
CCI-induced downregulation of EGFR in a dose-dependentmanner.
Similarly, the activation of JAK1 was observed in koumine treated
group. In addition, the protein expression of AKT1 in the low-dose
group of koumine was lower than that in the sham control group.
However, no significance was observed between the sham control
group and the low-dose group of koumine. The reason for this may
be related to the complex interaction of pathways adjusted by
multiple ingredients, which needs to study further.

DISCUSSION

To the best of our knowledge, this is the first systematical study
for exploring the potential pharmacological and molecular
mechanisms of GEB against NPP from the network
pharmacology and experimental perspective. The major
findings were as follows: (Vos et al., 2012): a total of 52
proteins were considered as potential targets associated with

FIGURE 3 | Protein-protein interaction network for GEB in treatment for NPP. (A) Protein-protein interactions among the 52 core targets. Network nodes represent
proteins, and edges represent protein-protein associations. (B) PPI network of the hub genes using MCODE plugin. The color from red/orange/yellow indicated the
different importance of the nodes in the whole PPI network. That is, the redder the retangle is, the more important the node is in the PPI network.

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 7929328

Que et al. Molecular Mechanism of GEB

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


NPP according to the “ingredient-target-pathway” network, and
the top four targets were EGFR, JAK1, AKT1, and MAPK8;
(Andrew et al., 2014); GO and KEGG enrichment analysis
revealed that GEB was involved in phosphorylation reactions
and nitric oxide synthesis processes. It also participated in 73
pathways in the pathogenesis of NPP, including the neuroactive
ligand-receptor interaction signaling pathway, calcium signaling
pathway, and MAPK signaling pathway; (van Hecke et al., 2014);
a total of 47 active alkaloids might play a synergistic role in the
treatment of NPP. Among them, 11-hydroxyrankinidin matched
the active pockets of EGFR, JAK1, and AKT1 proteins, with the
strongest affinity, suggesting that it may be an essential
component of GEB in the treatment of NPP; (Jensen et al.,
2011); koumine reversed the CCI-induced downregulation of
EGFR and JAK1. These findings revealed the complex network

relationship of GEB in the “multi-ingredient, multi-target, multi-
pathway”mode, and explained the synergistic regulatory effect of
each complex ingredient of GEB based on the holistic view
of TCM.

By predicting targets and constructing the PPI network for the
common targets of GEB and NPP, 52 targets were distinguished
to investigate the possible mechanism of GEB against NPP. The
top targets, EGFR, JAK1, AKT1, and MAPK8, were thought to be
involved in NPP regulation. The first target, EGFR is expressed on
peripheral nerves, and it belongs to the ErbB family of receptor
tyrosine kinases (Neto et al., 2017). After nerve injury, EGFR is
upregulated in the nervous system and has been proposed as a
target for the treatment of NPP (Liu et al., 2006). EGFR also plays
a key role in many intracellular signaling pathways, such as
phosphatidylinositol 3-kinase, MAPK, and ErbB signaling

FIGURE 4 | GO and KEGG pathway enrichment analysis of GEB in treatment for NPP. (A) GO analysis of significant items of 52 common targets in different
functional groups (BPs, CCs, MFs) (B) The top 15 KEGG pathways based on their p-values. The larger the circle, the greater the number of the target genes in the term.
Also, color highlights the size of the FDR: the redder the color, the more significant the value.
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pathways (Tao et al., 2013; Borges et al., 2021), which is coherent
with the results of KEGG and molecular docking in the present
study. Furthermore, treatment of NPP with EGFR-Inhibitors
(EGFR-Is) significantly relieved the pain of the majority of
patients, which has been reported in clinical and preclinical
studies (Kersten et al., 2015; Kersten et al., 2019). The second
target, JAK1 is the core member of the JAK family and stimulates
the phosphorylation of STAT3 through particular domains
(Wang et al., 2020b). The JAK/STAT signaling pathway
directly or indirectly affects the action, expression, and
regulation of a multitude of cytokines in mediating various
mechanisms underlying pain (Simon et al., 2021). JAK1 was
increased in spinal nerve ligation triggered NPP rat models

(Wang et al., 2020b), which was validated to be a potential
therapeutic target of NPP. A previous study revealed that
dexmedetomidine had the potential to alleviate NPP by
regulating the JAK/STAT pathway in chronic constriction
injury rats (Xun and Zheng, 2020). It is suggested that the
active ingredients may exert therapeutic effects via regulating
JAK1 expression or its function. Another target of AKT, a key
downstream substrate in the PI3K pathway, is associated with
diverse biological processes (Sun et al., 2006). The
phosphorylation of the PI3K/AKT pathway in the spinal cord
contributes to the activation of the transcription factor nuclear
factor κB and the release of the inflammatory mediators and
finally leads to the development of NPP (Chen et al., 2017).

FIGURE 5 | The “ingredient-target-pathway” network for GEB in treatment for NPP. The outer green circle represents active ingredient in GEB, the yellow square
indicates the potential pathways, and the red diamond stands for the potential target. For corresponding active ingredient names, refer to Supplementary Table1. the
potential target genes shared by GEB and NPP, the orange triangle stands for the active ingredient in GEB, and the green diamond indicates the potential pathways. The
size of the node represents the degree values.
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Therefore, the PI3K/AKT pathway is likely a novel target for GEB
against NPP. As the potential downstream pathways of the EGFR,
accumulating evidence showed that theMAPK family contributes

to the regulation of pain hypersensitivity in different injury
conditions via phosphorylation activation (Gao et al., 2009; Ji
et al., 2009). A slow (>3 days) and persistent (>21 days) activation

FIGURE 6 | Virtual docking of the binding of EGFR, JAK1, and AKT1 with 11-Hydroxyrankinidine (A–C) and koumine (D–F) shown as 3D diagrams.

TABLE 3 | Virtual molecular docking of active ingredients of GEB and targets.

Name The number of hydrogen
bond

Amino acid residue Target Binding Energy/kcal·mol−1

11-Hydroxyrankinidine 3 MET-793 (2.8) EGFR −8.7
CYS-797 (3.3)

3 ARG-1007 (2.7) JAK1 −6.5
LEU-959 (2.8)
LEU-959 (2.5)

1 GLU-170 (2.8) AKT1 −8
11-Hydroxyhumantenine 1 CYS-797 EGFR −7.6

1 GLU-883 JAK1 −5.9
NA NA AKT1 −6.4

Gelseoxazolidinine 1 SER-720 EGFR −6.4
NA NA JAK1 −5.8
1 ASN-20 AKT1 −2.5

Koumine 1 CYS-797 (3.2) EGFR −7.2
NA NA JAK1 −6.2
1 ASP-184 (3.1) AKT1 −7.4

NA, not applicable.
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of MAPK8, known as c-Jun N-terminal kinase 1 (JNK1), could be
induced in the spinal nerve ligation model (Zhuang et al., 2006).
Although the current evidence was limited, it was reported that

the latent mechanism of GEB may be related to the activation of
MAPK in vitro and vivo studies (Yuan et al., 2016; Huang et al.,
2021). These pieces of evidence exemplify that the

FIGURE 7 | Molecular dynamics simulation of the 11-Hydroxyrankinidine-EGFR complex. (A) Energy minimization for molecular dynamics simulation. (B) RMSD
profiles of complex conducted during 100 ns. (C) RMSF profiles of the complex. The primitive ligand of EGFR is ibrutinib.
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pharmacological activity of GEB against NPP is due to the
interaction of these key targets. Moreover, multi-target
therapeutics approaches for GEB in control of NPP form a
basis for further research on the mechanism of GEB and the
development of novel therapeutic approaches in the future.

The related pathways and biological processes of GEB in the
treatment of NPP also reflected the multi-pathway characteristics
of TCM. Based on GO functional enrichment analysis, the
biological process mainly focused on the different
phosphorylation and nitric oxide (NO) synthesis processes,
which indicated that a potentially novel mechanism for
pharmacological intervention of GEB against NPP. Protein
phosphorylation plays a key role in the cellular regulatory
mechanism of enzymes and receptors. Most of the above-
mentioned target activation is involved in the phosphorylation
process. For example, phosphorylation of AKT at Thr308 and
Ser473 mediate pain behavior through the PI3K/AKT signal
pathway (Sun et al., 2006). Notably, GEB reduced the
oxidative stress and inflammatory reaction in a
phosphorylation state-dependent modulation manner (Yuan
et al., 2019; Luo et al., 2020; Wu et al., 2020). In addition, NO
is an important neurotransmitter and modulates a wide variety of

physiological functions. It has been illustrated that NO mediates
the analgesic effect of opioids and other analgesic substances
through activation of the cGMP–PKG–ATP-sensitive K+

channels pathway (Cury et al., 2011), which is consistent with
the results of KEGG enrichment. It was also reported that
koumine decreases the productions of NO and pro-
inflammatory mediators in RAW264.7 cells (Yuan et al.,
2016). These findings may partially support our prediction on
GO and KEGG pathway enrichment analysis. Furthermore, the
KEGG pathway enrichment analysis showed that GEB may
participate in neuroactive ligand-receptor interaction, calcium,
and inflammatory mediator regulation signaling pathways.
Neuroactive ligand-receptor interaction refers to the
stereoselectivity between neuroactive steroids and receptors
(Wang et al., 2017). Neuroactive steroids act as regulators to
influence the modulation of neuronal activity (Smith, 1994). As
confirmed by existing literature, the neurosteroid
allopregnanolone exert a positive allosteric regulation of the
GABA receptor and was activated by GEB and its active
alkaloids (Zhang and Wang, 2015). Mirtazapine affects
neuroactive steroid composition similarly to koumine with an
enhanced formation of 3α-hydroxysteroid dehydrogenase
neuroactive steroids (Schüle et al., 2006; Qiu et al., 2015).
Based on these, we infer that GEB might serve a crucial role
in NPP by influencing the pathway of neuroactive ligand-receptor
interaction pathway. In addition, increased expression of voltage-
gated calcium channels at dorsal root ganglia and presynaptic
terminals increases the excitability of nerve and lead to NPP
(Cohen and Mao, 2014).

FIGURE 9 | Western blot (A) and relative protein expression of EGFR
(B), JAK1 (C), and AKT1 (D). The data are presented as the mean ± SD (n � 6)
and were analyzed using two-way repeated analysis of variance (ANOVA)
followed by Bonferroni’s post hoc test, ##p < 0.01 compared with the
sham control group; **p < 0.01 compared with the vehicle control group. KM,
koumine.

FIGURE 8 | The anti-NPP effect of koumine in sciatic nerve chronic
constriction injury rats. (A) The time course of the effect of koumine on the
thermal withdrawal latency. (B) The time course of the effect of koumine on the
mechanical withdrawal threshold. The data are presented as the mean ±
SD (n � 6) and were analyzed using two-way repeated analysis of variance
(ANOVA) followed by Bonferroni’s post hoc test, ##p < 0.01 compared with the
sham control group; **p < 0.01 compared with the vehicle control group. KM,
koumine.
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Inflammatory mediator regulation is another interesting
pathway described by KEGG. An increasing number of studies
have indicated that inflammatory responses play a key role in the
development of NPP (Watkins et al., 2003). Cytokines, which are
essential for the induction and maintenance of pain (Zhang and
An, 2007), are primarily secreted by immune cells. Pro-
inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, and IL-17)
are evoked in inflammatory responses after nerve injury through
intracellular mediators, while anti-inflammatory (IL-4, IL-10,
TGF-β) signaling molecules show analgesic properties (Hung
et al., 2017). The PI3K/AKT signaling pathway is an
inflammatory pathway that may be mediated by TNF-α in
osteoarthritis, and TNF-α inhibitor treatment significantly
reduced the expression of IL-1, IL17a, and IL8 in synovial
fibroblasts (Li et al., 2018). In addition, the TNF-induced
cutaneous hypersensitivity to mechanical or thermal
stimulation is also associated with the cAMP-dependent
protein kinase (PKA) pathway and the p38 mitogen-activated
protein kinase (MAPK) pathway (Zhang et al., 2002; Schäfers
et al., 2003), which are all presented in our network results and
provides a systematic and macro perspective to understand their
interactions. Another cytokine, IL-17, has shown the potential
effect on allodynia. Exogenous IL-17 administration may increase
the activity of the transient receptor protein vanilloid 4 (TRPV4)
(Hung et al., 2017), which was discovered in network
pharmacology. Furthermore, gelsemine and koumine have
been shown to inhibit the overexpression of pro-inflammatory
cytokines in mice and rats (Jin et al., 2018b; Chen et al., 2020).
These above evidenced improve our confidence that GEB can
restore the imbalance between pro-inflammatory cytokines and
anti-inflammatory cytokines and thus promote its
antinociceptive effects.

Based on the “ingredient-target-pathway” network, 47
pivotal active ingredients related to NPP were obtained,
such as 11-hydroxyrankinidine, 11-hydroxyhumantenine,
gelsamydine, koumidine, and gelebolines C. These
ingredients might play a synergistic role in the treatment of
NPP. Structurally, the 47 phytochemicals have exhibited
diversity. Molecular docking results have disclosed that 11-
hydroxyrankinidine, 11-hydroxyhumantenine, gelsamydine,
and koumine could bind autonomously with the active
pocket of EGFR, JAK1, and AKT1 to form a complex with a
relatively stable structure through hydrogen bonds and other
interactions. Among them, 11-hydroxyrankinidine has the
lowest binding energy and the highest affinity to EGFR.
Encouragingly, it was observed that the RSMD and RSMF
profiles of the 11-hydroxyrankinidine-EGFR complex were
relatively stable, which indicated 11-hydroxyrankinidine
showed promising inhibitory activity in NPP. Due to the
accessibility, the extracts and monomers derived from GEB
have been found to possess anti-NPP biological activity,
especially some of the active ingredients, such as koumine
(Xu et al., 2012; Qiu et al., 2015; Jin et al., 2018a; Jin et al.,
2018b), gelsenicine (Liu et al., 2011), and gelsemine (Zhang
et al., 2013; Wu et al., 2015; Chen et al., 2020). To further verify
the hypothesis of network pharmacology, that is, the active
alkaloids obtained through network pharmacology act on the

target to exert an anti-NPP effect, the behavior test and
western blotting were applied to evaluate the anti-NPP
effects of koumine as well as its molecular mechanism after
the analysis of network pharmacology, molecular docking, and
molecular dynamics simulation. It was suggested that koumine
could upregulate the protein expression of EGFR and JAK1 to
achieve the anti-NPP action. Combined with the prediction
results, it was reasonable to speculate that koumine or GEB-
derived ingredients contributed to the anti-NPP effect through
some pain-related targets. Most of the indole alkaloids have a
similar skeletal structure. Therefore, it is worthy of further
examination for the therapeutic effects of 11-
hydroxyrankinidine against NPP both in vitro and in vivo,
though the current data on 11-hydroxyrankinidine is
extremely limited. Furthermore, traditional TCM usually is
thought to act in synergy to achieve a holistic therapeutic
outcome, suggesting the understanding of the synergistic
action of these alkaloids with a holistic view.

This present study also has several limitations. Firstly, given
the limitations of network pharmacology, the public databases
investigated in the study would be constantly updated so some
ingredients and targets information has partly lagged. The
chemical fingerprint may be a better choice for network
construction and mechanism exploration. Secondly,
SwissTargetPrediction is a ligand-based tool for predicting the
interacting targets of small molecules, which is useful for
understanding the molecular mechanisms underlying a specific
phenotype or bioactivity, as well as assessing the possibility of
repurposing therapeutically-relevant compounds. It is based on
the so-called “similarity principle,” which states that two similar
molecules are likely to have similar properties. However, when
there are few (or no) known active ligands for a target of interest,
their predictive reliability suffers. Furthermore, when molecules
with high structural similarities but different biological activities
for the same target coexist, a limitation may also exist. Thirdly,
the validation experiment in the current study only provided
limited protein, and more targets and pathways may be studied
further, especially the possibility of influence and correlations
with cytokines. Besides, although 11-hydroxyrankinidine
showed promising inhibitory activity in network
pharmacology, it is not the most abundant ingredient in
GEB. Due its inaccessibility, there has been no report on its
pharmacological activities to date. Therefore, koumine was
selected in validation in the experiment as a substitute, based
on the fact that it is a high-content active alkaloid of GEB that
is easily obtained. Furthermore, molecular docking results
demonstrated that koumine bonded to the ligand stably. For
further study, we can also use pH-zone refining counter-
current chromatography to purify the active monomer (Su
et al., 2011), for example, 11-hydroxyrankinidine, to
determine its analgesic effect in the future.

In the present study, the active ingredient and anti-NPP
mechanism of GEB were mapped using network
pharmacology, molecular docking, molecular dynamics
simulation, and bioinformatics approach. It could promote
the understanding of the synergistic action of GEB with a
holistic view to explore the key ingredients, targets, and
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pathways. Different from the current mode of single-target
pharmacology in TCM, network pharmacology based on
computational prediction could provide broad ideas and be
a useful supplement for the mechanism exploration of TCM.
In addition, the new potential lead compounds screened in our
study, for example, 11-hydroxyrankinidine, may provide a
rational direction for future drug discovery and
development. With the development of monomer
purification technology (Su et al., 2011), it will be hopefully
available to identify the anti-NPP effect. What should also be
stressed here is that, before experimental validation, network
pharmacology prediction could serve as promising, rapid, and
cost-effective strategies during the drug discovery and
development process in the future.

CONCLUSION

This study revealed the underlying pharmacological mechanisms
of GEB on NPP based on network pharmacology and
experimental evidence. Forty-seven active alkaloids might play
a synergistic role in the treatment of NPP, and 11-
hydroxyrankinidin had excellent stability in the active site
pocket of EGFR, JAK1, and AKT1, the core targets in network
pharmacology. Meanwhile, GEB participates in the regulation of
73 pathways including neuroactive ligand-receptor interaction in
the pathogenesis of NPP concentrated mainly on
phosphorylation reactions and nitric oxide synthesis processes.
Experimental evidence also proved that GEB may regulate the
expression of EGFR and JAK1 after the formation of ligand-
receptor complexes. In the future, network pharmacology based
on computational prediction may provide broad ideas for TCM
mechanism exploration as well as cost-effective strategies during
the drug discovery and development process.
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