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Pause sequences facilitate entry into long-lived
paused states by reducing RNA polymerase
transcription rates
Ronen Gabizon1, Antony Lee 2, Hanif Vahedian-Movahed 3,4, Richard H. Ebright 3 &

Carlos J. Bustamante 1,5,6

Transcription by RNA polymerase (RNAP) is interspersed with sequence-dependent pausing.

The processes through which paused states are accessed and stabilized occur at spatio-

temporal scales beyond the resolution of previous methods, and are poorly understood. Here,

we combine high-resolution optical trapping with improved data analysis methods to

investigate the formation of paused states at enhanced temporal resolution. We find that

pause sites reduce the forward transcription rate of nearly all RNAP molecules, rather than

just affecting the subset of molecules that enter long-lived pauses. We propose that the

reduced rates at pause sites allow time for the elongation complex to undergo conformational

changes required to enter long-lived pauses. We also find that backtracking occurs stepwise,

with states backtracked by at most one base pair forming quickly, and further backtracking

occurring slowly. Finally, we find that nascent RNA structures act as modulators that either

enhance or attenuate pausing, depending on the sequence context.
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Transcription is a tightly regulated process in which RNA
polymerase (RNAP) encodes the genetic information into
RNA molecules with either protein-encoding or structural

and catalytic roles1. After initiating transcription from a pro-
moter, RNAP enters the elongation phase, which consists of
periods of processive nucleotide addition interspersed by pauses.
Pausing plays critical roles in regulating transcription and in
coordinating it with other processes that occur co-tran-
scriptionally, including RNA folding2, RNA processing and
translation3,4.

The entry into paused states begins with the formation of an
elemental paused state with inhibited transcription elongation5–7.
In Escherichia coli, pausing is known to occur at consensus pause
sequence elements (G−10Y−1G+1, where −1 corresponds to the
position of the RNA 3′ end and +1 corresponds to the next
nucleotide to be incorporated)3,8, through inhibition of the
translocation step8. The paused states can be further stabilized by
the formation of a nascent RNA hairpin9,10 or by RNAP back-
tracking10–12. However, the events required to enter a paused
state from active elongation are not well understood, because
those events are beyond the temporal resolution of previous
experiments. Optical tweezers experiments5,13–17 have been used
to detect and characterize long-lived pauses (longer than 1 s), but
have not been able to reliably and directly detect and characterize
short, sub-second pauses. Since the time scale for processive
nucleotide addition by RNAP at saturating nucleotide con-
centrations is ~25–100 ms per nucleotide18,19, a wide range of
physiologically relevant time scales (from ~25 to ~1000 ms) has
eluded direct study.

Here, we use a high-resolution optical tweezers assay and
developed methods of data analysis to characterize transcription
by E. coli RNAP through sequence-dependent pause sites with a
temporal resolution improved by an order of magnitude (~100
ms). These improvements enable us to answer three key questions
about the mechanism of pause entry and the modulation of
pauses by backtracking and nascent RNA features. First, we find
that sequence-dependent pause sites all involve a slowing of the
forward elongation rate of the enzyme RNAP. This result sup-
ports a model in which pause sequences reduce on-pathway
elongation rates by RNAP, allowing it time to enter off-pathway
reactions leading to long-lived paused states. Second, we find that
stabilization of sequence-dependent pauses by backtracking
involves two consecutive steps: a first step entailing rapid for-
mation of a state that is either non-backtracked or backtracked by
at most a single base pair, and a second step entailing slow
conversion to a deeper backtracked and longer-lived state. Third,
we find that nascent RNA features, such as hairpins, can either
increase or decrease the duration of sequence-dependent pauses,
depending on the sequence context, most likely through inter-
action with the pretranslocated state of elongating RNAP.

Results
Characterization of pausing at improved temporal resolution.
Previous optical tweezers studies of pausing relied on direct
detection of pausing events by identifying time intervals where
the measured transcription velocity is below a defined thresh-
old14,15. These methods can consistently detect pausing events
longer than ~1000 ms, but must rely on extrapolation and/or
other assumptions to infer the distributions of events occurring
on shorter time scales20. The average pause-free velocity of RNAP
at saturating concentrations of nucleotide triphosphates (NTP) is
10–40 bp/s, corresponding to a time scale for processive nucleo-
tide addition of ~25–100 ms14,18,19, an order of magnitude
shorter than directly accessible to previous methods ( ≥ 1000 ms).

To overcome this limitation, we sought to fully characterize the
dynamics of sequence-specific pausing, down to the ~100 ms time
scale. To this end, we developed a method that can accurately
determine (1) the position of RNAP on the template sequence, (2)
the time RNAP spends at each pause site for every crossing (the
Pause Site Crossing Time), and (3) the pausing efficiencies at each
pause site. The method is briefly described below; a detailed
description is given in the Supplementary Methods.

The first requirement—accurate determination of the position
of RNAP relative to the template sequence—was fulfilled by
modifying a procedure from Herbert et al.13. We performed
transcription experiments on a DNA template (8XHis) containing
the T7A1 promoter followed by eight tandem repeats of a 239 bp
sequence containing the his-leader pause site and four other
known sequence-dependent pause sites5,13 (‘a’, ‘b’, ‘c’, and ‘d’,
Fig. 1a). Single transcription elongation complexes containing
biotinylated E. coli RNAP halted at position 29 by NTP
deprivation were tethered between 1 µm diameter polystyrene
beads held in high resolution optical traps (Fig. 1a) Transcription
was restarted by moving the bead pair into a region containing
saturating NTPs in a laminar flow chamber21, and subsequent
elongation was monitored by measuring the extension of the
tether (in nm) over time (Fig. 1b, left). By maintaining constant
force with an active feedback loop, we ensured that a constant
factor could be used to convert physical distances (in nm) to
sequence positions (in base pairs).

We next generated a residence-time histogram (RTH) for each
single-molecule trace by sorting the extension data into 0.1 nm
bins, and aligned the RTH to estimate, for each trace, the physical
length of the 239-bp repeat (in nm). Herbert et al.13 observed that
the aligned RTH yields sharp peaks in defined positions
corresponding to the pause sites, and thus estimated the physical
repeat length by maximizing the skewness of the aligned
residence time values. We used a more general cross-validation
approach that assumes only that the RTHs of individual repeats
are similar to each other, and identifies for each individual
trace the physical repeat length that maximizes the similar-
ity (Supplementary Fig. 1a). The calculated physical repeat
lengths varied with force and were well fit with a worm-like chain
model (Supplementary Fig.1b). All traces were then aligned to
each other and with the known pause site locations using a
similar algorithm, in order to calculate the mean RTH at each
position.

The resulting sequence-dependent pausing profile is presented
in Fig. 1b (right). We detected the strong pause sites characterized
by Herbert et al. (‘his’, ‘a’, ‘b’, ‘c’, and ‘d’), nine other sequence-
dependent pause sites with shorter residence times (labeled P1-
P9), and the almost entirely pause-free regions between the pause
sites. The weak pause sites P1-P9 were partially evident in
previous studies13 but with lower resolution. They appear as
peaks across all tested conditions and forces, and display the high
force sensitivity characteristic of pause sites, in contrast to non-
pause sites (as will be shown later, Fig. 2c); these results indicate
that P1-P9 are weak pause sites and not random fluctuations in
transcription rates. Supplementary Table 1 contains the
sequences of the identified pause sites, Supplementary Table 2
contains the average transcription rates in pause-free regions, and
Supplementary Table 3 contains the number of traces and repeats
aligned for each data set. The ‘his’, ‘a’, and ‘d’ pause sites exhibit
three out of three matches to the consensus pause element,
G−10Y−1G+1

3,8, whereas the ‘b’ and ‘c’ pause sites exhibit only
two matches. In contrast, the weak pause sites, P1–P9, exhibit at
most one out of three matches to the consensus pause element.
We also checked if the weak pause sites match the more extensive
consensus sequence G−11G−10T−3G-2Y−1G+1

3,22, and found only
one site (P9) that displayed more than one match. We focused
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our study on the five strong pause sites, as well as the site ‘P2',
which displayed high sensitivity to RNase, as described later.

The second requirement—accurate determination of the pause
site crossing times—was fulfilled as follows. We estimated that the
location of RNAP at any given position in the data was known to
within ± 3 bp (Supplementary Fig. 1f). Given this localization
accuracy, we could draw, around each expected pause site, a 6 bp
window in which the actual pause site must be located. Since no
pause sites were found within 6 bp of one another, each window
surrounding a pause site contains ~6 steps, one of which
corresponds to the crossing of the pause site itself and the others
to the crossing of pause-free sites. Next, we made the key
assumption that within each of these 6 bp windows, the position
of the pause site corresponds to the slowest step. To estimate the
crossing time of the pause site, we denoised the traces using total
variation regularization (Fig. 1c, Supplementary Fig. 1e), searched
within each 6 bp window for the 1-bp step that took the longest to
cross, and took the duration of that slowest 1 bp as the crossing
time at that pause site. We measured the crossing time
distribution (CTD) at each pause site, as well as in pause-free

regions, for which the data were aggregated into a single
distribution (Fig. 1d and Supplementary Fig. 1c). Supplementary
Fig. 2e illustrates that the heterogeneity within the reference sites
is small compared to the difference between reference sites and
pause sites (both P1-P9 and ‘a’, ‘b’, ‘c’, ‘d’, ‘his’), justifying the
aggregation of data from all reference sites.

A key feature of the method we use for calculating crossing
times is that no element of pause detection is employed. Instead,
the method calculates the crossing time for every instance of the
tested site, whether a pause was visually apparent or not, yielding
full distributions of all crossings of the pause sites. To assess the
performance of our method, we simulated transcription traces
over 6 bp windows spanning a pause site (see supplementary
methods for details), and compared the CTDs obtained from
direct pause detection methods13–15 and CTD’s obtained from
our method, to the true distribution of crossing times
(Supplementary Fig. 1g). We find that at timescales above 250
ms, both methods are relatively accurate, with direct detection
slightly underestimating the crossing times and with our method
slightly overestimating them (by ~50ms). However, below 250
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ms, direct detection fails to detect pauses, leaving 20–50% of the
crossings completely uncharacterized. Our method characterizes
the entire distribution of pause site crossings, with the said
overestimation of their duration. Similar differences are observed
for CTDs calculated from the experimental data. The CTDs at
pause sites can be clearly distinguished from the distribution
measured at non-pause sites under the same conditions using the
same method (which we term the Reference CTD), down to a
time scale of 100 ms (Fig. 1d).

The third requirement—accurate determination of pausing
efficiencies—was fulfilled by employing a non-parametric com-
putational approach, as follows. For each pause site, we define the
Pausing Efficiency as the probability that an RNAP molecule will
reduce its transcription rate when crossing the site. In previous
studies, the number of pauses shorter than 1 s was estimated by
extrapolation of the pause lifetime distribution measured at ≥1 s
time scales to shorter times. We found that this method
significantly underestimates pausing efficiencies (Supplementary
Fig. 2b), and fails completely at high assisting forces or at weak
pause sites, in which transcription is inhibited but very few ≥1 s
events are detected.

In contrast, we have directly measured the full pause site
crossing time distributions. Due to the stochastic behavior of
single RNAP molecules, at the 50–100 ms time scale, crossing
events cannot be unambiguously assigned as pause-free or
paused, contrary to very fast (<50 ms) or very slow (>1 s) events,
that can be assigned with certainty as pause-free or paused,
respectively (Supplementary Fig. 2c). This inherent limitation
would remain present even if we could observe single base pair
stepping events with infinite temporal resolution. We therefore
calculated the pausing efficiency at each site by comparing the

CTD measured there to the reference CTD (measured at non-
pause sites). To this end, we found the cutoff time below which
the CTD at a given pause site (Fig. 2a, blue curve) is statistically
most similar to the reference CTD (Fig. 2a, black curve). The
similarity of CTDs below the cutoff at the pause site and at pause
free sites suggests that events shorter than the cutoff arise from
the same (pause-free) state in both cases (Fig. 2a, light green
vertical bar). As stated above, there are also pause-free events
longer than the cutoff, which can be estimated from the reference
distribution (Fig. 2a, dark green vertical bar). As an example, if
50% of the events in the reference distribution are shorter than
the cutoff, then at the pause site there should likewise be an equal
number of pause-free events below and above the cutoff.
Therefore, the total number of non-paused events at the pause
site is thus computed as twice the number of events shorter than
the cutoff. The pausing efficiency is calculated as the remaining
fraction of crossings, which must arise from the paused state. In
fact, this value is likely to be a lower bound on the true pausing
efficiency since, contrary to our assumption, even events shorter
than the cutoff may arise from the paused state with non-zero
probability (Supplementary Fig. 2 and Supplementary Methods).
We estimate that true pausing efficiencies may be up to 20%
higher than the values we report.

Random pausing events occurring outside the pause sites
(termed ubiquitous pauses) were rare compared to previous
reports:14,23 using our current method, the fraction of crossings in
non-pause sites longer than 1 s (and therefore detectable as
pauses by earlier methods) was <0.03 events per 100 bp for
assisting forces, reaching 0.3 events per 100 bp at 10 pN opposing
force (Supplementary Fig. 3). We speculate that many pauses
assigned as ubiquitous in previous studies with lower spatial
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accuracy were in fact sequence-specific pauses whose exact
position in the sequence could not be resolved. In comparison,
the fraction of >1 s crossings at pause sites obtained by this same
method was typically in the range of 5–35% at assisting forces and
30–50% at opposing forces. Therefore, the assumption that no
pausing occurs outside the pause sites would at most cause an
additional slight underestimation of the true pausing efficiencies
at the pause sites.

Reduced forward transcription rates at pause sites. We com-
puted the pausing efficiency for the main sites ‘a’, ‘b’, ‘c’, ‘d’, and
‘his’ at different forces using the non-parametric method descri-
bed above (Fig. 2b, Supplementary Table 4). All pause sites
exhibit uniformly high pausing efficiencies (>70–85%) that are
independent of force. In other words, almost all RNAP molecules
exhibit slower dynamics when crossing sequence-dependent
pause sites, regardless of whether they entered an extended
paused state. In contrast, the extrapolation-based method con-
sistently underestimates the efficiency, particularly at high forces
at sites ‘a’, ‘b’, and ‘c’. Unlike pausing efficiencies, pause durations
are strongly force dependent, as seen both in the distributions of
pause site crossing times (Supplementary Figure 3) and in the
residence times (Fig. 2c).

Backtracking occurs in two steps with distinct kinetics. Using
the improved spatiotemporal resolution and positional accuracy
of our method, we probed the dynamics of backtracking events
down to 2 bp depths under opposing forces; in these conditions,
~1 backtracking event occurred per trace on average (>5 times
more frequently than under assisting forces). Specifically, as

illustrated in Fig. 3a, we measured how far RNAP backtracked
(backtrack depth), for how long the polymerase paused before it
began to backtrack (pre-backtrack time), and how long it spent in
the backtracked state (backtrack duration). Backtracking is highly
site-specific, with the vast majority of backtracking events
occurring at site ‘b’, and less frequently at site ‘a’ (Fig. 3b). This
site-specificity can be explained by the favorable change in the
free energy associated with the backwards propagation of the
transcription bubble when RNAP backtracks from site ‘b’
(see Supplementary Methods and Supplementary Fig. 4a).

We further characterized the backtracking dynamics at site ‘b’.
First, the backtrack depth and duration were positively correlated
(Fig. 3c) with a sub-linear dependence that points to a diffusive
backtracking mechanism15,24. Return of the RNA 3′-end to the
active site of the polymerase does not necessarily imply recovery
from the paused state—in many backtracking events, the active
site re-aligns with the 3′-end of the transcript only to backtrack
again once or several times before actual recovery (Fig. 3a).
Second, we found that RNAP does not begin to backtrack
immediately upon entering a pause. Instead, it takes at least a
second before the enzyme begins to move backwards (with most
backtracking events starting 1–10 s after the beginning of the
pause, Fig. 3d). This observation indicates that the stabilization of
a pause by backtracking occurs in two steps: (1) rapid formation
of an initial paused state, which is either non-backtracked or
backtracked by 1 bp at most, and (2) slow conversion into a deep
and long-lived backtracked state.

To further characterize the backtracking process, we also
conducted experiments in the presence of the elongation factor
GreB (0.87 µM), which rescues elongation complexes backtracked
by as little as 2 bp, but inhibits transcription by non-backtracked
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RNAP25 (Fig. 4 and Supplementary Fig. 4b). Transcription data
collected in the presence of GreB at 10 pN opposing force, at
which backtracking is most favored, display shorter and shallower
backtracking events, with rapid recovery indicative of transcript
cleavage and transcription directly from the backtracked position,
compared to the slower, diffusive return observed in the absence
of GreB11. GreB has a slight opposite effect on non-backtracked
pauses: it slightly increased the crossing times at all time scales at
the sites ‘c’, ‘d’, and ‘his’, consistent with the low degree of
backtracking observed at those sites (Fig. 4). The effect of GreB
was different for sites ‘a’ and ‘b’ (Fig. 4)—at short timescales,
crossing times at ‘a’ and ‘b’ were unaffected, or even slightly

increased in presence of GreB; however, pausing events longer
than ~3 s, comprising 20–25% of the events, were highly
attenuated. Pause-free sites display similar behavior to pauses
‘a’ and ‘b’, but only ~3% of the crossings (corresponding to time
scales >0.7 s) are shortened by GreB, indicating that backtracking
outside the main pause sites occurs at a very low frequency. This
result further confirms that ≥ 2 bp-backtracked states are formed
slowly from non-backtracked or 1-bp backtracked paused states.

Sequence-specific modulation of pausing by the nascent RNA.
We probed the effect of nascent RNA on the transcriptional
dynamics by addition of 0.1 mg/ml RNase A16. Consistent with
reports that pausing is stimulated by the nascent RNA hairpin at
the ‘his’ site, RNase strongly attenuated, but did not abolish the
pausing at that site (Fig. 5a). We found that nascent RNA also
affects pausing dynamics in other sites, and that the direction and
magnitude of the effect vary from sequence to sequence. Pause ‘d’
was attenuated, though to a smaller extent than ‘his’, whereas the
otherwise weak pause ‘P2’ was strongly enhanced by RNase.
Modulation of pausing by the nascent RNA and backtracking
appear to be mutually exclusive, as the backtracking-prone sites
‘a’ and ‘b’ did not exhibit sensitivity to RNase, and the sites most
sensitive to RNAase do not display backtracking. The residence
times at several of the minor pause sites (such as ‘P1’ and ‘P6’)
were also modulated by removal of the transcript.

Next, we analyzed how the applied force changed the RNase
sensitivity of the affected pause sites (Fig. 5b, c). The effect of
RNase was consistently stronger at opposing force than at
assisting force. This observation could be explained by two
scenarios. First, nascent RNA structures may interact more
strongly with RNAP in the pre-translocated state, which is
favored by opposing force. Second, under opposing force,
transcription rates are lower, which may give more time for
RNA structures to form, thus enhancing their effect. Simulation
of co-transcriptional folding using Kinefold26 (Supplementary
Fig. 5) indicates that under the conditions used in our assay, RNA
folding is likely to be fast compared to transcription and therefore
the effect of RNA on pausing is unlikely to change due to the
small (~15%) variation in transcription rate over the range of
forces tested. Accordingly, we tend to favor the hypothesis that
nascent RNA structure interacts predominantly with RNAP in
pre-translocated state.

Previous studies using bulk transcription assays have found
that mutating the nascent RNA hairpin at the ‘his’ site reduced
pause durations with minimal effects on measured pausing
efficiencies, while mutations to the consensus pause elements
reduced both27–30. However, it is unclear whether this conclusion
resulted from the limited temporal resolution of the experiments
(~10 s) that precluded the detection of short pauses. Using the
enhanced resolution in our assay, we tested the effects of RNase
on pausing efficiencies at the ‘his’, ‘d’, and ‘P2’ sites. We found
that in contrast to its effect on the pause residence times, the
effect of RNase on pausing efficiency is minimal, with no
significant changes at assisting force and only a ~25% reduction
at opposing force for the ‘his’ site. These observations confirm
that the interaction between the nascent RNA and RNAP plays
only a minor role in pause entry, and primarily serves to enhance
(for ‘his’ and ‘d’) or inhibit (for ‘P2’) the formation of longer lived
paused states.

Discussion
Sequence-specific pausing involves the formation of elemental
paused states5–7 that are stabilized by processes such as back-
tracking and RNA hairpin formation. The enhanced temporal
resolution of our assay revealed that in addition to these
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mechanisms, pause sequences facilitate pause entry by generally
reducing the forward transcription rate of RNAP: nearly all
RNAP molecules exhibit slow transcription dynamics when
crossing a pause site, even under conditions in which few or no
pausing events are long enough to be detected directly using
previous methods. This slowing down most likely takes place
through sequence-dependent inhibition of forward translocation,
as evident from the strong force-dependence of pause durations
at these sites. Inhibition of an on-pathway step should result in
high and force-sensitive pausing efficiencies, since even at high
assisting forces, this step would be slower than the equivalent step
at pause-free sites. This inference is further supported by the
inhibition of forward translocation of E. coli RNAP by consensus
pause elements8 and by studies of S. cerevisiae RNA polymerase
II, for which sequence-specific translocation barriers that inhibit
forward motion of the polymerase have been implicated in
pausing31. We propose that inhibition of the on-pathway elon-
gation dynamics of RNAP allows time for transitions into stable
off-pathway paused states, such as hairpin-stabilized or
backtracked-stabilized states32 (Fig. 6).

The universally high—and force-independent—pausing effi-
ciencies could also be rationalized by the existence of a paused
state which is accessed at a very high rate relative to forward
transcription, resulting in high pausing efficiencies at all forces.
However, having no evidence of this mechanism at this point, we
opt for the more phenomenological model of reduction of the on-
pathway rate.

Previous studies of transcriptional pausing were blind to the
dynamics in the 100–1000 ms time scale14,15 and estimated
the number of pauses shorter than 1 s by extrapolating from the
distribution of events longer than 1 s, usually presumed to be
exponential. This approach implicitly assumes that the rate of
pause escape is the same in both time scales; in fact, it yields a
highly inaccurate picture of the pausing dynamics at short
timescales (Supplementary Fig. 2b). The Slowest-Crossing
method presented here for computing crossing times at
sequence-encoded pause sites, enhances the temporal resolution
of the dynamics at pause sites, down to ~100 ms. Moreover, the

non-parametric method for computing the pausing efficiencies
described above relies on the more conservative assumption that
pause-free crossings at the pause sites occur via the same
mechanism as crossings of non-pause sites and therefore follow
the same distribution. Using this approach, we found that pausing
efficiencies are much higher than previously determined and are
independent of force.
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The enhanced temporal resolution of our assay enabled a
detailed characterization of the roles played by backtracking and
nascent RNA structure in pausing dynamics. Structural studies
have found differences between the conformations of 1-bp
backtracked and deeper backtracked elongation complexes, both
for bacterial and eukaryotic RNAP33,34. However, it was unclear
whether these structural differences observably modify the
dynamics of backtracking. Our results provide direct evidence
that the formation of ≥2 bp backtracks involves the rapid and
efficient formation of an initial paused state (non-backtracked or
1-bp backtracked) followed by a slower formation of deep
backtracked states (Fig. 6). Optical trapping studies on
nucleosome-induced pausing have also yielded indirect evidence
of similar behavior by yeast RNA polymerase II35. Although we
could not resolve whether the initial paused state is a non-
backtracked or a 1-bp backtracked state, we propose that the
two-step nature of backtracking may be a general property of
elongation complexes.

As with backtracking, the effects of RNA structure on pausing
are site-specific; they vary both in their direction and in their
magnitude (Fig. 6). While pausing at the ‘his’ site is strongly
dependent on the hairpin, site ‘d’ retained significant pausing in
the presence of RNase, and the RNA structure primarily stabilizes
paused states longer than 1 s. At site ‘P2’, pausing is inhibited by
the nascent RNA. Studies of eukaryotic RNA polymerase II16

have suggested that RNA structures diminish pausing by gen-
erating a physical barrier for RNAP backtracking36. However, we
observed no significant backtracking at site ‘P2’, and RNase had
no effect on backtracking in general or on the backtrack-prone
sites ‘a’ and ‘b’. The CTD at ‘P2’ was also not affected by GreB,
and the effect of RNase was also observed at assisting force, where
backtracking is not favored. We therefore conclude that the
nascent RNA inhibits pausing at site ‘P2’ by a distinct interaction
with RNAP, and not by inhibiting backtracking. We find that
RNA structure primarily affects the duration of the pauses with
minimal effects on pausing efficiencies, indicating that entry into
the paused state is induced by sequence elements in the template,
while the nascent RNA modulates the duration of these pauses,
possibly through interaction with RNAP in the pre-translocated
state.

Our results contrast with previous reports that detected no
effect of nascent RNA folding on pausing37, and highlight the
importance of sequence resolved, high spatiotemporal resolution
analysis of pausing. The low temporal resolution and inability to
resolve the position of RNAP in previous methods would cause
the diverse effects of nascent RNA at various sites to average out.
Our study has revealed a far more complex picture of tran-
scriptional regulation by the nascent transcript structure. Since
the nascent RNA can bind species such as ribosomes38 and ter-
mination factors39, it may serve as a fine-tuning element in the
transcription cycle, enabling flexible modulation of elongation
rates in a context-dependent manner.

Transcriptional pauses play a crucial role in the regulation of
gene expression and in the coordination of transcription with
other processes. Understanding the molecular transitions that
lead from pause-free transcription to paused states requires tools
that permit the characterization of pausing dynamics at high
spatiotemporal resolution. The development of such tools in this
work have resulted in valuable insights into the mechanism of
pausing and opens the door to more detailed studies on pause
entry of both bacterial and eukaryotic RNA polymerases.

Methods
Reagents. All DNA modifying enzymes were purchased from New England
Biolabs. Oligonucleotides were purchased from IDT. Nucleotide triphosphates
were purchased from Thermo Scientific, and standard salts and buffer components

were purchased from Sigma Aldrich. Carboxylated 1 µm polystyrene beads were
purchased from Bangs Labs. Bacterial strains for protein expression and plasmid
propagation were purchased from EMD Millipore.

Plasmids and DNA templates. Plasmids pIA1127 (for expression of sigma 70),
pIA1234 (for expression of sortagged RNA polymerase), and pIA2–6 (used as a
template for preparing DNA handles) were a gift from Irina Artsimovitch (Ohio
State University, Department of Microbiology). The (8XHis) template was derived
from a plasmid containing the T7A1 promoter, a 29 bp U-less cassette, a ~1 kb
downstream spacer region, eight repeats containing the ‘his’ pause, and finally an
rrnB T1 terminator sequence13. Plasmid for the expression of sortase was a gift
from David Liu (Harvard University, Department of Chemistry and Chemical
Biology).

Oligonucleotides used in this study. For producing 1.5 kb handles from the
pIA2-6 plasmid, the following oligonucleotides were used:

For-biotin: 5′ /5Biosg/GAAAGTCCGGCATCTCAATCCC 3′
Rev-BsaI: 5′ ATGATACCGCGAGACCGATGTGGCTTCGGTCCCTTC 3′
In Rev-BsaI the underlined bases denote the BsaI recognition site, which forms

a 5' ACCG overhang after cleavage.
The handle was prepared by PCR and cleaned by standard PCR cleanup, treated

with BsaI-HF (5 units per µg DNA for 2 h 37 °C followed by heat inactivation for
20 min at 65 °C) and purified using PCR cleanup.

For modifying bead surfaces, the following oligonucleotides were ordered HPLC
purified and used as received:

Bead Amine: 5′ /5AmMC6/TTAATTCATTGCGTTCTGTACACG 3′
Bead CGGT: 5′ /5Phos/CGGTCGTGTACAGAACGCAATGAATT 3′
Bead ACCG: 5′ /5Phos/ACCGCGTGTACAGAACGCAATGAATT 3′

Preparation of DNA template. To prepare the DNA template, the 8XHis plasmids
was restricted by BsaI-HF (8 units per µg DNA for 2 h at 37 °C) and treated in
parallel with shrimp alkaline phosphatase (0.4 units per µg DNA) to generate a
linear DNA with distinct, dephosphorylated 5′ overhangs. The enzymes were heat
deactivated for 20 min at 65 °C, and the DNA was immediately treated with Kle-
now 3′−5′ exo- polymerase (1 unit per µg DNA) and 0.1 mM ddATP (to generate
an assisting force template) or 0.1 mM ddCTP (to generate an opposing force
template). The reaction proceeded for 30 min at 37 °C, followed by heat inactiva-
tion for 20 min at 75 °C. The sample was then extracted five times with phenol-
chloroform and once with chloroform, ethanol precipitated, and reconstituted in
Tris 10 mM pH= 8, 0.1 mM EDTA. The purity of the DNA was assessed to be
~88% by agarose gel electrophoresis.

Bead coupling to oligonucleotides. To prepare a double-stranded oligo for
coupling, Bead Amine oligo was hybridized to Bead CGGT oligo or to Bead ACCG
oligo to generate a double stranded oligo containing a phosphorylated 5′ overhang.
Annealing was performed by heating a 1:1 mixture of the oligos in water (0.25 mM
each) to 95 °C for 10 min, followed by cooling to room temperature on the bench.
This resulted in double stranded oligonucleotides harboring an amine group on
one end and either a 5' CGGT overhang (for assisting force experiments) or a
5' ACCG overhang (for opposing force experiments) on the other end.

1 µm diameter carboxylated polystyrene beads (Bangs Labs) were coupled to the
prepared double-stranded oligos as follows: 10 µl of 10% (W/V) beads were washed
4 times with 200 µl coupling buffer (MES 0.1 M pH= 4.7, 150 mM NaCl, 5%
DMSO), and dispersed in 20 µl coupling buffer. All centrifugations took place for
5 min at 4500 g. 10 µl of 20 µM double stranded oligo and 6 µl of 2 M 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC) were added, followed by vigorous
shaking for 2 h at room temperature. At this point another 10 µl of 2 M EDC were
added, followed by overnight shaking at room temperature.

The remaining active EDC was then quenched by adding 2.5 µl of 1 M glycine,
and the beads were washed 5 times with storage buffer (Tris 20 mM pH= 8, 1 mM
EDTA, 0.05% Tween 20, 5 mM sodium azide) with 3 min of sonication between
washes. The beads were finally dispersed at a concentration of 1% (W/V) and
stored at 4 °C.

Bead passivation. The beads were passivated by diluting 6-fold in TE (Tris
20 mM pH= 8, 1 mM EDTA) and addition of β-casein to 1 mg/ml. The beads were
vortexed for 10 min, washed once with TE, dispersed at a concentration of 0.2% in
TE and stored at 4 °C until the experiment.

Preparation of sigma 70. Plasmid pIA1127 was transformed into Rosetta2 bac-
teria. The bacteria were grown in 2 liters of 2YT medium supplemented with 1%
glucose, NPS (25 mM (NH4)2SO4, 50 mM KH2PO4, 50 mM Na2HPO4), 1 mM
magnesium sulfate, 34 µg/ml chloramphenicol and 50 µg/ml kanamycin. The cul-
ture was grown at 37 °C to an OD600 of 0.5, transferred to 17 °C and IPTG was
added to 0.1 mM. Induction proceeded for 16 h.

For purification, the bacteria were dispersed in 80ml of buffer A25 (Tris 20mM
pH= 7.5, 0.5M NaCl, 10% glycerol, 25 mM imidazole, 2 mM beta-mercaptoethanol)
supplemented with 0.1 mg/ml lyzozyme and protease inhibitors (Roche). The bacteria
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were lyzed by French press, and the lysate was clarified by centrifugation and filtration
and loaded on a 5ml Ni-NTA column. The column was washed with 20ml buffer
A25 and 20ml A50 (A25+ 50mM imidazole), and the his-tagged sigma 70 was
eluted in A300 (A25+ 300mM imidazole). TEV protease (expressed in BL21 and
purified using Ni-NTA resin followed by size exclusion chromatography40) was added
at a molar ratio of 1:40, and the reaction proceeded overnight at 4 °C while being
dialyzed against A50. The sample was then passed again through an Ni-NTA column.
The flowthrough, containing non-histagged sigma 70 was collected, concentrated two-
fold, and further purified by gel filtration on a sephacryl S300 column equilibrated
with buffer B (Tris 20mMpH= 7.5, 0.5M NaCl, 10% glycerol, 1 mM EDTA,
1mM DTT). The protocol yielded ~ 35mg of pure sigma 70. Aliquots were flash
frozen in liquid nitrogen and stored at −80 °C.

Preparation of sortagged RNA polymerase holoenzyme. Plasmid pIA1234 was
transformed into Rosetta2 bacteria. Sortag-RNAP was expressed using the same
protocol as sigma 70, except that ampicillin was used instead of kanamycin.

For purification we used a modified version of a published protocol41. The cells
were dispersed in 75 ml of lysis buffer (Tris 50 mM pH= 6.9, 0.5 M NaCl, 5%
glycerol) supplemented by 0.1 mg/ml lyzozyme and protease inhibitors, and lyzed
by French press. The lysate was centrifuged and filtered, and imidazole was added
to 20 mM. The sample was loaded on a 5 ml Ni-NTA column. The column was
washed with 30 ml of lysis buffer+ 20 mM imidazole and the his-tagged RNAP
core enzyme was eluted in lysis buffer+ 250 mM imidazole.

To form the holoenzyme, the sample was incubated with a 2-fold excess of
purified sigma 70 overnight on ice. The sample was diluted ten-fold with buffer B0
(50 mM Tris pH= 6.9, 5% glycerol, 0.5 mM EDTA, 1 mM DTT) and loaded on a
heparin 5 ml column. To avoid overloading the column, the sample was divided
into three portions that were loaded separately. A gradient of 50 mM to 1M NaCl
was used to elute the protein. RNAP holoenzyme was separated clearly from excess
sigma 70. The sample was dialyzed against buffer B50 (50 mM Tris pH= 6.9, 5%
glycerol, 50 mM NaCl, 0.5 mM EDTA, 1 mM DTT), and then purified further on a
1 ml monoQ column using a 50 mM to 1M NaCl gradient (again, the sample was
split into three portions loaded separately). Pure fractions were pooled, dialyzed
against storage buffer (20 mM Tris pH= 7.5, 200 mM KCl, 0.2 mM EDTA, 0.2 mM
DTT, 5% glycerol), aliquoted, flash frozen and stored at −80 °C.

Biotinylation of sortag-RNAP. We obtained a peptide containing an N-terminal
GGG tag with a biotin-modified lysine residue (Genscript): GGGGDGDY{Lys
(biotin)}. 100 µl of 9.6 µM sortag-RNAP was reacted with a 200-fold excess of
biotinylated peptide in 200 µl coupling buffer (Tris 50 mM pH= 7.5, 5 mM CaCl2)
containing 2 µM sortase (expressed in BL21 bacteria and purified using Ni-NTA
resin followed by size exclusion chromatography42). The reaction proceeded for
60 min. At this point, imidazole was added to 25 mM and NaCl to 350 mM, and the
sample was passed through 70 µl Ni-NTA beads to remove sortase and unreacted
RNAP. The peptide was removed by dialysis into storage buffer, and the biotiny-
lated RNAP was stored in storage buffer at −80 °C.

Preparation of GreB. The gene for GreB was cloned into a pET vector by ligation
independent cloning (Addgene #29653). The plasmid was transformed in Rosetta 2
cells, the bacteria were grown in 1 liter of 2YT medium supplemented with 1%
glucose, NPS (25 mM (NH4)2SO4, 50 mM KH2PO4, 50 mM Na2HPO4), 1 mM
magnesium sulfate, 34 µg/ml chloramphenicol and 50 µg/ml kanamycin. The cul-
ture was grown at 37 °C to an OD600 of 0.6, IPTG was added to 0.5 mM and
transformation proceeded for 4 h at 37 °C. The bacteria were then centrifuged, and
dispersed in 40 ml of lysis buffer (Tris 100 mM pH= 7.9, 25 mM imidazole, 1 M
NaCl, 2 mM beta-mercaptoethanol) supplemented with 1 mM PMSF and
0.2 mg/ml lyzozyme. The bacteria were lyzed by sonication, and the solution was
centrifuged and filtered.

The sample was loaded on a 2 ml Ni-NTA column, washed with 12 ml of lysis
buffer, followed by 12 ml of lysis buffer with 50 mM imidazole, and finally eluted
with lysis buffer with 300 mM imidazole. TEV protease was added at a 1:10 molar
ratio, and the sample was incubated overnight at 4 °C while dialyzing against lysis
buffer. The sample was passed again over 1 ml Ni-NTA beads, concentrated to <3
ml and loaded on a sephacryl S100 gel filtration column equilibrated with Tris
25 mM pH= 8, 1 M NaCl, 1 mM EDTA, 1 mM DTT. Fractions containing clean
GreB were pooled and concentrated to ~ 50 µM; glycerol was added to 50%; and
the protein was flash frozen with liquid nitrogen and stored at −80 °C.

When performing experiments with GreB, the protein was dialyzed first into
HEPES 25 mM pH= 8, 1 M KCl, 1 mM DTT and 1 mM EDTA so that it could be
mixed into the experimental buffer in precalculated ratios in order to maintain the
buffer composition.

All proteins were >95% pure based on SDS–PAGE. Holo-RNAP activity and
pausing was confirmed using short template containing a T7A1 promoter, 29-bp
U-less cassette and a downstream ‘his′ site. GreB activity was tested by the rescue of
a 2-bp backtracked elongation complex assembled using an RNA oligonucleotide
with two mismatched bases at the 3′ end25.

Preparation of halted complexes and tether assembly. Halted complexes were
prepared by incubating 2 nM DNA with 10 nM RNAP in TB20 (Tris 20 mM pH=
8, 20 mM NaCl, 20 mM DTT, 10 mM MgCl2, 20 µg/ml casein) for 20 min at 37 °C.

Halted complexes were then ligated to the beads at a ratio of 1 fmol halted
complex to 2 µg beads in TB20 in the presence of 0.1 mM ATP and 0.4 units of T4
DNA ligase, for 60 min at room temperature. For 1.5 kb DNA handles, 1 fmol
handle was ligated to 3 µg beads.

Following the ligation, heparin was added to 0.4 mg/ml to the beads. To the
beads ligated to the DNA handle, a 200-fold excess of neutravidin was added and
incubated with the beads for 10 min prior to diluting with experimental buffer. For
the halted complex beads, beads were incubated for 10 min with the added heparin
before dilution with experimental buffer.

Instrument design. Experiments were performed on a time-shared optical twee-
zers setup modified from the design in Comstock et al.43,44. In this configuration, a
1064 nm laser is passed through an acousto-optic deflector, with the laser alter-
nating in position between the two traps every 5 µs. The position of the beads
relative to the traps was measured using back focal plane interferometry45.

Experimental setup. The experimental buffer was: HEPES 50 mM pH= 8,
130 mM KCl, 4 mM MgCl2, 0.1 mM DTT, 0.1 mM EDTA, 20 µg/ml heparin and
10 mM NaN3 (added as a singlet oxygen scavenger to reduce the extent of pho-
todamage46). NTP concentrations were 1 mM UTP, 1 mM GTP, 0.5 mM ATP and
0.25 mM CTP18. When added to the NTP solution, GreB and RNase A con-
centrations were 0.87 µM and 0.1 mg/ml, respectively. To perform the experiment,
we employed a laminar flow setup21. The main channel of the chamber was formed
by a flow coming from a reservoir containing buffer and a flow from a second
reservoir containing the NTP solution. The two flows form well separated regions
in the chamber. Beads containing DNA handle were loaded on a side channel
connected to the NTP side via a thin capillary, while beads containing the halted
complex were loaded on a similar channel connected to the buffer side. Every
experiment consisted of the following steps:

1. Trapping a DNA handle beads in the NTP side.
2. Trapping a halted complex bead in the buffer side.
3. Rubbing the beads against each other in the buffer side until a tether is

formed (if at all).
4. If a tether is formed and it has the expected length, moving the pair into the

NTP side to restart transcription.
Our experiments were performed using an active force clamp that moved one of

the traps constantly to maintain the mean force constant. This maintained the force to
within 0.1 pN within each trace. However, we discovered that small changes in
calibration may arise due to the fact that the calibration and activity measurement were
not performed in the same position in the chamber, possibly due to variations in the
thickness of the glass or change in refractive index due to the different composition of
the buffer in the NTP channel. Therefore, we performed an additional calibration in
the NTP channel after the tether broke, and used this to calculate forces. Obviously, the
feedback still had to be performed using calibration parameters measured in the buffer
channel. This resulted in a small variation in measured force from tether to tether that
rarely exceeded 0.5 pN. For each trace, data collection was halted after the tether broke
(either prematurely or due to termination) or after very long (>200 s) pauses.

Data availability. Data supporting the findings of this manuscript are available
from the corresponding author upon reasonable request.
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