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Abstract—Sigma-1 receptors are ubiquitous multifunctional ligand-regulated molecular chaperones in the
endoplasmic reticulum membrane with a unique history, structure, and pharmacological profile. Sigma-1
receptors bind ligands of different chemical structure and pharmacological action and modulate a wide range
of cellular processes in health and disease, including Ca2+ signaling. To elucidate the involvement of sigma-
1 receptors in the processes of Ca2+ signaling in macrophages we studied the effect of sigma-1 receptor
ligands, phenothiazine neuroleptics chlorpromazine and trif luoperazine, on Ca2+ responses induced by
inhibitors of endoplasmic Ca2+–ATPases thapsigargin and cyclopiazonic acid, as well as by disulfide-con-
taining immunomodulators Glutoxim and Molixan in rat peritoneal macrophages. Using Fura-2AM micro-
fluorimetry we showed for the first time that chlorpromazine and trif luoperazine inhibit both phases of Ca2+

responses induced by Glutoxim, Molixan, thapsigargin, and cyclopiazonic acid in rat peritoneal macro-
phages. The data obtained indicate the participation of sigma-1 receptors in a complex signaling cascade
caused by Glutoxim or Molixan and leading to an increase in intracellular Ca2+ concentration in macro-
phages. The results also indicate the involvement of sigma-1 receptors in the regulation of store-dependent
Ca2+entry in macrophages.
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Ca2+ is a universal second messenger acting in cells
of microorganisms, plants, and animals (Berridge
et al., 1998; Carafoli and Krebs, 2016). Changes in the
transport and intracellular Ca2+concentration,
[Ca2+]i, play a key role in triggering and regulating
general and specialized cellular functions such as pro-
liferation, growth, secretion, contraction, nerve
impulse transmission, immune response, etc. (Ber-
ridge et al., 2000, 2003). In cells of the immune system
(lymphocytes, mast cells, macrophages), Ca2+ ions
work at all stages of cell life, including development,
activation, differentiation, production of cytokines,
and, finally, cell death (Vig and Kinet, 2009; Trebak,
Kinet, 2019).

Sigma-1 receptors, which have a unique history,
structure, and pharmacology and modulate a wide
range of cellular processes in health and disease, are
important participants in the processes of Ca2+ signal-

ing in cells (Su et al., 2010, 2016; Rousseaux and
Greene, 2016; Penke et al., 2018; Schmidt and Kruse,
2019; Aishwarya et al., 2021). The International
Union of General and Clinical Pharmacology
included sigma receptors in the list of receptors only in
2013 as ligand-regulated nonopioid intracellular
receptors (Alexander et al., 2013).

Sigma-1 receptors are unique multifunctional
ligand-regulated molecular chaperones localized in
the endoplasmic reticulum membrane at the border
with mitochondria (mitochondria-associated endo-
plasmic reticulum membrane (MAM)) (Su et al.,
2010, 2016; Rousseaux and Greene, 2016; Schmidt
and Kruse, 2019; Delprat et al., 2020; Aishwarya et al.,
2021). In addition, they can translocate to the plasma-
lemma and interact with ion channels and other
receptors, as well as also being found in the nuclear
envelope, where they are involved in the regulation of
transcription (Su et al., 2016). These receptors are
expressed in various cell types, including cells of the
immune system (Rousseaux and Greene, 2016; Penke
et al., 2018; Aishwarya et al., 2021).

Abbreviations: [Ca2+]i, intracellular Ca2+concentration; CPA,
cyclopiazonic acid; TFP, trif luoperazine; CP, chlorpromazine.
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The sigma-1 receptor was first cloned in 1996 from
guinea-pig liver (Hanner et al., 1996) and human pla-
cental choriocarcinoma cells (Kekuda et al., 1996). It
turned out that the sigma-1 receptor is a protein with a
molecular weight of 25 kDa, containing 223 amino
acids. The amino-acid sequence of the human sigma-
1 receptor is unique and has no homologues among
other mammalian proteins (Hanner et al., 1996; Ossa
et al., 2017). In 2016, the three-dimensional structure
of the human sigma-1 receptor was first established in
Kruse’s laboratory using crystallography methods
(Shmidt et al., 2016; Kruse, 2017). This receptor was
found to be a trimer consisting of three identical
protomers. Each protomer contains one transmem-
brane domain (Shmidt et al., 2016, 2018; Alon et al.,
2017; Ossa et al., 2017; Shmidt and Kruse, 2019).

Sigma-1 receptors have a very broad pharmacolo-
gical profile. Their ligands are compounds of different
chemical structure and pharmacological action: anti-
depressants (f luvoxamine, sertraline, imipramine),
neuroleptics (haloperidol, chlorpromazine), analge-
sics (pentazocine), anxiolytics (afobazole), anticon-
vulsants (phenytoin), antitussives (dextromethor-
phan, carbetapentane) and antihistamines (chlor-
phenamine), narcotic drugs (methamphetamine and
cocaine), and drugs used in the treatment of neurode-
generative diseases (amantadine, memantine, done-
pezil) (Cobos et al., 2008; Maurice and Su, 2009; Chu
and Ruoho, 2016; Vavers et al., 2019; Voronin et al.,
2020). Of the common structural features of the
ligands, the cationic amino group and at least one aro-
matic ring should be noted. Typical neuroleptics (hal-
operidol, f luphenazine, chlorpromazine, trif luopera-
zine) have a high affinity for sigma-1 receptors (Tam
and Cook, 1984).

Acting as chaperones, sigma-1 receptors interact
with target proteins (ion channels, plasmalemma
receptors, etc.) and modulate many cellular processes,
including Ca2+ signaling (Su et al., 2010, 2016;
Schmidt and Kruse, 2019; Pontisso and Combettes,
2021). In the plasmalemma, they interact with volt-
age-dependent Ca2+-, Na+-, and K+-channels, pro-
ton-activated ion channels (ASICs), NMDA recep-
tors, G-protein coupled receptors (muscarinic acetyl-
choline receptors, μ-opioid and D1- and D2-
dopamine receptors), and other target proteins (Su
et al., 2010, 2016; Schmidt and Kruse, 2019). In the
membrane of the endoplasmic reticulum, the sigma-1
receptor interacts with the type 3 inositol-1,4,5-tri-
phosphate receptor, with another molecular chaper-
one, BiP protein (binding immunoglobulin protein)
(Hayashi and Su, 2007), and STIM1 Ca2+-sensor pro-
tein (Srivats et al., 2016). It was found that, when
interacting with inositol-1,4,5-triphosphate receptors,
sigma-1 receptors modulate Ca2+ signaling in cells:
Ca2+ mobilization from the stores (Hayashi et al.,
2000; Wu and Bowen, 2008) and Ca2+ entry from the
external medium (Monnet, 2005; Hayashi and Su,
C

2007; Pontisso and Combettes, 2021). They partici-
pate in the regulation of the store-dependent
Ca2+entry in cells (Brailoiu et al., 2016; Rosado, 2016;
Srivats et al., 2016; Berlansky et al., 2021).

We have previously shown for the first time that the
sigma-1 receptor antagonist neuroleptic haloperidol
(a derivative of butyrophenone) significantly inhibits
both phases of Ca2+ responses caused by disulfide-
containing immunomodulators Glutoxim® (diso-
dium salt of oxidized glutathione with d-metal in
nanoconcentration) and Molixan® (a complex of
Glutoxim and inosine nucleoside) (Krutetskaya et al.,
2017) and endoplasmic Ca2+-ATPase inhibitors
thapsigargin and cyclopiazonic acid (CPA) (Krutets-
kaya et al., 2018b) in rat peritoneal macrophages.

To confirm the involvement of sigma-1 receptors
in the regulation of Ca2+ signaling in macrophages, it
seemed appropriate to investigate the effect of other,
structurally different, sigma-1 receptor ligands on
Ca2+ responses induced by Glutoxim and Molixan, as
well as thapsigargin (Thastrup et al., 1989) and CPA
(Goeger et al., 1988), in rat peritoneal macrophages,
which was the subject of this study.

The sigma-1 receptor ligands chlorpromazine (CP,
aminazine, thorazine) (Itzhak et al., 1990; Hayashi,
Su, 2004) and trif luoperazine (TFP, triftazine, stela-
zine) (Schuster et al., 1995; Hanner et al., 1996),
belonging to the first generation typical neuroleptics
(antipsychotic agents) of the phenothiazine series and
having a long history of clinical application for the
treatment of schizophrenia and other mental diseases
(Dilsaver, 1993; Ayano, 2016), were used in our expe-
riments.

MATERIALS AND METHODS

Isolation and Cultivation of Rat Peritoneal Macrophages

Experiments were carried out on cultured resident
peritoneal macrophages of Wistar rats. The keeping of
animals and all manipulations were performed in
accordance with the regulations and requirements of
the Order no. 267 of June 19, 2003, of the Ministry of
Health of the Russian Federation “On Approval of the
Rules of Laboratory Practice in the Russian Federa-
tion.”

Resident macrophages were isolated from the peri-
toneal cavity of rats weighing 180–250 g according to
the traditional method (Conrad, 1981; Randriama-
mpita, Trautmann, 1987). Immediately after isolation,
the cells were spherical and 10–20 μm in diameter.
The cell suspension was placed in culture dishes with
quartz glasses (10 × 10 mm) and cultured for 1–3 days
at 37°C in medium 199 (pH 7.2) containing 20%
bovine serum, glutamine (3%), penicillin
(100 U/mL), and streptomycin (100 mg/mL). The
α-naphthylesterase test confirmed that at least 96% of
ELL AND TISSUE BIOLOGY  Vol. 16  No. 3  2022
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the cells in the monolayers were macrophages (Mona-
han et al., 1981).

The experiments were carried out at a temperature
of 22–24°C 1–2 days after the start of cell cultivation.
Quartz glasses with cells were placed in an experimen-
tal chamber filled with physiological solution of the
following ionic composition (mM): 140 NaCl, 5 KCl,
1 CaCl2, 1 MgCl2, and 5 HEPES-NaOH, pH 7.3–7.4.
The calcium-free medium differed in that it contained
1 mM EGTA and did not contain CaCl2. The studied
agents were added to macrophages in a calcium-free
medium. To initiate Ca2+ entry into the cells, 2 mM
Ca2+ were introduced into the external medium.

Measurement of [Ca2+]i

A Fura-2AM fluorescent probe (Sigma-Aldrich,
United States) was used. Macrophages were incubated
for 45 min in physiological solution containing 2 μM
Fura-2AM at 22–24°C. Glasses with stained cells
were washed with physiological solution and trans-
ferred to the experimental chamber fixed on the table
of Leica DM 4000B fluorescent microscope (Leica
Microsystems, Germany). The f luorescence of the
object was excited at wavelengths of 340 and 380 nm
through the microscope objective. Narrow-band opti-
cal filters were used to isolate the corresponding parts
of the spectrum. The emission was recorded at a wave-
length of 510 nm using a specialized Leica DFC340FX
video camera. The experiment was controlled using
the ImageJ image processing system (Micro-Manager
1.4 plug-in).

The result of the measurements was the ratio of the
fluorescence intensity of Fura-2AM when irradiated
with light with a wavelength of 340 nm to the f luores-
cence intensity when irradiated with light with a wave-
length of 380 nm (F340/F380), where F340 is the f luores-
cence intensity of Fura-2AM associated with Ca2+ and
F380 is the f luorescence intensity of Fura-2AM not
associated with Ca2+, reflecting changes in [Ca2+]i in
cells during measurements (Bruce and Elliott, 2000;
Xie et al., 2002). To avoid photobleaching, measure-
ments were taken every 20 s, irradiating the object for
2 s. A 10x objective with an 8 mm aperture was used in
the experiments. [Ca2+]i values were calculated using
Grynkiewicz equation (Grynkiewicz et al., 1985). Sta-
tistical analysis was carried out using Student’s t-test.
Data are presented as mean and standard deviation.
Each registration was obtained for a group of 40-50
cells. The figures show the results of typical experi-
ments from six to eight independent ones. Differences
were considered significant at p ≤ 0.05.

Reagents Used
All reagents were purchased from Sigma-Aldrich

(United States). Stock solutions of Fura-2AM
(1 mM), CPA (10 mM), and thapsigargin (0.5 mM)
CELL AND TISSUE BIOLOGY  Vol. 16  No. 3  2022
were prepared in dimethyl sulfoxide. The drugs Glu-
toxim and Molixan were provided by PHARMA-VAM
(St. Petersburg). Stock solutions of Glutoxim
(50 mg/mL), Molixan (50 mg/mL), TFP (2 mg/mL),
and CP (25 mg/mL) were prepared in water.

RESULTS AND DISCUSSION

The Effect of Chlorpromazine and Trifluoperazine 
on Ca2+ Responses Induced by Disulfide-Containing 

Immunomodulators

Pharmacological analogues of oxidized glutathione
(Glutoxim and Molixan) are used as immunomodula-
tors and cytoprotectors in the complex therapy of bac-
terial, viral and oncological diseases (Borisov et al.,
2001; Sokolova et al., 2002; Antushevich et al., 2013;
Tolstoy et al., 2019). These drugs have a complex effect
on the processes of redox regulation in cells, but the
subtle biophysical mechanisms of their action are far
from being fully understood.

In the present work, control experiments showed
that incubation of macrophages for 20 min with 100
μg/mL Glutoxim (Fig. 1a) or 100 μg/mL Molixan
(Fig. 2a) in a calcium-free medium causes a slowly
growing increase in [Ca2+]i, reflecting Ca2+ mobiliza-
tion from intracellular Ca2+ stores. On average, twenty
minutes after the addition of agents, [Ca2+]i increased
from the basal level of 90 ± 18 to 135 ± 18 nM (n = 7;
p < 0.05) for Glutoxim and 134 ± 20 nM (n = 6; p <
0.05) for Molixan. Upon introduction of 2 mM Ca2+

into the external medium, a further increase in [Ca2+]i
was observed, reflecting the store-dependent Ca2+

entry into the cytosol (Figs. 1, 2). On average, the
increase in [Ca2+]i during Ca2+ entry was 223 ± 22 nM
(n = 7; p < 0.05) and 202 ± 20 nM (n = 6; p < 0.05) for
Glutoxim and Molixan, respectively.

In our experiments, it was found for the first time
that preincubation of peritoneal macrophages with 25
μg/mL CP for 10 min before the administration of 100
μg/mL Glutoxim led to a significant suppression of
both Ca2+ mobilization from the stores (by 58.5 ±
4.6% , n = 7; p < 0.05) and the subsequent store-
dependent Ca2+ entry into cells (by 59.1 ± 6.1%, n = 7;
p < 0.05) induced by Glutoxim (Fig. 1b). Preincuba-
tion of cells with 2 μg/mL TFP for 15 min prior to
administration of 100 μg/mL Glutoxim also caused
suppression of the Ca2+ mobilization phase from the
stores (by 36.2 ± 5.7%, n = 8; p < 0.05) and store-
dependent Ca2+ entry into macrophages (by 60.7 ±
7.1%, n = 7; p < 0.05), caused by Glutoxim (Fig. 1c).

Similar results were obtained in experiments on the
effect of CP and TFP on Ca2+ responses induced by
100 μg/mL Molixan in macrophages (Figs. 2b, 2c).
Thus, suppression of the phase of Ca2+ mobilization
from the stores averaged 43.2 ± 8.9% (n = 8; p < 0.05)
and 63.3 ± 2.4% (n = 7; p < 0.05), while the suppres-
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Fig. 1. The effect of chlorpromazine (CP, 25 μg/mL) and trif luoperazine (TFP, 2 μg/mL) on the [Ca2+]i increase induced by
Glutoxim in rat peritoneal macrophages. Here and in Figs. 2–4, the ratio of Fura-2AM fluorescence intensities at excitation
wavelengths of 340 and 380 nm (F340/F380, arb. units) is along the ordinate axis; the abscissa axis is time. Stimulation conditions:
(a) macrophages were incubated for 20 min in the presence of 100 μg/mL Glutoxim in a nominally calcium-free medium; then,
Ca2+ entry was initiated by introducing 2 mM Ca2+ into the external medium; (b, c) macrophages were incubated for 10 min with
CP (b) or for 15 min with TFP (c) in a calcium-free medium; then, 100 μg/mL Glutoxim was added; 20 min later, Ca2+ entry
was initiated by introducing 2 mM Ca2+ into the external medium. Here and in Figs. 2–4, each recording was obtained for a group
of 40–50 cells and represents a typical variant of six to eight independent experiments.
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sion of the store-dependent Ca2+ entry into macro-
phages averaged 52.3 ± 9.1% (n = 8; p < 0.05) and
65.3 ± 5.0% (n = 7; p < 0.05) for CP and TFP, respec-
tively.

The Effect of Phenothiazine Neuroleptics on Ca2+ 
Responses Induced by Inhibitors

of Endoplasmic Ca2+ ATPase

In control experiments, we found that the addition
of 0.5 μM thapsigargin to macrophages in a calcium-
free medium caused a slight increase in [Ca2+]i,
reflecting Ca2+ mobilization from the intracellular
Ca2+ stores (Fig. 3a). On average, the increase in
[Ca2+]i during the mobilization phase was 26 ± 7 nM
(n = 7; p < 0.05). Subsequent addition of 2 mM Ca2+

to the external medium resulted in the store-depen-
dent Ca2+ entry into the cytosol (Fig. 3a). On average,
C

the increase in [Ca2+]i during Ca2+ entry was 160.2 ±
20.5 nM (n = 7; p < 0.05). We obtained similar results
when using 10 μM CPA (Fig. 4a): on average, the
increase in [Ca2+]i during the phase of Ca2+ mobiliza-
tion from the stores, induced by CPA, was 37.8 ±
9.8 nM (n = 7; p < 0.05), while it was 150.2 ± 23.7 nM
(n = 7; p < 0.05) during the store-dependent Ca2+

entry into macrophages (Fig. 4a).
In our experiments, it was found for the first time

that the preincubation of macrophages with 25 μg/mL
CP in nominally calcium-free medium for 10 min
before the administration of 0.5 μM thapsigargin
causes a significant suppression of both phases of Ca2+

responses induced by thapsigargin (Fig. 3b). Thus,
suppression of the phase of Ca2+ mobilization from
the stores was 59.3 ± 8.2% (n = 7; p < 0.05), while the
inhibition of store-dependent Ca2+ entry was 68.2 ±
10.4% (n = 7; p < 0.05). Similar results were obtained
ELL AND TISSUE BIOLOGY  Vol. 16  No. 3  2022



SIGMA-1 RECEPTOR LIGANDS CHLORPROMAZINE AND TRIFLUOPERAZINE 237

Fig. 2. The effect of CP and TFP on the [Ca2+]i increase induced by Molixan (100 μg/mL) in rat peritoneal macrophages. (a–
c) Conditions of preliminary stimulation in a calcium-free medium and subsequent initiation of Ca2+ entry are the same as those
indicated in the legend to Fig. 1.
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in experiments using 10 μM CPA (Fig. 4b). The sup-
pression of Ca2+ mobilization from the stores
amounted to 40.2 ± 9.1% (n = 7; p < 0.05), and the
suppression of the store-dependent Ca2+ entry was
63.4 ± 11.5% (n = 7; p < 0.05).

Another phenothiazine neuroleptic, TFP, also sig-
nificantly suppressed both phases of Ca2+ responses
induced by thapsigargin or CPA. It was shown that
preliminary incubation of cells with 2 μg/mL TFP for
10 min before the introduction of 0.5 μM thapsigargin
(Fig. 3c) caused suppression of the phase of Ca2+-
mobilization from the stores (by 59.0 ± 9.4%, n = 7;
p < 0.05) and inhibition of the store-dependent Ca2+

entry into macrophages (by 73.5 ± 11.2%, n =7; p <
0.05), caused by thapsigargin (Fig. 3c). Similar data
were obtained in experiments using 10 μM CPA
(Fig. 4c). The suppression of Ca2+ mobilization from
the stores amounted to 40.1 ± 9.7% (n = 7; p < 0.05),
and the suppression of the store-dependent Ca2+ entry
was 60.4 ± 10.8% (n = 7; p < 0.05). This confirms our
earlier data that the preincubation of cells with TFP
leads to suppression of the store-dependent Ca2+ entry
induced by inhibitors of endoplasmic Ca2+–ATPase
CELL AND TISSUE BIOLOGY  Vol. 16  No. 3  2022
thapsigargin and CPA, in rat peritoneal macrophages
(Krutetskaya et al., 2018a).

Thus, in the present work, we have shown for the
first time on rat peritoneal macrophages that the
sigma-1 receptor ligands, phenothiazine neuroleptics
CP and TFP, suppress both phases of Ca2+ responses
caused by Glutoxim or Molixan, as well as
thapsigargin and CPA, in peritoneal macrophages.
The results are consistent with the data of studies by
other authors, who found that sigma-1 receptor
ligands, CP and TFP, suppress Ca2+ mobilization
from the stores and subsequent store-dependent Ca2+

entry, induced by ATP or thapsigargin in human leu-
kemia cells (HL-60 line) (Harper et al., 1997; Harper
and Daly, 1999). It has also been shown that CP inhib-
its the store-dependent Ca2+ entry induced by brady-
kinin or thapsigargin in rat pheochromocytoma cells
(PC12 line) (Choi et al., 2001), as well as preincuba-
tion of cells with TFP leads to significant suppression
of store-dependent Ca2+ entry caused by thapsigargin
in human embryonic kidney cells (HEK-293 line)
(Wang et al., 2015). It was also found that sigma-1-
receptor antagonists (compounds BD1063 and
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Fig. 3. The effect of CP (25 μg/mL) and TFP (2 μg/mL) on Ca2+ responses induced by thapsigargin (0.5 μM) in rat peritoneal
macrophages. (a–c) Experimental conditions are the same as those indicated in the legend to Fig. 1.
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BD1047) inhibit store-dependent Ca2+ entry induced
by histamine in human saphenous vein endothelial
cells (Amer et al., 2013), while BD1063 significantly
suppresses the store-dependent Ca2+ entry caused by
thapsigargin in human mammary adenocarcinoma
cells (MCF7 line) (Gasparre et al., 2017). In addition,
it is known that CP and TFP inhibit voltage-depen-
dent Ca2+ channels in various cell types. Thus, CP
reversibly and dose-dependently blocks L- and T-type
voltage-dependent Ca2+ channels in mouse neuro-
blastoma cells (N1E-115 line) (Ogata and Narahashi,
1990; Ogata et al., 1990), R-type voltage-dependent
Ca2+ channels in human neurons (McNaughton et al.,
2001), and L-type Ca2+ channels in rat pheochromo-
cytoma cells (PC12 line) (Ito et al., 1996), while TFP
blocks L-type voltage-dependent Ca2+ channels in rat
smooth muscle cells (Nakazawa et al., 1993) and Helix
aspersa neurons (Cruzblanca et al., 1998).
C

The results of this and our earlier works (Krutets-
kaya et al., 2017, 2018c) on the suppression by sigma-1
receptor ligands of Ca2+ responses induced by Glu-
toxim and Molixan in macrophages indicate the
involvement of sigma-1 receptors in the complex sig-
naling cascade triggered by Glutoxim or Molixan and
leading to an increase in [Ca2+]i in rat peritoneal mac-
rophages. The results also indicate that the combined
use in clinical practice of the drugs Glutoxim or
Molixan and phenothiazine neuroleptics CP and TFP
is undesirable.

Our data also suggest the involvement of sigma-1
receptors in the regulation of the store-dependent
Ca2+ entry induced by disulfide-containing immuno-
modulators and inhibitors of endoplasmic Ca2+–
ATPase in rat peritoneal macrophages and allow us to
consider sigma-1 receptors as a new regulatory com-
ponent of the signaling complex of the store-depen-
dent Ca2+ entry in macrophages. Sigma-1 receptors
ELL AND TISSUE BIOLOGY  Vol. 16  No. 3  2022
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Fig. 4. The effect of CP (25 μg/mL) and TFP (2 μg/mL) on Ca2+ responses induced by cyclopiazonic acid (CPA, 10 μM) in rat
peritoneal macrophages. (a–c) Experimental conditions are the same as those indicated in the legend to Fig. 1.

0.4

0.3

0.2

0.1
0 5 10 15 20

Ca2+

 F
34

0/
F

38
0 r

at
io

, r
el

at
iv

e 
un

its

Time, min

(c)

(b)

TFP, 10 min

0.4

0.3

0.2

0.1
0 5 10 15 20

Ca2+CP, 10 min

CPA

(a)
0.4

0.3

0.2

0.1
0 5 10 15 20

Ca2+CPA

CPA

 

may affect store-dependent Ca2+ entry by modulating
the binding between the main components of the pro-
tein complex of the store-dependent Ca2+ entry -
STIM1 proteins in the endoplasmic reticulum mem-
brane and Orai1 channels in the plasmalemma (Srivats
et al., 2016).

The results may also contribute to a more detailed
understanding of the molecular mechanisms of the
pharmacological action of phenothiazine neurolep-
tics. In addition, the data obtained may be of impor-
tance for the treatment of diseases mediated by
impaired functioning of sigma-1 receptors. Thus,
changes in the subcellular localization, expression,
and signaling functions of sigma-1 receptors are
known to lead to the development of a wide range of
human diseases (Su et al., 2010, 2016; Rousseaux and
Greene, 2016; Schmidt and Kruse, 2019; Aishwarya
et al., 2021). The involvement of these receptors in the
pathophysiology of neuropsychiatric disorders
(schizophrenia, anxiety disorders, depressive states,
and dementia) (Hayashi and Su, 2004; Tsai et al.,
CELL AND TISSUE BIOLOGY  Vol. 16  No. 3  2022
2009, 2014; Ishikawa and Hashimoto, 2010; Hayashi,
2015; Voronin et al., 2020), neurodegenerative (Alz-
heimer’s, Huntington’s, and Parkinson’s diseases;
amyotrophic lateral sclerosis) (Ryskamp et al., 2017,
2019; Penke et al., 2018; Hayashi, 2019; Schmidt,
Kruse, 2019; Yang et al., 2019; Herrando-Grabulosa
et al., 2020; Zhemkov et al., 2021), oncological (Kim
and Maher, 2017; Soriani and Rapetti-Mauss, 2017;
Pontisso and Combettes, 2021) and cardiovascular
(Stracina and Novakova, 2018; Aishwarya et al., 2021)
diseases; pain syndromes (Merlos et al., 2017a, 2017b)
and retinopathy (Wang et al., 2017; Smith et al., 2018)
has been revealed. This made it possible to consider
sigma-1 receptors as promising pharmacological tar-
gets for the treatment of these diseases.

Recently, the possible role of sigma-1 receptors in
the pathophysiology of coronavirus infection
(COVID-19) has also been studied. Evidence is
emerging that sigma-1 receptors may be a promising
therapeutic target in the treatment of patients with
COVID-19. It is believed that sigma-1 receptors regu-
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late the key mechanisms of the adaptive stress
response of host cells and are involved in the early
stages of viral replication (Vela, 2020; Hashimoto,
2021).

Many repurposed drugs included in complex the-
rapy regimens for patients with COVID-19 are often
identified as sigma-1 receptor ligands. These include
the neuroleptics haloperidol, CP, and TFP (Plaze et
al., 2020; Vela, 2020). It is believed that CP is the most
promising drug (Muric et al., 2020; Nobile et al.,
2020; Plaze et al., 2020; Stip, 2020; Stip et al., 2020).
There is evidence that cationic amphiphilic com-
pounds, which include phenothiazine neuroleptics,
have antiviral activity and inhibit the entry and repli-
cation of RNA viruses (Otręba et al., 2020; Vela, 2020;
Gitahy Falcao Faria et al., 2021). Thus, CP has been
shown to inhibit SARS-CoV-2 replication in monkey
cells (VeroE6 line) and human alveolar epithelial cells
(A549-ACE2 line) (Plaze et al., 2021). In addition, the
sigma-1 receptor ligands haloperidol (Hoertel et al.,
2021a) and CP (Hoertel et al., 2021b) have already
passed clinical trials as drugs for the treatment of
patients with COVID-19.

It is also known that viruses have evolved mecha-
nisms to disturb host cell Ca2+ homeostasis and
increase [Ca2+]i, because Ca2+ is essential for virus
entry, replication, maturation and release (Zhoua
et al., 2009; Chen et al., 2019). In this regard, the
inhibiton of virus-induced [Ca2+]i increase via inhibit-
ing calcium release channels in the endoplasmic retic-
ulum membrane (inositol-1,4,5-triphosphate recep-
tors and ryanodine receptors) or Ca2+ entry channels
in the plasmalemma (voltage- and store-dependent
Ca2+ channels) is one of the approaches in the treat-
ment of viral infections (Chen et al., 2019). Thus, it
was found that blockers of the voltage-dependent Ca2+

channels nifedipine and amlodipine reduce mortality
and decrease the risk for mechanical ventilation in
elderly patients with COVID-19 and hypertension
(Solaimanzadeh, 2020; Zhang et al., 2020).

Thus, our data on the suppression of both phases of
Ca2+ responses, induced by disulfide-containing
immunomodulators and inhibitors of endoplasmic
Ca2+–ATPases in rat peritoneal macrophages, by
sigma-1 receptor ligands (CP and TFP), further con-
firm the versatility of the effects of phenothiazine
derivatives and suggest that phenothiazine neurolep-
tics have therapeutic potential as sigma-1 receptor
ligands.
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