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Abstract: Microsomal prostaglandin E synthetase-1 (mPGES-1) is an inducible terminal enzyme for
the production of prostaglandin E2 (PGE2). In experimental autoimmune encephalomyelitis (EAE),
an animal model of multiple sclerosis, mPGES-1 is induced in vascular endothelial cells (VECs)
around inflammatory foci and facilitates inflammation, demyelination, and paralysis. Therefore,
we investigated the role of CD31-positive VECs in mPGES-1-mediated EAE aggravation using
immunohistochemical analysis and imaging of wild-type (wt) and mPGES-1-deficient (mPGES-1−/−)
mice. We demonstrated that EAE induction facilitated vascularity in inflammatory lesions
in the spinal cord, and this was significantly higher in wt mice than in mPGES-1−/− mice.
In addition, endothelial interleukin-1β (IL-1β) production was significantly higher in wt mice
than in mPGES-1−/− mice. Moreover, endothelial PGE2 receptors (E-prostanoid (EP) receptors
EP1–4) were expressed after EAE induction, and IL-1β was induced in EP receptor-positive VECs.
Furthermore, IL-1 receptor 1 expression on VECs was increased upon EAE induction. Thus, increased
vascularity is one mechanism involved in EAE aggravation induced by mPGES-1. Furthermore,
mPGES-1 facilitated the autocrine function of VECs upon EP receptor induction and IL-1β production,
modulating mPGES-1 induction in EAE.

Keywords: vascular endothelial cells; microsomal prostaglandin E synthetase-1; interleukin-1β;
prostaglandin E2; experimental autoimmune encephalomyelitis; multiple sclerosis

1. Introduction

Multiple sclerosis (MS) is a progressive central nervous system disease characterized by multifocal
areas of leukocyte infiltration and demyelination. Inflammation is a key feature of MS that
directly affects tissue injury. Inducible prostaglandin E2 (PGE2) is an inflammatory mediator that
is sequentially synthesized from arachidonic acid by cyclooxygenase-2 (COX-2) and microsomal
prostaglandin E synthase-1 (mPGES-1, also known as PTGES). PGE2 exerts its function by acting on
four G-protein-coupled receptors (GPCRs) known as E-prostanoid (EP) receptors, including EP1, EP2,
EP3, and EP4, with multiple isoforms of EP3.

mPGES-1 is induced in brain vascular endothelial cells (VECs) to mediate endotoxin-induced
fever [1] and neuronal injury elicited by kainic acid (KA) [2]. COX-2 is also upregulated in
macrophages/microglia in the brains of patients with MS [3] and in brain VECs in experimental
autoimmune encephalomyelitis (EAE), an animal model of MS [4]. Rodent EAE induced by myelin
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oligodendrocyte glycoprotein 35–55 peptide (MOG35–55) is associated with inflammatory foci and
typical perivascular infiltration of mononuclear cells in the spinal cord and brain [5,6].

Spinal expression of PGE2 is increased after EAE induction [7–10], and treatment with selective
COX-2 inhibitors suppresses the development of EAE paralysis [11–13]. Similarly, mPGES-1 induction
in infiltrating macrophages facilitates the clinical progression of EAE in mice [9]. In addition,
PGE2 produced by endothelial mPGES-1 around inflammatory foci facilitates inflammation and
demyelination in the spinal cord and aggravates paralysis in EAE [10].

Interleukin-1β (IL-1β) is a critical inflammatory and pathological mediator in the EAE spinal
cord. Administration of recombinant interleukin-1 receptor antagonist (IL-1RN) delays disease onset
and reduces EAE severity in rats [14]. Additionally, expression of a defective interleukin-1 receptor
1 (IL-1R1) gene in mice is associated with complete resistance to EAE [15]. IL-1β has been shown to
facilitate PGE2 production. Conversely, we have demonstrated that PGE2 synthesized by mPGES-1 in
VECs and macrophages/microglia facilitates IL-1β autocrine function in CD4-positive (CD4+) T cells
and stimulates an intercellular interaction between CD4+ T cells in EAE development [16]. However,
we found that IL-1β is increased in other regions, such as blood vessels in inflammatory lesions,
in EAE.

Accordingly, in this study, we investigated the roles of CD31-positive (CD31+) VECs in
mPGES-1-mediated EAE aggravation through immunohistochemical analysis of mPGES-1-deficient
(mPGES-1−/−, also known as Ptges−/−) mice. In particular, we investigated whether vascularity and
endothelial IL-1β production were upregulated after EAE induction and were facilitated by PGE2

synthesized by mPGES-1.

2. Results

2.1. mPGES-1 Was Induced in CD31+ VECs and Facilitated Demyelination and Paralysis

According to immunohistochemical experiments, CD31+ ECs were increased and mPGES-1 was
expressed in CD31+ ECs in the spinal cords of wild-type (wt) EAE mice (Figure 1A, upper panels).
In contrast, only a slight increase in CD31+ ECs was observed and mPGES-1 was not expressed in
mPGES-1−/− EAE mice (Figure 1A, lower panels). We did not detect mPGES-1 in either of the controls
(Figure 1B). This suggested that mPGES-1 expression was related to vascularity.
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Figure 1. Expression of microsomal PGE synthase-1 (mPGES-1) in CD31-positive (CD31+) endothelial 
cells (ECs). Immunohistochemical staining of mPGE-1 (green) with CD31 (red) in the inflammatory 
regions of spinal cords of wild-type (wt) experimental autoimmune encephalomyelitis (EAE) mice 
and mPGES-1-deficient (mPGES-1−/−) EAE mice (A) and in the spinal cords of wt control mice and 
mPGES-1−/− control mice (B). Scale bars, 20 μm (for all images); wt, wild-type; ko, mPGES-1−/−; cont., 
naïve mice; EAE, EAE mice. 

Figure 1. Expression of microsomal PGE synthase-1 (mPGES-1) in CD31-positive (CD31+) endothelial
cells (ECs). Immunohistochemical staining of mPGE-1 (green) with CD31 (red) in the inflammatory
regions of spinal cords of wild-type (wt) experimental autoimmune encephalomyelitis (EAE) mice
and mPGES-1-deficient (mPGES-1−/−) EAE mice (A) and in the spinal cords of wt control mice and
mPGES-1−/− control mice (B). Scale bars, 20 µm (for all images); wt, wild-type; ko, mPGES-1−/−; cont.,
naïve mice; EAE, EAE mice.
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We investigated whether demyelination in the EAE spinal cord and EAE paralysis were regulated
by mPGES-1. Histopathological examination showed a marked difference between wt EAE and
mPGES-1−/− EAE mice at 19 days after immunization (Figure 2A,C). In wt EAE mice, hematoxylin
and eosin (H–E)-stained sections showed diffuse and extensive infiltration of the parenchyma of the
spinal cord (Figure 2A left); however, mPGES-1−/− EAE mice revealed localized inflammatory lesions
restricted to the perivascular or subpial space (Figure 2C left). Moreover, luxol fast blue (LFB)-stained
sections showed diffuse and extensive demyelination in wt EAE mice (Figure 2A right). In contrast,
demyelination was restricted to the perivascular lesion in mPGES-1−/− EAE mice (Figure 2C right).
The demyelinating score and the EAE score of mPGES-1−/− EAE mice were significantly lower
than those in wt EAE mice (Figure 2E,F). The relationship between the demyelinating score and the
EAE score is shown in Figure 2B,D. The demyelinating score was not reflective of the EAE score in
mPGES-1−/− EAE mice, while the two were correlated in wt EAE mice (Figure 2B,D).
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Figure 2. Histopathology of EAE mouse spinal cords at 19 days after immunization. Sections of
lumbar spinal cord from wild-type (wt) experimental autoimmune encephalomyelitis (EAE) mice (A).
Hematoxylin–eosin H–E staining showed massive infiltration of mononuclear cells into the parenchyma
(left panel, arrowhead), and luxol fast blue (LFB) staining showed the diffuse demyelination (right
panel, arrow) in wt EAE mice. Relationship between paralysis score and demyelinating score in wt EAE
mice (B). Points a, b, and c in (B) corresponded to each panel in (A). Sections of lumbar spinal cord from
microsomal PGE synthase-1 (mPGES-1)-deficient (mPGES-1−/−) EAE mice (C). H–E staining showed
that infiltration was localized to the intravascular or leptomeningeal space (left panel, arrowhead),
and LFB staining showed little demyelination (right panel, arrow). Relationship between paralysis
score and demyelinating score in mPGES-1−/− EAE mice (D). Points d, e, and f in (D) corresponded to
each panel in (C). Demyelinating score in wt EAE mice and mPGES-1−/− EAE mice (E). Paralysis score
in wt EAE mice and mPGES-1−/− EAE mice (F). Scale bars, 200 µm (for all images); wt, wild-type; ko,
mPGES-1−/−; H–E, hematoxylin–eosin, LFB, luxol fast blue. * p < 0.001, ** p < 0.05.
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2.2. CD31+ VEC Invasion in the EAE Spinal Cord Was Facilitated by mPGES-1

We next investigated whether CD31+ EC invasion in the EAE spinal cord was regulated by
mPGES-1. CD31+ ECs spread over the parenchyma in wt EAE mice; however, they were scattered in
the spinal cord in mPGES-1−/− EAE mice (Figure 3A). In addition, there were fewer CD31+ ECs in the
control spinal cords of wt and mPGES-1−/− mice (Figure 3A). These findings were also observed by
spinal cord staining with tomato lectin (Figure S1). There were significant differences in percentage of
the area stained for CD31 between wt control mice (1.1% ± 0.23%) and wt EAE mice (7.4% ± 0.23%;
p < 0.001, Figure 3B) and between mPGES-1−/− control mice (0.94% ± 0.27%) and mPGES-1−/− EAE
mice (5.7% ± 0.78%; p < 0.001, Figure 3B). Moreover, the percentage of the area stained for CD31 was
significantly higher in wt EAE mice (7.4% ± 0.23%) than in mPGES-1−/− EAE mice (5.7% ± 0.78%;
p = 0.0345, Figure 3B). We found that vascularity in the spinal cord was increased upon EAE induction
and by PGE2 synthesized by mPGES-1.
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either wt or mPGES-1−/− control mice (Figure 4). In EAE mice, the percentage of the IL-1β-positive 
CD31+ area in half of the spinal cord per half of the spinal cord area was significantly higher in wt 
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Figure 3. Distribution of CD31-positive (CD31+) endothelial cells (ECs) in spinal cords.
Immunohistochemical image showing CD31 in the spinal cord in wild-type (wt) control,
wt experimental autoimmune encephalomyelitis (EAE), mPGES-1-deficient (mPGES-1−/−) control,
and mPGES-1−/− EAE mice (A). Percentage of the CD31+ area in half of the spinal cord per half the
size area of the spinal cord (B). Scale bar (50 µm); wt, wild-type; ko, mPGES-1−/−; cont., naïve mice;
EAE, EAE mice. *p < 0.001, **p < 0.05.

2.3. IL-1β Upregulation in CD31+ VECs in EAE Spinal Cords Was Regulated by mPGES-1

We next studied whether IL-1β was upregulated in invaded CD31+ ECs. We found no IL-1β in
either wt or mPGES-1−/− control mice (Figure 4). In EAE mice, the percentage of the IL-1β-positive
CD31+ area in half of the spinal cord per half of the spinal cord area was significantly higher in wt EAE
mice (3.4% ± 0.88%) than in mPGES-1−/− EAE mice (1.4% ± 0.16%; p = 0.0183, Figure 4), suggesting
that IL-1β production may be regulated by mPGES-1-synthesized PGE2.
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induction. In addition, partial IL-1β staining was observed in EP-positive CD31+ ECs in wt EAE mice 
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mice (Figure 6). These findings suggested that endothelial IL-1β production is stimulated by PGE2 
through EP receptor activation. 

Figure 4. Expression of interleukin-1β (IL-1β) in CD31-positive (CD31+) endothelial cells (ECs)
in the spinal cords of control and experimental autoimmune encephalomyelitis (EAE) mice.
Immunohistochemical images showing IL-1β (green) and CD31 (red) in the spinal cords of wild-type
(wt) control, wt EAE, microsomal PGE synthase-1-deficient (mPGES-1−/−) control, and mPGES-1−/−

EAE mice (A). Percentage of IL-1β-positive (IL-1β+) CD31+ area in half of the spinal cord per half of
the spinal cord area (B). Scale bars are 20 µm; wt, wild-type; ko, mPGES-1−/−; cont., naïve mice; EAE,
EAE mice. * p < 0.001, **p < 0.05.

2.4. Induction of EP Receptors in CD31+ VECs in the EAE Spinal Cord

The above findings raised the question of whether PGE2 activated the PGE2 receptors EP1–4 on
ECs to facilitate vascularity and IL-1β production. Therefore, we next investigated the expression
of EP1–4 on ECs. EP receptors 1–4 were strongly stained and widely colocalized with CD31 in
the spinal cords of wt EAE mice (Figure 5), but only weakly stained and partially colocalized in
mPGES-1−/− EAE mice (Figure 6). In addition, there was no expression of EP receptors in control
spinal cords, regardless of the presence of mPGES-1 (Figures 5 and 6). The expression and distribution
of endothelial EP receptors were quantitatively affected by the increase in CD31+ ECs in both groups.
This suggested that EP receptor expression was increased according to the increase in ECs upon EAE
induction. In addition, partial IL-1β staining was observed in EP-positive CD31+ ECs in wt EAE mice
(Figure 5). Furthermore, slight EP-positive EC staining for IL-1β was observed in mPGES-1−/− EAE
mice (Figure 6). These findings suggested that endothelial IL-1β production is stimulated by PGE2

through EP receptor activation.



Int. J. Mol. Sci. 2018, 19, 3647 6 of 17
Int. J. Mol. Sci. 2018, 19, x 6 of 17 

 

Figure 5. Expression of E-prostanoid (EP) receptors and interleukin-1β (IL-1β) in CD31-positive 
(CD31+) endothelial cells (ECs) in spinal cords in wild-type (wt) mice. Immunohistochemical images 
showing EP1–4 (green), CD31 (red), and IL-1β (blue) in the inflammatory region of the spinal cords 
of experimental autoimmune encephalomyelitis (EAE) wt mice (wt EAE) and in the naïve spinal cords 
in wt control mice (wt cont.). Scale bars are 20 μm (for all images); wt, wild-type; EAE, EAE mice; 
cont., naïve mice. 

Figure 6. Expression of E-prostanoid (EP) receptors and interleukin-1β (IL-1β) in CD31-positive 
(CD31+) endothelial cells (ECs) in spinal cords in microsomal PGE synthase-1-deficient (mPGES-1−/−) 
mice. Immunohistochemical images showing EP1–4 (green), CD31 (red), and IL-1β (blue) in the 
inflammatory region of the spinal cords of experimental autoimmune encephalomyelitis (EAE) 
mPGES-1−/− mice (mPGES-1−/− EAE) and in the naïve spinal cords in mPGES-1−/− control mice (mPGES-
1−/− cont.). Scale bars are 20 μm (for all images). ko, mPGES-1−/−; EAE, EAE mice; cont., naïve mice. 

Figure 5. Expression of E-prostanoid (EP) receptors and interleukin-1β (IL-1β) in CD31-positive (CD31+)
endothelial cells (ECs) in spinal cords in wild-type (wt) mice. Immunohistochemical images showing
EP1–4 (green), CD31 (red), and IL-1β (blue) in the inflammatory region of the spinal cords of experimental
autoimmune encephalomyelitis (EAE) wt mice (wt EAE) and in the naïve spinal cords in wt control mice
(wt cont.). Scale bars are 50 µm (for all images); wt, wild-type; EAE, EAE mice; cont., naïve mice.
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Figure 6. Expression of E-prostanoid (EP) receptors and interleukin-1β (IL-1β) in CD31-positive (CD31+)
endothelial cells (ECs) in spinal cords in microsomal PGE synthase-1-deficient (mPGES-1−/−) mice.
Immunohistochemical images showing EP1–4 (green), CD31 (red), and IL-1β (blue) in the inflammatory
region of the spinal cords of experimental autoimmune encephalomyelitis (EAE) mPGES-1−/− mice
(mPGES-1−/− EAE) and in the naïve spinal cords in mPGES-1−/− control mice (mPGES-1−/− cont.).
Scale bars are 50 µm (for all images). ko, mPGES-1−/−; EAE, EAE mice; cont., naïve mice.
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2.5. IL-1R1 Upregulation in CD31+ VECs in EAE Spinal Cords Was Not Regulated by mPGES-1

IL-1R1 was not expressed in control spinal cords, regardless of the presence of mPGES-1,
and IL-1R1 staining in ECs was weak and consistent in the spinal cords of wt EAE mice and
mPGES-1−/− EAE mice (Figure 7A). There were significant differences in the percentages of
IL-1R1-positive (IL-1R1+) CD31+ areas in half of the spinal cord per of the half spinal cord area
between wt control and wt EAE mice and between mPGES-1−/− control and mPGES-1−/− EAE
mice (Figure 7B, p < 0.05). However, there were no significant differences in the percentages of
IL-1R1+ CD31+ areas in half of the spinal cord per of the half spinal cord area between wt EAE mice
(2.3% ± 0.79%) and mPGES-1−/− EAE mice (2.2% ± 0.47%; p = 0.4523, Figure 7B).
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Figure 7. Expression of IL-1 receptor 1 (IL-1R1) in CD31-positive (CD31+) endothelial cells
(ECs) in the spinal cords of control and experimental autoimmune encephalomyelitis (EAE) mice.
Immunohistochemical images showing IL-1R1 (green) and CD31 (red) in the spinal cords of wild-type
(wt) control, wt EAE, microsomal PGE synthase-1 (mPGES-1)−/− control, and mPGES-1−/− EAE mice
(A). Percentage of the IL-1R1-positive (IL-1R1+) CD31+ area in half of the spinal cord per half of the
spinal cord area (B). Scale bars are 20 µm; wt, wild-type; ko, mPGES-1−/−; cont., naïve mice; EAE, EAE
mice. * p < 0.05.

3. Discussion

3.1. Vascularity and mPGES-1 Expression in EAE

In EAE spinal cords, blood-brain barrier (BBB) disruption and subsequent infiltration of immune
cells, such as T cells or macrophages, were observed in inflammatory lesions and were found to
be regulated by matrix metalloproteinases (MMPs) [17,18]. MMPs are known to contribute to the
neuro-inflammatory response in many neurological diseases, and induction of MMP-2 is mediated
by the binding of vascular cell adhesion molecule-1 on VECs to the very late activation-4 antigen
expressed on T cells and macrophages [19]. Therefore, blood vessels play an important role in EAE
pathology. Moreover, inflammation induces the vasodilation of small blood vessels, allowing for
more perfusion and resulting in a distinct increase in vessel density and vessel immunostaining.
After EAE induction, the blood vessel density, as determined by staining with CD31 to label ECs,
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is increased because of vasodilation and angiogenesis [20]. Angiogenesis is stimulated by vascular
endothelial growth factor (VEGF), which leads to degeneration of the vascular basement membrane and
breakdown of the BBB [21]. BBB dysregulation and transendothelial migration of activated leukocytes
are the earliest cerebrovascular dysfunctions in MS [22]. VEGF is involved in EAE progression [20]
during the acute phase (day 21) but not the chronic phase (day 55) [23]. In addition, inhibition of
VEGF receptor 2 decreases clinical signs of EAE in the acute phase of the EAE process [23]. Moreover,
the number of blood vessels increases during the EAE relapse phase [20]; thus, angiogenesis aggravates
inflammation in the spinal cord in EAE. In contrast, angiogenesis induced after inflammation promotes
neuronal remodeling through vessel-derived prostacyclin (prostaglandin I2) during the chronic phase
of EAE [24,25]. In our study, sections of mouse spinal cord tissues on day 19 after EAE induction were
stained for CD31 to compare the blood vessel densities of wt EAE mice and mPGES-1−/− EAE mice.
CD31+ ECs were increased in EAE spinal cords. We also used tomato lectin, which is an effective
marker of blood vessels and microglial cells in rodents. Tomato lectin staining was also increased
in EAE mice. EAE induction significantly increased CD31+ ECs in both wt and mPGES-1−/− mice
compared with those in the corresponding normal control groups. In addition, there was a significant
difference in the increase in CD31+ ECs between wt and mPGES-1−/− EAE mice, but no significant
difference was observed between normal control wt and mPGES-1−/− mice. These results suggest
that vascularity is induced upon EAE induction, regardless of the presence of mPGES-1. Furthermore,
the PGE2 produced by mPGES-1 facilitates increased vascularity in the EAE spinal cord.

Leukocyte cultures from patients with definite MS show higher PGE expression than those from
healthy controls [26]. Moreover, PGE2 levels are higher in peripheral blood monocytes from patients
with chronic progressive MS [27]. These findings suggest that PGE2 is related to MS development.
Inducible PGE2 is sequentially synthesized from arachidonic acid by COX-2, which is induced in
chronic active lesions, specifically near damaged oligodendrocytes in macrophages and microglia in
patients with MS [3]. Because COX-2 is localized to von-Willebrand factor-marked ECs in the spinal
cord in EAE, particularly at 14–25 days after immunization [4], the PGE2 produced in this period plays
some role in EAE lesions. PGES has three isoforms, i.e., mPGES-1 [28], microsomal prostaglandin
E synthase-2 (mPGES-2) [29], and cytosolic PGE2 synthase (cPGES) [30]. mPGES-2 and cPGES are
constitutively expressed, whereas mPGES-1 is induced following stimulation with pro-inflammatory
factors and is functionally coupled with COX-2 [31]. In the brain, mPGES-1 is induced in VECs in
fever [1] or KA-elicited neuronal damage [2]. In EAE, mPGES-1 appears in macrophages [9] and ECs
in the spinal cord 19 days after immunization [10]. We confirmed that mPGES-1 was expressed in
CD31+ ECs and CD11+ macrophages/microglia on day 19 after immunization but was not expressed in
CD4+ T cells [16]. In this study, we also confirmed that mPGES-1 was strongly induced in CD31+ ECs.
Upregulation of vascularity is associated with an increase in the area in which mPGES-1 is produced.

3.2. Effect of IL-1β on EAE and Endothelial IL-1β Production

Several studies have shown that IL-1β plays a crucial role in EAE. Administration of recombinant
IL-1RN to EAE rats delays the onset of the disease and reduces its severity [14]. Moreover, a defective
IL-1R1 gene in mice is associated with complete resistance to EAE [15]. Recently, it was reported
that IL-1β is the main protagonist of EAE, whereas IL-1α is dispensable [32]. IL-1β regulates BBB
permeability [33–35] and induces BBB disruption [36]. IL-1β also exacerbates neuro-inflammation [37]
and is highly expressed in infiltrating macrophages [38]. IL-1β mRNA is induced in peritoneal
leukocytes immediately after the initial induction of EAE [39]. Moreover, activated macrophages
are thought to be the predominant source of IL-1β in the brain [40]. However, the contribution of
macrophages to the total production of IL-1β is minor in EAE pathogenesis [32,38], and CD4+ T cells
are thought to be a major source of IL-1β during EAE pathogenesis [41]. IL-1β stimulates ECs via
IL-1R1 to produce cytokines, such as IL-6 and CXCL2, in inflammatory lesions in EAE [32]; however,
no studies have evaluated the production of IL-1β in ECs. Therefore, in this study, we investigated
whether IL-1β expression was upregulated in ECs by PGE2 synthesized from mPGES-1. We compared
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IL-1β expression in CD31+ ECs in wt and mPGES-1−/− mice. IL-1β was rarely co-expressed with
CD31 in normal control wt mice or mPGES-1−/− mice. In contrast, IL-1β expression was significantly
increased in CD31+ ECs in EAE mice. In addition, the percent area co-expressing IL-1β and CD31 per
half of the spinal cord area was significantly higher in wt EAE mice than in mPGES-1−/− mice.

3.3. Expression and Effect of Endothelial EP Receptors

All four EP receptors are expressed in neurons and VECs under pathological conditions, such as
hypoxic–ischemic encephalopathy [42]. In this study, there was low EP receptor expression in normal
control wt mice and mPGES-1−/− mice. In contrast, EP receptors 1–4 were strongly stained and widely
colocalized with CD31 in the spinal cords of wt EAE mice but were weakly stained and only partially
colocalized with CD31 in mPGES-1−/− EAE mice.

EP1 antagonists and genetic deletion of EP1 protect against BBB disruption following experimental
ischemic stroke in rats and mice [43], and the activation of EP2 or EP4 induces vasodilation and
hyperpermeability in modified Miles assays in mice [44]. Moreover, inhibition of EP3 or EP4 attenuates
arachidonic acid-mediated permeability of human brain microvascular ECs [45]. These reports suggest
that the activation of EP1–4 aggravates BBB disruption and increases BBB permeability. However,
protective effects against permeability have also been reported upon activation of EP3 and EP4. EP3
activation has been reported to lead to hypopermeability [44], and endothelial deletion of EP4 worsens
stroke injury and decreases cerebral reperfusion in a mouse model of cerebral ischemia [46]. Thus,
activation of endothelial EP receptors may have opposing effects on BBB permeability depending on
the timing and pathological conditions.

3.4. IL-1β Production Through EP Receptor Activation

EP receptor-positive (EP receptor+) CD4+ T cells almost entirely colocalized with IL-1β, which is
regulated by PGE2 synthesized by mPGES-1 [16]. T cells are also regulated by the activation of EP2
or EP4 [47–49], and IL-1β upregulates EP2 and EP4 in primary cultured hippocampal neurons [50].
Thus, the activation of EP2 or EP4 may increase IL-1β production in CD4+ T cells, which controls the
induction of EP receptors. In other words, the activation of CD4+ T cells is regulated by autocrine
functioning via IL-1β and PGE2. In triple staining for EP receptors, CD31, and IL-1β in this study,
IL-1β was detected in EP receptor+ CD31+ ECs in wt EAE mice; therefore, IL-1β expression in ECs
may be stimulated by PGE2 via EP receptors. Furthermore, we cannot exclude the possibility that the
PGE2 produced by other PGESs may activate EP receptors to produce IL-1β in ECs in mPGES-1−/−

EAE mice, as there were few EP receptor+ ECs stained with IL-1β in mPGES-1−/− EAE mice.

3.5. Relationship between IL-1β and COX-2/mPGES-1

IL-1β is known to stimulate COX-2 induction. Intraperitoneal IL-1β injection induces the
expression of COX-2 mRNA in VECs in the brain [51] and leads to the induction of COX-2 mRNA in
cultured primary hippocampal neurons [52]. The main inducer of central COX-2 upregulation in the
spinal cord is IL-1β, which thus promotes the production of PGE2 and contributes to inflammatory
pain hypersensitivity [53]. IL-1β also has an essential role in mediating the activity of nuclear factor
kappa B and the transcription of COX-2 in cells of the BBB in inflammation [54]. In the brain, COX-2
inhibitors prevent IL-1β-induced increases in PGE2 production [55], suggesting that IL-1β regulates
PGE2 production through the synthesis of COX-2. In addition, crosstalk between microvascular ECs
and tumor cells upregulates COX-2 and mPGES-1, which are both strongly inhibited by an IL-1R
antagonist [56]. Thus, IL-1β plays a crucial role in the induction of COX-2 and mPGES-1 to produce
pathophysiological PGE2, which promotes inflammation. In contrast, we first demonstrated that IL-1β
in CD4+ T cells was controlled by endothelial PGE2 derived from mPGES-1 in EAE spinal cords [16].
Therefore, endothelial IL-1β may also be regulated by endothelial PGE2 derived from mPGES-1 in
EAE spinal cords as an autocrine function between neighboring ECs.
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3.6. Expression of Endothelial IL-1R1

The IL-1R1 and IL-1R2 mRNAs are expressed in the ECs of rat brains [57], and knockdown of
IL-1R1 in ECs attenuates stress-induced neuro-inflammation [58]. Endothelial IL-1R1 is an important
receptor in EAE pathology [32,59], and IL-1R1 signaling controls expression of the chemokine CXCL12
at the BBB, which affects the severity of EAE [60]. In this study, IL-1R1 expression was significantly
increased in CD31+ ECs in EAE mice; in contrast, IL-1R1 was rarely co-expressed with CD31 in normal
control mice. However, there was no significant difference in IL-1R1 expression in CD31+ ECs between
wt EAE mice and mPGES-1−/− EAE mice or between wt control mice and mPGES-1−/− control mice.
These results suggest that mPGES-1 signaling may not control the induction of endothelial IL-1R1
in EAE. However, because IL-1β in CD4+ T cells is upregulated in wt EAE, EC activation could be
increased by IL-1β produced in nearby CD4+ T cells in wt mice. Thus, further studies are necessary to
assess the effects of IL-1R1 activation on vascularity.

3.7. A Mechanism of EAE Aggravation Induced by mPGES-1

In this study, we demonstrated the upregulation of vascularity in EAE, which was regulated by
mPGES-1 upon the induction of EP receptors, potentiation of IL-1β production, and expression of
IL-1R1 on CD31+ ECs (Scheme 1). Moreover, IL-1β production may be increased by PGE2 through
EP receptors in CD31+ ECs (Scheme 1). This signaling pathway is regulated by mPGES-1; therefore,
mPGES-1-deficient mice showed weak vascularity with just a slight increase in EP receptor expression
and IL-1β production (Scheme 2). The PGE2 produced by mPGES-1 aggravates inflammation and the
progression of EAE [9,10,16]; thus, the upregulation of vascularity is an mPGES-1-mediated mechanism
of EAE aggravation, as VECs are an important source of mPGES-1 in inflammatory foci. Furthermore,
mPGES-1 facilitates the autocrine function of VECs upon EP receptor induction and increases IL-1β
production, thereby facilitating mPGES-1 induction in EAE.
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Scheme 1. Role of vascular endothelial cells (VECs) in microsomal PGE synthase-1 (mPGES-1)-related
aggravation of experimental autoimmune encephalomyelitis (EAE). Upregulation of vascularity is
increased in EAE spinal cords in wild-type (wt) mice. In VECs, prostaglandin E2 (PGE2) is synthesized
by mPGES-1 in response to stimulation by interleukin-1β (IL-1β). Expression of the endothelial PGE2

EP receptors is increased and IL-1β is induced in EP receptor-positive VECs in wt mice; therefore,
activation of EP receptors may be related to IL-1β production in VECs. IL-1 receptor 1 (IL-1R1) is
increased on VECs by EAE induction. IL-1β in CD4-positive (CD4+) T cells shows greater upregulation
in wt EAE; thus, VECs may be activated by IL-1β produced in nearby CD4+ T cells in wt mice.
VE-cadherin, vascular endothelial-cadherin.
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Scheme 2. Effects of microsomal PGE synthase-1 (mPGES-1) deficiency on vascularity and
interleukin-1β (IL-1β) production in vascular endothelial cells (VECs). Upregulation of vascularity
is minimal in experimental autoimmune encephalomyelitis (EAE) spinal cords in mPGES-1-deficient
(mPGES-1−/−) mice compared with that in wt mice. In VECs, PGE2 is not synthesized. Induction
of the endothelial PGE2 EP receptors and production of IL-1β are decreased in mPGES-1−/− mice
compared with that in wt mice. IL-1 receptor 1 (IL-1R1) is upregulated on VECs by EAE induction,
but there is less IL-1β in CD4-positive (CD4+) T cells in mPGES-1−/− mice. Therefore, VECs may
be slightly activated by IL-1β produced in nearby CD4+ T cells in mPGES-1−/− mice. VE-cadherin,
vascular endothelial-cadherin.

4. Materials and Methods

4.1. Mice

We used seven female mPGES-1−/− mice (8 weeks of age) and seven female age-matched
C57BL/6J mice in this study. mPGES-1−/− mice were generated as previously described [61]. We used
untreated female wt mice and mPGES-1−/− mice as normal controls. Seven mice were included in
each group, and the mice were housed three or four per cage in a room maintained at 24 ± 2 ◦C with a
standard 12-h light-dark cycle and with access to standard chow and water ad libitum. All animal
experiments were approved by the Ethical Review Committee of Animal Experiments and Gene
Recombination Experiment Safety Committee of Tokyo Women’s Medical University (14–91/14–44,
29 March 2014).

4.2. Induction and Assessment of EAE

Mice were immunized by subcutaneous injection with 250 µg MOG35–55

(MEVGWYRSPFSRVVHLYRNGK, purity >95%; Operon Technology, Tokyo, Japan) in complete
Freund’s adjuvant (Difco, Detroit, MI, USA). The mice also received two intraperitoneal injections of
500 ng of pertussis toxin each (Seikagaku Corporation, Tokyo, Japan), once on the day of immunization
and again 2 days later. The mice were observed daily, and we assessed the progression of EAE
using the following scoring system: (0) No detectable signs of paralysis; (1) completely limp tail;
(2) loss of the righting reflex; (3) partial hind limb paralysis; (4) complete hind limb paralysis; (5) total
paralysis of all four limbs; and (6) death. Mice that were scored as 5 for two consecutive days were
immediately euthanized.
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4.3. Immunohistochemistry

The mice were sacrificed under deep anesthesia induced by an intraperitoneal injection of
pentobarbital (120 mg/kg) on day 19 after immunization. Spinal cords were quickly removed and
frozen with a dry ice/acetone mixture. Sections were cut at a thickness of 10 µm and left to air
dry at room temperature for 30 min, after which they were rinsed with phosphate-buffered saline.
Next, the sections were treated with 10% normal goat serum for 3–5 h, incubated with anti-mPGES-1
antibodies (Cayman Chemical, Ann Arbor, MI, USA; #160140; 1:250 dilution) overnight, and then
incubated with anti-EP1 (Bioss, Woburn, MA, USA; bs-6316R; 1:100), anti-EP2 (Bioss; bs-4196R; 1:100),
anti-EP3 (Santa Cruz Biotechnology, Inc., Dallas, TX, USA; sc-20676; 1:100), anti-EP4 (Bioss; bs-8538R;
1:100), anti-IL-1β (Santa Cruz Biotechnology, Inc.; sc-15325; 1:100; Cloud-Clone, USA; MAA563Mu21;
1:25), or anti-IL-1R1 (Santa Cruz Biotechnology, Inc.; sc-689; 1:100) antibodies for two nights at 4 ◦C
with slow shaking. To visualize ECs, the sections were double stained with anti-CD31 (BD Bioscience,
La Jolla, CA, USA; #550274; 1:20) antibodies. After removal of the primary antibody, the sections were
incubated with fluorescein isothiocyanate (FITC)-labeled anti-rabbit IgG (1:150) to label mPGES-1,
EP1–4, IL-1β, and IL-1R1 or with Cy3-labeled anti-rat IgG (1:150) to label CD31 for 5 h at room
temperature with slow shaking. For visualization of blood vessels, sections were also incubated
with FITC-labeled tomato lectin (1:200 dilution). Fluorescent images were obtained using a confocal
microscope LSM510 and LSM710 (Carl Zeiss Microscopy GmbH, Jena, Germany).

4.4. Image Analysis

To analyze the fluorescent images, we measured the CD31-stained area in the inflammatory half
of the spinal cord using the software ZEN2.3 (Carl Zeiss Microscopy GmbH, Jena, Germany) and then
calculated the ratio of the CD31-stained area to the total half-spine area. In addition, we measured
the IL-1β- or IL-1R1-stained area colocalized with CD31 in each experiment and calculated the ratio
of the contained area to the CD31-stained area using the colocalization function of the software AIM
(Carl Zeiss Microscopy GmbH, Jena, Germany).

4.5. Histopathology

The mice were sacrificed under deep anesthesia induced by the intraperitoneal injection of
pentobarbital (120 mg/kg) on day 19 after immunization. The lumbar spinal cords were quickly
removed and frozen. All of the spinal cords were embedded in optimal cutting temperature compound
and frozen with a dry ice/acetone mixture. Subsequently, sections were cut at a thickness of 10 µm
using a cryostat. The sections were stained with H–E, which stains inflammatory cells, and LFB, which
stains myelin and myelinated axons. Myelinated fibers were stained blue, and the demyelinated area
was pale in LFB-stained tissue. Images of the sections were captured using a microscope equipped
with a digital camera (OLYMPUS BX-40, Tokyo, Japan). Demyelinating lesions were graded using
LFB-stained sections as follows: Grade 1, trace levels of perivascular or subpial demyelination; Grade 2,
focal demyelination; Grade 3, demyelination involving a quarter of the tissues examined; Grade 4,
massive confluent parenchymal demyelination involving half of the tissue; and Grade 5, extensive
demyelination involving the entire tissue [62,63].

4.6. Statistical Analysis

The data are presented as means ± standard errors. Statistical analysis was performed using
independent Student’s t-tests with the assumption of equal variance, and significance was determined
at a p value of less than 0.05.

5. Conclusions

We found that PGE2, synthesized by mPGES-1, upregulated vascularity, and endothelial IL-1β
production through a PGE2 autocrine function in spinal cords in EAE. In this study, we did
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not evaluate the mechanisms of brain lesions in MS; however, the vascularity induced by this
PGE2-synthesizing process in VECs may have an important role in neuro-inflammatory changes
in neurodegenerative diseases.
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MS multiple sclerosis
PGE2 prostaglandin E2

COX-2 cyclooxygenase-2
mPGES-1 microsomal prostaglandin E synthetase-1
GPCRs G-protein-coupled receptors
EP E-prostanoid
VECs vascular endothelial cells
KA kainic acid
EAE experimental autoimmune encephalomyelitis
MOG35–55 myelin oligodendrocyte glycoprotein35–55 peptide
IL-1β interleukin-1β
IL-1RN interleukin-1 receptor antagonist
IL-1R1 interleukin-1 receptor 1
CD4+ T cells CD4-positive T cells
CD31+ CD31-positive
mPGES-1−/− microsomal prostaglandin synthetase-1-deficient
wt wild-type
H–E hematoxylin and eosin
LFB luxol fast blue
IL-1R1+ IL-1R1-positive
BBB blood-brain barrier
MMPs matrix metalloproteinases
VEGF vascular endothelial growth factor
mPGES-2 microsomal prostaglandin E synthase-2
cPGES cytosolic PGE2 synthase
EP receptor+ EP receptor-positive
VE-cadherin vascular endothelial-cadherin
FITC fluorescein isothiocyanate
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