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Peroxisome proliferator-activated receptor 𝛾 (PPAR𝛾) is part of a nuclear receptor superfamily that regulates gene expression
involved in cell differentiation, proliferation, immune/inflammation response, and lipid metabolism. PPAR𝛾 coactivator-1𝛼 (PGC-
1𝛼), initially identified as a PPAR𝛾-interacting protein, is an important regulator of diverse metabolic pathways, such as oxidative
metabolism and energy homeostasis.The role of PGC-1𝛼 in diabetes, neurodegeneration, and cardiovascular disease is particularly
well known. PGC-1𝛼 is also now known to play important roles in cancer, independent of the role of PPAR𝛾 in cancer.Thoughmany
researchers have studied the expression and clinical implications of PPAR𝛾 and PGC-1𝛼 in cancer, there are still many controversies
about the role of PPAR𝛾 and PGC-1𝛼 in cancer. This review examines and summarizes some recent data on the role and action
mechanisms of PPAR𝛾 and PGC-1𝛼 in cancer, respectively, particularly the recent progress in understanding the role of PPAR𝛾 in
several cancers since our review was published in 2012.

1. Introduction

Peroxisome proliferator-activated receptor 𝛾 (PPAR𝛾)
belongs to a nuclear hormone receptor superfamily that regu-
lates the expression of genes involved in cell differentiation,
proliferation, the immune/inflammation response, and
lipid metabolism [1]. Ligand binding and activation of
PPAR𝛾 result in heterodimer formation with the retinoid X
receptor (RXR) and binding to a PPAR response element
(PPRE) to regulate the transcription of numerous target
genes [2, 3]. PPAR𝛾 consists of a ligand-independent
transcriptional activation domain, DNA binding domain
(DBD), hinge region for cofactor docking, and ligand
binding domain (LBD) (Figure 1(a)). Two PPAR𝛾 isoforms
are known, PPAR𝛾1 and PPAR𝛾2 [4, 5]. PPAR𝛾2, which
is generated by alternative splicing, contains an additional
28 amino acids in mice and 30 amino acids in humans, at
the N-terminus compared to PPAR𝛾1. PPAR𝛾2 is expressed
selectively in adipose tissue and plays an important role
in adipocyte differentiation, lipid storage in white adipose
tissue, and energy dissipation in brown adipose tissue
[4, 6]. PPAR𝛾1 is expressed in the colon, immune system,

and hematopoietic cells and plays an important role in
the control of inflammation, macrophage maturation, and
embryo implantation. PPAR𝛾1 is a molecular target of
antidiabetic thiazolidinediones [7, 8]. Our previous review
summarized the role and action mechanisms of PPAR𝛾
in colorectal cancer [8], but the role of PPAR𝛾 in cancer
is still debated. Thus, this review updates the progress in
understanding the role andmolecular mechanisms of PPAR𝛾
in cancer.

The PPAR𝛾 coactivator-1 (PGC-1) family is composed
of PGC-1𝛼, PGC-1𝛽, and PGC-1-related coactivator (PRC).
PGC-1𝛼 was initially identified as a transcriptional coactiva-
tor involved in mitochondrial function and thermogenesis in
brown fat [9]. PGC-1𝛽 and PRC were discovered in sequence
homology searches [10–13]. The PGC-1 family members
have similar activity to increase mitochondrial function
when overexpressed and have a related modular structure
(Figure 1(b)). The most common functional domains are
shared between PGC-1𝛼 and PGC-1𝛽. The N-terminal acti-
vation domain interacts with several transcriptional coac-
tivators, including p300 and steroid receptor coactivator-1
(SRC-1). A domain involved in inhibition of PGC-1 activity
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Figure 1: Structure of PPAR𝛾 (a) and the PGC-1 family (b). (a) A/B, transcriptional activation domain; C, DNA binding domain (DBD);
D, hinge region; E/F, ligand binding domain (LBD). (b) AD, transcriptional activation domain; RD, transcriptional repression domain; RS,
arginine/serine rich domain; RRM, RNA binding domain.

is located adjacent to the N-terminal region.Through several
LXXLL motifs, the N-terminal half of PGC-1 interacts with
many transcription factors, whereas the C-terminal end
of PGC-1 interacts with the TRAP/DRIP/Mediator com-
plex. PGC-1𝛼 has a Ser/Arg-rich domain and RNA binding
motif that plays an important role in mRNA splicing [14,
15]. Because PGC-1𝛼 was described initially as a PPAR𝛾
interacting protein, some investigators recently studied the
expression and clinical significance of PGC-1𝛼 in cancer
[16, 17]. However, the expression and the roles of PGC-1𝛼
in cancer were not significantly related to the expression of
PPAR𝛾. In addition, controversies still exist whether PGC-1𝛼
acts as a tumor promoter or a tumor suppressor in cancer.
This review focuses on the expression and actions of PGC-
1𝛼 in order to understand the clinical significance of PGC-1𝛼
expression in cancer.

2. The Role and Action Mechanisms of
PPAR𝛾 in Cancer

PPAR𝛾 is expressed in various malignant tissues, including
bladder, colon, prostate, and breast cancer [18–22]. Natural
ligands that activate PPAR𝛾 include long-chain polyun-
saturated fatty acids, eicosanoids, components of oxidized
low density lipoproteins (oxLDLs), and 15-deoxy-Δ12,14-
prostaglandin J2 (15d-PGJ2) [23]. Synthetic ligands include
the antidiabetic thiazolidinedione (TZD) class of drugs [23].
An increasing number of studies have focused on the effect
of PPAR𝛾 in cancer using natural and synthetic ligands for
PPAR𝛾 and overexpression experiments. However, the role
of PPAR𝛾 in cancer is still debated. Thus, this review updates
the role and actionmechanisms of PPAR𝛾 in cancer since our
review published in 2012.

2.1. PPAR𝛾 as a Tumor Suppressor in Cancer. Our previous
review summarized that PPAR𝛾 inhibits cell proliferation

and induces apoptosis through the upregulation of Phos-
phatase and Tensin Homolog (PTEN), downregulation of
survivin, downregulation of X-linked inhibitor of apoptosis
(XIAP), suppression of NF-𝜅B and glycogen synthase kinase
(GSK)-3𝛽, upregulation of cyclin-dependent kinase (CDK)
inhibitors, downregulation of CDK and cyclin D1, down-
regulation of COX-2, upregulation of Krüppel-Like Factor
4 (KLF4), upregulation of Bax, downregulation of Bcl-2,
and inhibition of telomerase activity and hTERT expression
through modulation of the Myc/Mad/Max network [8]. This
review briefly describes and summarizes new molecular
mechanisms of PPAR𝛾-related tumor suppression since 2012
(Table 1, Figure 2).

Understanding the role of PPAR𝛾 in cancer was improved
by developing new synthetic and natural ligands of PPAR𝛾
and performing overexpression and knockdown experi-
ments. PPAR𝛾 agonist troglitazone inhibits colon cancer cell
growth through the inactivation of NF-𝜅B by suppressing
GSK-3𝛽 activity [24]. Emerging data suggest that PPAR𝛾
acts as a tumor suppressor by inactivating NF-𝜅B through
different mechanisms. For example, Lee et al. demonstrated
that 4-O-methylhonokiol (MH), a PPAR𝛾 agonist, has anti-
tumor activity in prostate cancer through increased PPAR𝛾
activity and p21-mediated suppression of NF-𝜅B activity as
observed by the loss of MH-induced growth inhibition and
NF-𝜅B inhibition in a p21 siRNA knockdown experiment
[25]. In addition, overexpression of PPAR𝛾 was shown to
inhibit cell proliferation and tumor growth via degradation of
NF-𝜅B by acting as an E3 ligase [26]. Hou et al. demonstrated
that PPAR𝛾 inhibits mucin 1- (MUC1-) C-mediated cell
proliferation via MUC1-C ubiquitination and degradation
[27]. MUC1-C is known as an oncoprotein and interacts with
I𝜅B kinase, NF-𝜅B/p65, and signal transducer and activator
of transcription factor 3 (Stat3), p53, or BAX in order to
activate the downstream pathway associated with tumor
growth [47–52]. Efatutazone, a third-generation PPAR𝛾 ago-
nist, has been reported to inhibit esophageal squamous cell
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(i) Inactivation of NF-B by suppression of
GSK-3

(ii) P21-mediated suppression of NF-B
activity

(iii) Ubiquitination and degradation of NF-B
by PPAR (acts as E3 ligase)

(i) Ubiquitination and degradation of MUC1-C
by PPAR (acts as E3 ligase)

(i) Increased P21 protein levels by
inactivation of Akt

(ii) Downregulation of CTNNB1 mRNA, -
catenin, TERT mRNA, and TERT protein

(iii) Upregulation of tumor suppressor Cyld gene

Inactivation of NF-B 

 (i) Decreased expression of STAT5 and HIF-
2

(ii) Inhibition of IL-6 promoter activity and
reduced MMP-2 and MMP-9 expression and activity

Inhibition of 
cell 
proliferation 
and induction 
of apoptosis

Induction of 
differentiation/
stem cell 
eradication

Inhibition of 
metastasis 
and 
angiogenesis

(i) Downregulation of enabled homolog
(ENAH) by inhibition of -catenin

(ii) Downregulation of PDK1 by inhibition of
Wnt/-catenin pathway

(iii) Downregulation of CXCR4

PPAR
as
“tumor 
suppressor”

Figure 2: Action mechanisms of PPAR𝛾 as a tumor suppressor. NF-𝜅B, nuclear factor-𝜅B; GSK-3𝛽, glycogen synthase kinase 3-𝛽; MUC1-C,
mucin 1-C; TERT, telomerase reverse transcriptase; STAT5, signal transducer and activator of transcription factor 5;HIF-2𝛼, hypoxia inducible
factor-2𝛼; IL-6, interleukin-6; PDK1, pyruvate dehydrogenase kinase 1.

carcinoma (ESCC) cell proliferation in vitro and in vivo
through increased p21Cip protein levels via inactivation of
Akt [28].

Several recent studies have shown that PPAR𝛾 agonists
inhibit the survival of cancer stem cells (CSCs) [29, 30, 53–
55]. PPAR𝛾 and RXR agonists were demonstrated to inhibit
interleukin-6 (IL-6) promoter activity and reduce MMP-
2 and MMP-9 expression and activity in tumor-associated
fibroblasts [29]. Prost et al. demonstrated that pioglitazone, a
PPAR𝛾 agonist, eradicates CSCs via the decreased expression
of STAT5 and HIF-2𝛼 in chronic myeloid leukemia [30].

TheWnt/𝛽-catenin signaling pathway plays an important
role in the occurrence and development of cancer [56, 57].
Guo et al. reported that PPAR𝛾 overexpression inhibits the
proliferation and migration of gastric cancer cells through
downregulation of telomerase reverse transcriptase (TERT)
and enabled homolog (ENAH) via inhibition of 𝛽-catenin
[31]. Mammalian enabled (Mena), encoded by ENAH, is an
actin-regulatory protein involved in controlling cell motility
and cell-cell adhesion, which are important for the devel-
opment of metastatic potential [58]. TERT and ENAH are
new targets of the Wnt/𝛽-catenin signaling pathway [59, 60].
Recently, activation of canonical Wnt signaling was reported
to directly act on aerobic glycolysis and increase vessel for-
mation in colon cancer through theWnt target gene pyruvate
dehydrogenase kinase 1 (PDK1) [61]. Via PDK1 activation,

pyruvate is converted into acetyl-CoA, which enters the TCA
cycle and is converted into citrate, which stimulates protein
synthesis. Accumulation of metabolic intermediates (such
as aspartate, glycine, serine, and ribose) in cells promotes
de novo nucleotide synthesis, contributing to growth and
proliferation [62]. In addition, blocking the Wnt pathway
decreases PDK1 expression via transcriptional regulation and
inhibits in vivo tumor growth [61].

Pseftogas et al. reported that PPAR𝛾 activation has a
tumor suppressive effect by upregulating the expression of
tumor suppressor Cyld, as the Cyld promoter has PPAR𝛾
binding sites [32]. Cyld was identified as a tumor suppressor
gene that is causally associated with the development of
inherited cylindromas [63]. The gene encodes a protein
(CYLD) possessing a carboxyl-terminal ubiquitin-specific
protease domain that selectively hydrolyzes K63- and M1-
linked polyubiquitin chains [64]. A number of studies have
suggested a role for CYLD in the growth suppression of
different types of cancer cells, such as colon, hepatocellular,
lung, melanoma, and breast cancer (reviewed in [65]). CYLD
can inhibit several growth and antiapoptotic signaling path-
ways, including the NF-𝜅B, JNK, p38, Wnt, Akt, and Notch
pathways [65].

Rovito et al. demonstrated that PPAR𝛾 activation down-
regulates CXCR4 gene expression through recruitment of
the silencing mediator of retinoid and thyroid hormone
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(i) Induction of lipogenic genes (ACLY,
MIG12, FASN, NR1D1)

PPAR

as
“tumor 
promoter”

Stimulation of 
cell 
proliferation 
and inhibition 
of apoptosis

Stimulation of 
metastasis 
and 
angiogenesis

(i) Increased expression of Nox1 and ROS
(ii) Upregulation of VEGF via the binding of

PPAR in the VEGF promoter

of stemness
Maintenance (i) Induction of stem cell-related genes (KLF4

and ALDH)

Figure 3: Action mechanisms of PPAR𝛾 as a tumor promoter. ACLY, ATP citrate lyase; MIG12, midline-1-interacting G12-like protein;
FASN, fatty acid synthase; NR1D1, Rev-ErbA𝛼; KLF4, Krüppel-Like Factor 4; ALDH, aldehyde dehydrogenase; Nox1, NADPH oxidase 1;
ROS, reactive oxygen species; VEGF, vascular endothelial growth factor.

receptor (SMRT) corepressor to PPRE within the CXCR4
promoter and then inhibits breast cancer cell migration and
invasion [33]. CXCR4, a seven-transmembrane G-protein-
coupled receptor for stromal-cell derived factor-1𝛼 (SDF-1𝛼),
has been shown to be expressed in human breast cancer cells,
and activation of the SDF-1𝛼/CXCR4 axis is important in
breast cancer migration and metastasis [66, 67].

2.2. PPAR𝛾 as a Tumor Promoter in Cancer. Our previous
review described that PPAR𝛾 has tumor-promoting activity
through the upregulation of 𝛽-catenin and c-Myc expres-
sion, upregulation of COX-2, upregulation of the expression
of vascular endothelial growth factor (VEGF) and VEGF
receptors, and upregulation ofMMP-1 [8].This review briefly
introduces the action mechanisms of PPAR𝛾 as a tumor
promoter (Figure 3).

Recently, increasing evidence has indicated that PPAR𝛾
acts as a tumor promoter [68–74]. Downregulation of PPAR𝛾
by siRNA knockdown or treatment with PPAR𝛾 antagonist
GW9662 has been shown to inhibit the growth of cancer
cells, suggesting a tumor-promoting effect for PPAR𝛾 in these
cells [68–70]. PPAR𝛾 was shown to protect ErbB2-positive
breast cancer cells from palmitate-induced toxicity [75]. In
addition, PPAR𝛾 was demonstrated to play a crucial role
in the maintenance of stemness in ErbB2-positive breast
cancer cells; PPAR𝛾 antagonist GW9662 induces apoptosis
and inhibits tumorsphere formation and tumor formation
through the inhibition of lipogenic genes (ACLY, MIG12,
FASN, and NR1D1) and stem cell-related genes (KLF4 and
ALDH) [71]. CSCs have been identified as subpopulations
of cells within tumors that promote tumor growth and
recurrence [76–78].

Kesanakurti et al. demonstrated that PPAR𝛾 is involved
in radiation-induced epithelial-to-mesenchymal transition
(EMT) in glioma by interacting with p21-activated kinase
4 (PAK4), resulting in increased Nox1 expression and reac-
tive oxygen species (ROS) [72]. EMT is a developmental
transdifferentiation program facilitating the formation of
highly motile cells with stem cell characteristics [79, 80].
EMT is also involved in increased metastatic potential and
treatment resistance in cancer [81, 82]. The PAKs are a
family of serine/threonine kinases involved in embryonic
development, cytoskeletal remodeling, cell motility, and cell
proliferation [83, 84], and aberrant expression of PAK4 has
been shown to promote cancer cell proliferation and invasion
[85–87].

A recent study using PPAR𝛾 siRNA showed that PPAR𝛾
suppression inhibits cell proliferation, colony formation,
and tumorigenicity in vivo [73]. In addition, PPAR𝛾 upreg-
ulated VEGF expression through the binding of PPAR𝛾
in the promoter region of VEGF in prostate cancer cells
[73]. Patitucci et al. demonstrated that PPAR𝛾 activation is
involved in steatosis-associated liver cancer and provided
evidence supporting the pharmacological modulation of
hepatic PPAR𝛾 activity as a therapeutically relevant strategy
in hepatic malignancy associated with activated Akt2 and
PPAR𝛾 signaling [74].

3. The Role and Action Mechanisms of
PGC-1𝛼 in Cancer

Many studies have examined the role of PGC-1𝛼 in cancer by
observing its expression in several cancers and performing
PGC-1𝛼 overexpression and siRNA knockdown experiments.
PGC-1𝛼 expression has been shown in some studies to be
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decreased in some types of cancer, including colon [88],
breast [89], and ovarian cancer [41], whereas other studies
have shown that PGC-1𝛼 expression is increased in cancer
[17, 90]. Even though many studies have been published, the
role of PGC-1𝛼 in cancer is still controversial. Therefore, this
review describes the role and action mechanisms of PGC-1𝛼
in cancer (Table 2).

3.1. Tumor-Promoting Functions of PGC-1𝛼. As described
above, PGC-1𝛼 is a regulator of PPAR𝛾 activity. Thus,
the abnormalities in PGC-1𝛼 expression may affect PPAR𝛾
function. However, there was little report supporting that
PGC-1𝛼 expression directs PPAR𝛾 activity in cancer. Thus,
this review focuses on the role of PGC-1𝛼, independent of
the role of PPAR𝛾 in cancer. Literature works supporting
the tumor-promoting functions of PGC-1𝛼 have increased
[17, 34–40, 42, 91–93]. Shiota et al. showed that PGC-1𝛼
promotes cell growth through the activation of androgen
receptor in prostate cancer cells by observing cell growth
inhibition with PGC-1𝛼 knockdown experiments [17]. In
addition, PGC-1𝛼 was increased in tumor samples from
arsenic-induced skin cancer patients and may be associated
with increased cell proliferation and enhancedmitochondrial
biogenesis [34]. Bhalla et al. showed that PGC-1𝛼 promotes
carcinogenesis and tumor growth through the induction of
lipogenic enzymes (acetyl-CoA carboxylase and fatty acid
synthase) using genetically modified PGC-1𝛼 mice [35].
That study demonstrated that PGC-1𝛼 knockout mice had
decreased chemically induced liver and colon carcinogenesis,
suggesting that PGC-1𝛼 may stimulate carcinogenesis [35].
Similarly, Shin et al. first demonstrated that overexpression of
PGC-1𝛼 enhances cell proliferation and tumorigenesis via the
upregulation of Sp1 and acyl-CoA binding protein [36]. It was
also reported that PGC-1𝛼 overexpression leads to increased
antioxidant enzymes (catalase, superoxide dismutase) and
decreased ROS-induced apoptosis [36]. Similarly, PGC-1𝛼
knockdown significantly decreased cell number and induced
apoptosis in PGC-1𝛼 positive melanoma cell lines, suggesting
that PGC-1𝛼 is crucial in the survival of PGC-1𝛼 positive
melanoma cells [37]. In addition, superoxide dismutase 2
protein levels were decreased in PGC-1𝛼 depleted melanoma
cells. Moreover, ectopic expression of PGC-1𝛼 in melanoma
cells increased the expression of ROS detoxifying genes.
These data support the hypothesis that PGC-1𝛼 plays an
important role in activating the ROS detoxification gene
program to maintain melanoma cell survival [37]. Vazquez et
al. also demonstrated that there was a significant reduction
in tumor size in PGC-1𝛼 depleted cells, implying PGC-
1𝛼 may be important in tumor progression [37]. De novo
lipogenesis is a distinctive anabolic feature of malignant
cells [94]. Carbons from glucose and glutamine supply
cytoplasmic citrate for fatty acid synthesis with the help
of lipogenic enzymes [94]. Glutamine can serve as an
anaplerotic mitochondrial fuel and seems to be important
for tumor survival [95]. In ErbB2-positive breast cancer cells,
the PGC-1𝛼/ERR𝛼 complex directly regulates the expression
of glutamine metabolism enzymes, leading to the provision
of glutamine carbons to de novo fatty acid synthesis [38].
PGC-1𝛼 overexpression, or ERR𝛼 activation, confers growth

advantages of breast cancer cells even under limited nutrients,
supporting the correlative clinical data that high expression
of PGC-1𝛼 is associated with poor prognosis, possibly related
to the activation of its downstream glutamine pathway
target genes [38]. It was reported that PGC-1𝛼 expression is
affected by various transcriptional pathways. One example is
that melanocyte-lineage transcription master regulator and
oncogene MITF activated PGC-1𝛼 expression in melanoma
[37, 91]. The decrease in mitochondrial membrane potential
and increasedROSproductionwith a decrease in glutathione,
cystathionine, and 5-adenosylhomocysteine were observed
in PGC-1𝛼-depleted melanoma cell lines, suggesting that
intrinsic apoptotic pathway is activated in PGC-1𝛼-depleted
melanoma cells [37]. Another example is that the androgen
receptor-AMP-activated protein kinase (AMPK) signaling
axis increased expression of PGC-1𝛼 to drive growth advan-
tages in prostate cancers [39]. It was also shown that PGC-1𝛼
expression was significantly higher in lung adenocarcinomas
with wild type p53 than in tumors with mutant p53 [40]. Cell
proliferation was inhibited by PGC-1𝛼 siRNA knockdown
experiments in H1944 lung adenocarcinoma cells [40]. In
metabolic stress conditions, PGC-1𝛼 was shown, in com-
plex with p53, to coactivate the transcription of cell cycle
inhibitors, while it was also shown to promote the expression
of genes related to mitochondrial biogenesis. These two
functions are cooperative processes that promote cell sur-
vival. Moreover, oxidative stress in PGC-1𝛼 knockdown cells
resulted in p53-induced apoptosis [96]. In turn, it was also
shown that increased expression of PGC-1𝛼 might prevent
p53-induced cell death by maintaining an adequate balance
between oxidative phosphorylation and glycolysis [97].

Some studies have examined the effect of PGC-1𝛼 on
angiogenesis. PGC-1𝛼 has been reported to activate the
production ofVEGF through the estrogen-related receptor𝛼-
(ERR𝛼-) dependent pathway [98]. PGC-1𝛼was shown to reg-
ulate HIF-1𝛼 activity. Increased PGC-1𝛼 expression enhances
oxygen consumption, resulting in decreased local oxygen
tension and increasedHIF-1𝛼 stability [99]. In addition, HIF-
2𝛼 is a transcriptional target of PGC-1𝛼, even though the
involved transcriptional mechanism is not clear [100]. ERR𝛼
is overexpressed in many cancers and its inhibition reduces
cell proliferation. Recent studies suggest an important role
for the interaction between PGC-1𝛼 and ERR𝛼 in cancer
(reviewed in [15]). Kinase suppressor of ras 1 (KSR1), amolec-
ular scaffold of the Raf/MEK/extracellular signal-regulated
kinase (ERK) cascade, has been demonstrated to promote
oncogenic Ras-dependent anchorage-independent growth
through the activation of PGC-1𝛼 and ERR𝛼 [92]. Interest-
ingly, recent study shows that PGC-1𝛼 plays an important
role in the metastatic switch. LeBleu et al. demonstrated that
circulatingmammary epithelial cancer cells exhibit increased
PGC-1𝛼 expression, enhancedmitochondrial biogenesis, and
oxidative phosphorylation, which may contribute to distant
metastasis and poor patient outcome [93]. In addition, PGC-
1𝛼 knockdown decreased ATP production, reduced actin
cytoskeleton remodeling, lowered anchorage-independent
survival, and decreased intra-/extravasation, which are all
checkpoints that prevent metastasis in MDA-MB-231 breast
cancer and B16F10 melanoma cells [93]. LeBleu et al. also
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showed that PGC-1𝛼 expression in invasive cancer cells
was significantly associated with the formation of distant
metastases in a clinical analysis of human invasive breast
cancers [93].

3.2. Anticancer Functions of PGC-1𝛼. As opposed to the
tumor-promoting role of PGC-1𝛼 described above, several
studies have shown that PGC-1𝛼 has anticancer effects.
As described above, PGC-1𝛼 is decreased in colon [88],
breast [89], and ovarian cancer cells [41], and PGC-1𝛼
overexpression in human ovarian cancer cell line Ho-8910
has been shown to induce apoptosis via downregulation
of Bcl-1 and upregulation of Bax, suggesting that PGC-1𝛼
may be a contributor to the inhibition of tumor growth
[41]. Lee et al. found that PPAR𝛾 activation and PGC-1𝛼
overexpression by adenovirus infection in HepG2 human
hepatoma cells induced E-cadherin upregulation and inhib-
ited cell motility [42]. One report showed that PGC-1𝛼 over-
expression induced apoptosis via ROS accumulation inHT29
and HCT116 colorectal cancer cells. In addition, PGC-1𝛼
overexpression reduced tumor growth in an HT29 xenograft
model, suggesting a role of PGC-1𝛼 as a tumor suppressor
[43]. Zhang et al. reported that von Hippel-Lindau- (VHL-
) deficient clear cell renal carcinomas exhibited higher levels
of HIF-1𝛼 and enhanced glycolysis [101]. HIF-1𝛼 is known
to induce the expression of transcriptional repressor Dec1,
which leads to the suppression of PGC-1𝛼 expression and
the inhibition of mitochondrial respiration [102]. However,
the enforced PGC-1𝛼 expression in VHL-deficient cells,
despite the restoration of mitochondrial function, did not
block the inhibition of cell growth and enhanced sensitivity
to cytotoxic therapies in oxidative stress conditions [102].
This is in line with clinical clear cell carcinoma data that
showed the correlation of higher mitochondrial mass with
reduced tumor aggressiveness [103], and the association of
lower PGC-1𝛼 levels with worse patient outcome [102]. It
was shown that PGC-1𝛼 attenuates stress responses neces-
sary for cancer cell survival, by interacting with heat-shock
factor 1 [104]. Wang and Moraes revealed that increased
PGC-1𝛼 expression due to treatment with PPAR panagonist
(bezafibrate) increased mitochondrial biogenesis, resulting
in an inhibition of cancer cell proliferation under glycolytic
conditions and inhibition of invasion [44]. In addition, PGC-
1𝛼 downregulation by miRNA-217 led to the promotion of
cancer cell proliferation in breast cancer cells, suggesting
a role of PGC-1𝛼 as a tumor suppressor [105]. Recently,
Torrano et al. showed that PGC-1𝛼 suppresses metastasis
of prostate carcinoma through an ERR𝛼-dependent tran-
scriptional program [45]. Highly metastatic melanoma cells
expressed lower levels of PGC-1𝛼 [46, 106]. In turn, these
PGC-1𝛼-low cells expressed higher levels of integrin, TGF𝛽,
andWnt signaling components involved in metastasis. It was
shown that genetic depletion of PGC-1𝛼 increased metastasis
in poorly invasive melanoma cells [46]. In contrast, PGC-
1𝛼 overexpression in melanoma cells by ectopic expression
or exposure to BRAFV600E inhibitor vemurafenib suppressed
metastasis through the direct regulation of inhibitor of DNA
binding protein 2 (ID2) and inhibition of TCF-mediated gene
transcription [46].

As described above, there have been many studies of the
role of PGC-1𝛼 in tumor progression. However, it is still not
sure if PGC-1𝛼 acts as a tumor promoter or tumor suppressor,
and to date it is thought that its effect on tumor varies
depending on the tissue context and tumor type (reviewed
in [107]).

4. Conclusions

PPAR𝛾 and PGC-1𝛼 are emerging proteins involved in
tumorigenesis and attractive topics to study for further
understanding of cancer biology. Originally, PGC-1𝛼 was
identified as a PPAR𝛾 interacting protein. However, most of
the reported actions of PGC-1𝛼 in cancer were not related to
the expression of PPAR𝛾. Despite the fact that PPAR𝛾 and
PGC-1𝛼 can each act as both tumor promoter and tumor
suppressor, there is no clearly defined mechanism that can
explain the contradictory dual effects. However, their dual
actions can be explained, in part, by their cell type-specific
effects and variable interacting proteins. Therefore, each of
the molecular interactions of PPAR𝛾 and PGC-1𝛼 with other
transcriptional partners needs to be further investigated to
understand the role of PPAR𝛾 and PGC-1𝛼 in cancer.
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