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Alongside positive blood oxygenation level–dependent (BOLD) responses associated

with interictal epileptic discharges, a variety of negative BOLD responses (NBRs) are

typically found in epileptic patients. Previous studies suggest that, in general, up to four

mechanisms might underlie the genesis of NBRs in the brain: (i) neuronal disruption

of network activity, (ii) altered balance of neurometabolic/vascular couplings, (iii) arterial

blood stealing, and (iv) enhanced cortical inhibition. Detecting and classifying these

mechanisms from BOLD signals are pivotal for the improvement of the specificity of

the electroencephalography–functional magnetic resonance imaging (EEG-fMRI) image

modality to identify the seizure-onset zones in refractory local epilepsy. This requires

models with physiological interpretation that furnish the understanding of how these

mechanisms are fingerprinted by their BOLD responses. Here, we used a Windkessel

model with viscoelastic compliance/inductance in combination with dynamic models

of both neuronal population activity and tissue/blood O2 to classify the hemodynamic

response functions (HRFs) linked to the above mechanisms in the irritative zones of

epileptic patients. First, we evaluated the most relevant imprints on the BOLD response

caused by variations of key model parameters. Second, we demonstrated that a general

linear model is enough to accurately represent the four different types of NBRs. Third,

we tested the ability of a machine learning classifier, built from a simulated ensemble

of HRFs, to predict the mechanism underlying the BOLD signal from irritative zones.

Cross-validation indicates that these four mechanisms can be classified from realistic

fMRI BOLD signals. To demonstrate proof of concept, we applied our methodology

to EEG-fMRI data from five epileptic patients undergoing neurosurgery, suggesting the

presence of some of these mechanisms. We concluded that a proper identification and

interpretation of NBR mechanisms in epilepsy can be performed by combining general

linear models and biophysically inspired models.

Keywords: negative BOLD responses, Windkessel models, hemodynamic response function, general linear model,

machine learning, epilepsy, EEG-fMRI multimodal

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.659081
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.659081&domain=pdf&date_stamp=2021-10-08
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jrieradi@fiu.edu
https://doi.org/10.3389/fneur.2021.659081
https://www.frontiersin.org/articles/10.3389/fneur.2021.659081/full


Suarez et al. Negative BOLD Epilepsy Windkessel Models

INTRODUCTION

The interest in the concurrent electroencephalography–
functional magnetic resonance imaging (EEG-fMRI) method as
an important imaging modality in epilepsy surgical planning
has increased gradually during the last 20 years (1–3). This
method generates whole-brain maps of blood oxygenation
level–dependent (BOLD) responses evoked by interictal
epileptiform discharges (IEDs), which are then used to
locate/identify potential irritative zones (IZs) within the brain.
IED-evoked BOLD response analysis is attractive for epilepsy
surgery planning, owing to its low invasiveness, accessibility,
low cost, and efficiency. The standard clinical protocol for
using IED-evoked BOLD signal to demarcate IZs includes
(a) concurrent EEG and fMRI recordings while the patient
is resting or prompted to sleep; (b) IEDs (spikes and sharp
waves) are visually identified by EEG technicians; (c) series
of IED onsets are convolved with a canonical hemodynamic
response function (HRF, 4) to create a set of regressors; (d) the
BOLD signal at each voxel is described as a function of these
IED-based regressors via a general linear model (GLM) (4);
and (e) statistical parametric maps (t-test and F-test) of the
linear coefficients are created to detect positive BOLD responses
(PBRs). In advanced clinical protocols, IZ detection with the
EEG-fMRI technique is performed with flexible parametric
HRF models (5–9) to account for voxel and subject variability.
Unfortunately, these parametric HRF models misrepresent
atypical BOLD responses frequently observed in certain regions
of an epileptic brain, e.g., negative BOLD responses (NBRs),
precluding detection of the seizure-onset zones (SOZs) in many
patients (10–16). Non-parametric HRF models (17–23) could
in principle account for HRF misspecification in epilepsy by
sacrificing parsimony, but they are computationally intensive,
do not include spatial dependencies, and lack mechanistic
foundations. These limitations create opportunities to increase
the sensitivity of the EEG-fMRI method in epilepsy.

Initial EEG-fMRI clinical studies have associated SOZs with
PBRs as a result of a localized hyperemic response triggered by
abnormal neuronal excitability [e.g., the pioneer work by (24)].
More recent data suggest NBRs in SOZs might be caused by local
circuit inhibitions during after-spike slow-wave components
(13), presumably owing to a profound hyperpolarization of
pyramidal cells (25, 26) after a fast spike. In general, this is
the most accepted mechanism for the NBR found in many
experimental paradigms (27–32). The inhibition can occur in
the same active region, but exceeding the excitation, provoking
negative changes in the overall neuronal activity, resulting in an
NBR. For simplicity, we shall refer to these mechanisms as the

enhanced cortical inhibition (ECI). Clinical [see reviews by (33)
and (34)] and preclinical (35) studies of focal epilepsy point out to

the existence of abnormal decreases in the hyperemic/metabolic

ratio during frequent/strong epileptogenic activity, which might
be linked to an NBR according to computer simulations

presented in this study. We shall refer to this mechanism as
altered neurometabolic/vascular couplings (ANCs).

However, not all NBRs might be considered as SOZ
candidates during surgical planning. For example, deactivations

(or disruption) of normal resting state networks (RSNs), such
as the default mode network (DMN), have also been linked
to NBRs, a phenomenon reported in epileptic patients during
IEDs (11, 36, 37). Here, we refer to this mechanism as neuronal
disruption of network activity (NDA). Also, an initial work by
Harel et al. (38) suggested that arterial blood stealing (ABS) could
cause an NBR in healthy brain areas as a result of decreases
in cerebral blood flow (CBF) and volume (CBV) in a region in
close proximity to an IED-evoked PBR. A recent computational
model (39) demonstrated that ABS is physically possible in
the brain vasculature. More recent studies have corroborated
experimentally the existence of ABS (40, 41). Therefore, areas
with NDA and ABS types of NBRs are not IZs; hence, they should
not be considered during the surgical workup.

Classifying these different types of NBRs from the noise
fMRI signal must be challenging. However, it is reasonable to
expect they have different HRF waveforms, which could be
used as fingerprints of the underlying mechanism. To verify
and take advantage of these differences for the identification of
the mechanisms, it is advised to have biophysical models.
Incorporating biophysical model–based discrimination
of disparate NBR types in refractory focal epilepsy may
significantly improve the accuracy of the EEG-fMRI method
to localize/delineate SOZs, thereby increasing success rates of
ablative surgery. Windkessel (balloon) models (42) have been
utilized in the last decades for statistical inference of BOLD
signals (43, 44) due to their parsimonious capabilities to capture
most of the features of the HRFs reported experimentally.

In this article, we propose a comprehensive Windkessel-based
model to account for these four possible mechanisms underlying
NBRs in patients with focal epilepsy. Using the model, we predict
a specific HRF waveform for each of the four NBR mechanisms
aforementioned. We also investigate if these HRFs are classifiable
from noisy fMRI data. To that end, HRFs were fitted using
the near-neighborhood exogenous autoregressive (NN-ARx) (45)
model. HRF dimensionality was reduced using the principal
component analysis (PCA). We subsequently build a machine
learning ensemble classifier that uses the first three principal
components as features and their corresponding mechanisms
as classes. We evaluate the performance of the classifier in
predictingmechanisms from their BOLD signals. Finally, we used
this method to evaluate the presence of different NBR types in
cases of drug-resistant focal epilepsy.

MATERIALS AND METHODS

EEG-fMRI Data
This is a prospective study duly approved by the Western
Institutional Review Board (WIRB #20160218). Parents or
legal guardians of 10 patients (9–18 y/o) recruited at Nicklaus
Children’s Hospital signed a written approved–informed
consent. All patients were refractory to pharmacology treatment
and exhibited frequent IED. In this context, “frequent” was
defined as at least 1 IED per minute. Patients needing sedation
or vascular malformations were excluded. In this study, patients
exhibiting significant NBRs were only included (n = 5).
Demographics and clinically relevant findings are summarized

Frontiers in Neurology | www.frontiersin.org 2 October 2021 | Volume 12 | Article 659081

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Suarez et al. Negative BOLD Epilepsy Windkessel Models

in Table 1. The results of EEG source localization, positron
emission tomography (PET), ictal single-photon emission
computed tomography (SPECT), subdural implantation
(ECoG/sEEG), MRI diagnosis, and pathology were annotated.
The MR-compatible EEG system used in this study is not Food
and Drug Administration–approved. Therefore, results obtained
from the EEG-fMRI analysis were not used in any form during
the surgical evaluation of the patients.

We acquired four 10-min trials of simultaneous EEG-fMRI
data from each patient. Using the fMRI trials for which the
IEDs were better identified from the EEG, we fitted GLM and
NN-ARx to estimate IED-related PBRs and NBRs. The IEDs
were visually detected and classified into several subtypes by two
experts based on their morphology, the semiology of the patient,
and other neuroimaging modalities. The different subtypes of
IEDs and other types of events were used as different types of
inputs (conditions) in GLM and NN-ARx. In addition, motion
correction parameters were included as nuisance regressors.

MRI data were collected in a Philips 1.5-T scanner with
a 16-channel SENSE Rx coil. fMRI was acquired with a GE-
EPI sequence. Each fMRI scan consists of 21 interleaved slices
6 mm thick with a 2-mm gap, in-plane voxel size of 3 × 3 mm,
and field of view (FOV) = 204mm. Flip angle (FA) was 90,
repetition time (TR) = 2 s, and echo time (TE) = 45 ms.
For the purpose of anatomical reference, a high-resolution T1-
weighted image was acquired using a spoiled three-dimensional
(3D) gradient echo sequence with TR = 9.7 ms, TE = 4 ms, and
FA = 12. The structural MRIs have 90 to 100 slices, covering the
whole brain. In some cases, a T2-weighted 3D image was also
acquired with parameters: TR = 25 ms and TE = 3.732 ms,
FA = 30, FOV = 240mm, and 160 2-mm-thick axial slices. 3D
fluid-attenuated inversion recovery volumes were acquired in
sagittal plane using the following parameters: TR = 4,800ms,
TE = shortest; FA = 40◦; 230 sagittal cuts, matrix: 212 × 185
× 230mm; FOV= 250; matrix reconstruction isovoxel 0.98mm.
The fMRI volumes were preprocessed using statistical parametric
mapping (SPM) (http://www.fil.ion.ucl.ac.uk/spm/). They were
corrected for motion artifacts and spatially smoothed with an 8-
mm Gaussian kernel. Both smoothed and unsmoothed images
were used in GLM analysis to detect significant voxels. Although
the minimum variance estimator of GLM may be biased due to
non-Gaussian noise (46), the latter was necessary to detect near
PBR and NBR, as it was suggested by Goense et al. (47) and Harel
et al. (38) for detecting the NBR of vascular origin. The GLM
analysis and the results were masked to the gray matter using the
SPM segmentation obtained from the anatomical image (48).

EEG was recorded using a 10–10 system 32-channel EasyCap
(BrainAmp MR, Brain Product GmbH). To record EEG data
simultaneously with the fMRI signal, we used MRI-compatible
EEG amplifiers (BrainAmp MR, Brain Product GmbH). EEG
signals were sampled at 5 kHz and digitized (0.5-µV resolution)
(BrainVision Recorder 1.4, Brain Products GmbH). The majority
of EEG electrodes had impedances lower than 5 kΩ . The
electrocardiogram (ECG) was measured with an ECG electrode
attached to the middle of the back of the patients. To synchronize
the EEG with fMRI scans, a trigger marking the beginning of the
scans was sent to the EEG recording laptop. To ensure the highest T
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temporal precision, the clock of the laptop was synchronized
to the 10-MHz clock of the MR console using a Syncbox
(Brain Products GmbH). The following EEG preprocessing
was performed using BrainVision Analyzer 2 (Brain Products
GmbH). To remove the MR-related artifact, the EEG data were
first subsampled to 50 kHz using sinc interpolation to virtually
increase its resolution and correct the random phase jittering—
of no <0.2-ms resolution determined by the 5-kHz sampling
rate—that is present in the scan markers. This phase jittering has
significant negative effects in the estimation of the MR gradient
artifacts as the latter can change as fast as 0.2ms. Subsequently,
we applied a method for removing the MRI gradient artifacts
(49), based on the estimation of an average artifact template.
The resultant EEG data were bandpass filtered within 0.5–
125Hz. After marking the R-waves using a semiautomatic tool,
we applied a method to detect and remove the effects of the
balistocardiogram (50). Finally, we applied ICA based on the
Infomax method (51, 52) to remove further artifacts.

As IEDs last∼70–200ms, the input u (t) is modeled as a train
of short pulses. To account for the actual time in which the slice
containing the region with significant voxels was acquired, the

inputs u (t) were transformed according to u
(

t + nTR
Nz

)

, where

n is the position of the slice according to the sequence in which
they were acquired, and Nz , the number of slices the whole scan.

Ictal SPECT was performed using a Siemens Multispect 3
gamma camera (Hoffman States, IL). Technetium-HMPAO was
used as the radiotracer at a dose of 300 µCi/kg with a minimum
dose of 3 mCi and a maximum dose of 20 mCi. PET was
performed using a GE Discovery-Dimension ST PET/CT system.
FDG was injected at a dose of 140 µCi/kg with a minimum of 1
mCi and maximum of 15 mCi. The stereo-EEG was performed
utilizing a Natus Neurology, Natus Medical Incorporated, Excel-
Tech Ltd (XLTEK) (Ontario, Canada). The electrode type was
a Natus Neuro Grass disposable deep cup electrode (silver
chloride, AgAgCl).

The Biophysical Model
The proposed model comprises a two-state dynamic causal
modeling component (P-DCM) (53) for principal excitatory
cells and inhibitory interneurons, extended to having long-range
modulatory excitatory inputs also in the inhibitory population.
NDA and ECI types of NBRs are explained by adjusting
the time constants of the modulatory synaptic connections in
the excitatory and inhibitory population of the extended P-
DCM model, respectively. Each brain region has a Windkessel
component linked to its neuronal activity through an inducing
signaling (i.e., the neurovascular coupling). A viscoelastic non-
linear delayed compliance was also included (54). To account
for blood stealing effects in brain regions sharing a common
supply artery (Option 1, Supplementary Table A1), an inductive
element was added to connect their respective Windkessel
components (39). For regions not sharing a common supplying
artery, the two equations for the CBF become independent.
For this particular case, a simplified model proposed by Friston
et al. (55) is used (Option 2, Supplementary Table A1). An
oxygen-to-tissue transport (OTT) component was used to

account for the dynamics of the oxygen extraction fraction
and the O2 concentrations in both tissue and blood (i.e.,
the neurometabolic coupling) (56). ABS and ANC types of
NBRs are explained by fitting those parameters in the model
controlling the stealing effect size and the vascular/metabolic
imbalance, respectively. The differential equations describing
the biophysical model are shown in Supplementary Table A1.
Supplementary Figure A1 shows the flow diagram for the
physiological mechanisms with their respective state variables
(Supplementary Table A2). A graphical representation of all
model configurations and defining parameters for each of
the four mechanisms is shown in Supplementary Figure A2.
Values of the parameters for all these particular situations are
summarized in Supplementary Table A3. All the specifics related
to the particular cases of themodel can be found in theAppendix.

Detecting IZs Using the GLM
The fastest and most widely used method to detect significant
BOLD responses is the GLM regression (4):

y (ti) =

Nu
∑

k=1

(

β
(k)
hrf

(

h⊗ uk
)

(ti) + β
(k)
der

(

h
′

⊗ uk

)

(ti)

+ β
(k)
disp

(

d⊗ uk
)

(ti)
)

+

Nr
∑

r=1

βrxr (ti) + η (ti) (1)

where {ti}i=1,...,N , being N the number of scans and Nu

the number of types of inputs {uk (t)}k=1,...,Nu
, {xr}r=1,...,Nr

the confounding or nuisance regressors (e.g., the motion

parameters), and βr their effect sizes. h, h
′
, and d are the canonical

BOLD HRF (57), its temporal derivative, and its dispersion,
respectively. The noise is prewhitened by applying a first-order
autoregressive (AR) model to the signal. To demonstrate that
the NBR mechanisms are detectable using GLM, we simulated
a set of 10-min BOLD signals with a single type of input (Nu =

1) consisting of a random Poisson train of pulses with average
frequency of 2.6/min. This input was the same across all models
and trials. We then created a simulated set of N = 300 fMRI
scans with TR = 2 s by adding the simulated BOLD signals to
the voxels of a real EPI image. The trials from the same type of
model were added to neighboring voxels to form spatial clusters.
The amplitude of the simulated BOLD signal in each cluster
was multiplied by a Gaussian spatial kernel [full width at half
maximum (FWHM)= 2.5mm] with the maximum at the center
of the cluster. The resultant set of images was further corrupted
with colored noise, according to a spectral density given by 1/f p,
with 0 < p < 1, to account for biological noise inherent to
the BOLD signal but not attributable to the temporal filtering
of the HRF (58). No nuisance regressor was included in these
simulations, i.e., xr = 0. Following standard fMRI preprocessing
procedures, the simulated fMRI scans were spatially smoothed
with a Gaussian kernel of 8-mm FWHM. For each voxel, the

vectors of coefficient β=
[

βcan&βder&βdisp

]T
of the GLM were

estimated using SPM (4). Using an F contrast, we selected the
voxels where the null hypothesis, I3β = 0 was rejected with p <
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0.05, after correcting for multiple comparisons using the family-
wise error criterion, i.e., the significant voxels. I3 is the 3 × 3
identity matrix, and⊗ denotes temporal convolution.

Estimation of HRFs for the IZs
Although the responses fitted by the GLM, i.e., the first-order
Volterra kernel (59), can reconstruct a large variety of HRFs,
we used a more adaptable method to accommodate all possible
extreme HRF waveforms, the NN-ARx (45), which has been
simplified here to extract the HRFs from fMRI time series from
the detected IZs. In this particular case, there is no need for a
term describing the near-neighbor effect. Under this assumption,
the NN-ARx consists of an ARmodel with an exogenous input si,
i.e., the IEDs.

yi = µi +

p
∑

j=1

ϕjyi−j+

r
∑

j=1

θjsi−j−d + εi (2)

With yi = y (ti) defining the BOLD signal at discrete time
instants. The term µi accounts for any drift in the BOLD signal,
which is modeled by a polynomial. εi represents a normally
distribute noise with zero mean and variance σ to be estimated
from the fMRI data. This model is suitable to deal with the
colored nature of the fMRI time series and the spatial correlation
between neighboring voxels in the images. A simple recursive
method to estimate the linear coefficient ϕj and θj can be found in
Riera et al. (45). By minimizing the Akaike information criterion,
NN-ARx estimates the orders and coefficients of the AR (p), the
order of a polynomial modeling the drift, and the delay of the
HRF onset (d). With these, the HRF can be constructed (45).
By applying the NN-ARx to the unsmoothed fMRI scans, we
extracted the HRF in the IZs with significant PBR and NBR from
the GLM.

Classification of Mechanisms
Once the IZs are detected and their HRF estimated using the NN-
ARx method, it is necessary to classify them according to the
type of NBR mechanism. For this purpose, we propose to build
a classifier based on a machine learning algorithm. We simulated
M = 51 trials of 10-min fMRI signals with TR = 2 swith random
inputs consisting of trains of short pulses Poisson-distributed
in time. To account for the entire span of HRF waveforms, we
model the possible intraindividual and interindividual variability
in the parameters by randomly sampling their values, for each
trial, from a uniform distribution within the intervals specified
in Supplementary Table A3. For all trials, the NN-ARx–based
HRFs were normalized by the maximum of their absolute value.
The number of time points of the HRFs was T

TR
= 32

2 = 16. The
PCA was used to reduce the dimension of each HRF to just its
three most relevant components (features). Then, a final matrix
5M × 3 of features was created, with number 5 representing the
number of classes (i.e., ECI, NDA, ANC, and ABS). The PBR
class was included as reference. This matrix of features and the
corresponding vector of classes were used to create a multiclass
machine learning ensemble classifier based on support vector
machine (SVM) (60, 61). This type of algorithm is a very popular
and powerful tool for classification and regression in many of the

research fields today (62). We tested the ability of the classifier to
differentiate among the five different classes trying with different
kernel functions to find the optimal classification.

RESULTS

Predicted Responses for Single Impulses
Figure 1 shows the predicted responses for the mechanisms
proposed in this article, and their sensibility to the relevant
parameters, following a single IED event. A longer inhibitory
recovery creates an ECI type of NBR with smaller amplitude
(Figure 1A). The recovery time of the network is reflected
in the NBR duration of NDA (Figure 1B). For ANC, a
disproportionately high neurometabolic to neurovascular
coupling ratio yields NBR (Figure 1C). Regarding the vascular
phenomena, the NBR only occurs in the presence of blood
resistance in the shared vessel. The higher the resistance,
the higher the amplitude of the NBR (39) (Figure 1D). As
Supplementary Material, we uploaded the model codes to the
public. The folder includes a pdf file with the documentation that
contains user instructions (http://web.eng.fiu.edu/jrieradi/NBR-
Model/).

Detection, Estimation, and Classification
of NBR Mechanisms
Figure 2 indicates that by using the GLM it is possible to detect
voxels exhibiting different simulated NBR types. The mechanism
with the least significance is ABS—because its NBR has the
smaller amplitude. The ECImechanismwas not included because
of the similarity of the HRF with that of the ABS mechanism.

Figure 3 shows the performance of the machine learning
classifier based on the SVM analysis of ensembles of simulated
HRFs as described in section Materials and Methods. We
demonstrate the ability of this classifier to predict new
mechanisms using a five-fold cross-validation, i.e., leaving five
HRFs out for prediction and using the rest as the training set.
Six kernel functions were tested (i.e., linear, quadratic, cubic, fine
Gaussian, medium Gaussian, and coarse Gaussian). However, we
present here only the results obtained with the coarse Gaussian
kernels, which provided the best range of accuracy from a
minimum 89% to a maximum 93.7%. Trivially, the PBR response
is clearly separable from the NBRs. The ANC is distinguishable
from the PBRs, even though its HRF can have a significant
positive overshoot. NDA and ANC can be distinguished from
each other and from the rest of the NBR types, owing to the
prolonged recovery of the former and the fast and bipolar
shape of the latter. However, the margin of classification and
the confidence of prediction of ECI and ABS are the lowest
because of their proximity. This means that it might be difficult
to distinguish in some cases, at least merely from fMRI signals. In
general, mechanisms were incorrectly classified in ∼6.3% of the
cases, only among ECI and ABS types.

NBR Mechanisms Associated With
Particular IZs in the Epileptic Patients
In this section, we used the HRF classifier, previously trained with
data from the biophysical models, to predict the NBR types in
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FIGURE 1 | Simulation of the ECI (A), NDA (B), ANC (C), and ABS (D) mechanisms after a single short pulse. Red (blue) corresponds to PBR (NBR). Each column

corresponds to variation in a parameter that significantly determines the NBR waveform. The sensibility of the responses to these parameters is illustrated with

different curves corresponding to three different values of the parameters covering the ranges in Supplementary Table A3. The light blue arrow indicates how the

NBRs change by increasing the value of the parameters. Besides BOLD responses, we also show other candidate observables in MRI: rCBF and rCBV. Increasing the

duration of the inhibitory recovery decreases the amplitude of the ECI mechanism. Expectedly, the longer the recovery time constant in the NDA mechanism, the

slower the NBR. We also note that higher neurometabolic coupling gain yields higher NBR amplitudes in the ANC mechanism. Besides, the higher the arterial

resistance, relative to the arteriole, in the ABS mechanism, respectively, the higher NBR amplitude.

some particular IZs of five patients with refractory focal epilepsy.
For each case, we applied the following pipeline: (a) GLM-
based detection of voxels significantly correlated with the IEDs
(SPM); (b) selection of the region-of-interest (ROI) for the IZ
of interest; (c) estimation of the NN-ARx HRF, averaged inside
spheres within the ROIs; (d) classification of the mechanisms
using the machine learning (SVM) classifier; and (e) estimation
of key parameters of the biophysical model associated with
the identified mechanism. To obtain confidence intervals for
the HRFs, we estimated the empirical distribution of the null
hypothesis of no significant response using a permutation test.
This was done by estimating the NN-ARx HRFs from 5,000 trials
with random order of the IEDs. For each time point, the lower
and upper confidence values were the 5 and 95 percentiles of
these null HRF distributions, respectively. Not all IZs detected
for each patient by the EEG-fMRI technique are discussed in
this study. Results from these five patients are introduced only as
proof of concept. This part of the study does not aim at clinically
validating our methodology, but rather at illustrating its value.

Patient 1 is a 14-year-old girl with partial autonomic evolving
to tonic seizures and left hemisphere polymicrogyria. We
found a PBR–NBR pair surrounding the anterior parietal artery
(Figure 4). Slices showing the thresholded F statistics map built
from the estimated coefficients of the GLM using SPM overlaid
on the T1-weighted image are presented in panel A. The blue
crosshair locates the center of the NBR region in the right
postcentral gyrus (PG), whereas the red crosshair locates the
center of the PBR region in the right superior parietal lobule
(SPL), separated by the postcentral sulcus (another PBR in the

left SPL is also shown in this panel). The schematic to the bottom
illustrates the ABS mechanism—the regions share the final
segment of the anterior parietal artery. The dark gray curve in
panel B shows the NN-ARx PBR-HRF and its confidence interval,
estimated from the real data, and averaged across the voxels
satisfying F ≥ 4.5 within a 10-mm radius sphere with origin in
red crosshair in panel A. The light gray curve shows the estimated
NN-ARx NBR-HRF and its confidence interval and averaged
across the voxels satisfying F ≥ 5 within a 10-mm radius sphere
with origin in the blue crosshair in panel A. The light red and blue
curves show the unnoisy simulated PBR-HRF and NBR-HRF of
the fitted ABS model with the estimated value RA = 0.17. In
panel C, the temporal behaviors of the ABS simulated BOLD in
the PBR and NBR regions (with the aforementioned estimated
parameters) overlap the time series of the real fMRI and the
54 IEDs (input) used in the NN-ARx estimation. Note that, to
detect this NBR/PBR pair, the unsmoothed images had to be used,
considerably decreasing statistical significance. This is however
the strategy used in Goense et al. (47) and Harel et al. (38) to
detect close BOLD responses with inverted polarities. According
to the predicted HRF type, this NBR should not be classified as
an IZ.

Patient 2 is a 13-year-old girl with generalized and uncinate
gyral seizures. An NBR with ECI type of HRF was found in this
patient (Figure 5). No lesions were present (A). In concordance
with the ictal-SPECT (hyperperfusion, B) and the brain source
imaging (EEG-BSI) (C), we found an NBR in the right frontal
eye field. sEEG data (C) showed better correspondence with a
hypometabolism (interictal PET, B) in the right parietal lobe.
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FIGURE 2 | Detection, using the GLM, of simulated spatial distribution of PBRs and three NBRs in a realistic sequence of echoplanar fMRI scans. (A) Three-

dimensional glass brain showing the regions where the mechanisms were simulated. (B) F contrast (the 3-order identity matrix) and design matrix of the GLM, used to

detect significant voxels. (C) Two-dimensional glass brain showing the F statistics. The plots show the responses predicted by the GLM (color curves) and the

adjusted data (black dots), for each mechanism. Besides each plot, the estimated values and confidence intervals of the coefficients, βcan, βder , and βdisp, of the GLM

are shown. PBR (red), NDA (green), ANC (cyan), ABS (blue).

Ictal EEG points out to a bifrontal spike/slow wave at 3 to
4Hz. Our classifier linked this particular NBR-HRF to an ECI
mechanism (D). A total of 38 IEDs were used to generate the
BOLD signal regressors. The right parietal lobe was removed.
The patient was free of seizures for 30 weeks. Thermal ablation of
the right posterior cingulate gyrus was performed 7 months later
obtaining a reduction of 90% of seizure frequency. According to
our hypothesis, the right frontal eye field is an IZ with potential
to be the SOZ; hence, seizures could resume. An alternative
explanation is that the ECI might be reflecting the presence of an
inhibitory mechanism linked to the ictal slow-wave component.

Patient 3 is a 17-year-old boy with partial seizures in the right
frontal insula. There are unarguably several regions with NDA
type of NBRs linked mainly to the DMN (Figure 6). All nodes
of the DMN, as well as the superior frontal gyri, the middle
frontal gyri, the left inferior frontal gyrus (IFG), part of the right
IFG, the right fronto-opercular region, and the right caudate
nucleus, were highly significantly deactivated. In addition, PBR
was detected in the right IFG, which could be one of the foci of the
IEDs, based on the semiology of the patient and their proximity
to the EEG electrodes used to detect the IEDs (i.e., spikes with
highest amplitude in electrode F8). Other types of events were
also marked and used as regressors in the linear models. Panel A

shows the thresholded F statistics map built from the estimated
coefficients of the GLM overlaid on the T1-weighted image. Top
left axial slice: green crosshair locating the center of one NBR
region in the right lateral parietal node of the DMN—coinciding
with the maximum value of the F statistics (bottom left sagittal:
green crosshair locating another NBR region in the caudate
nucleus; right slices: red crosshair locating the center of the PBR
region in the right frontal cortex—presumably in the origin of
the IEDs). The approximate location of electrode F8 is shown
with a green circle in the right axial slice to illustrate the possible
relation of the frontal PBR and the IEDs. The right inset shows a
short segment of the preprocessed EEG data where 2 IEDs were
identified. In panel B, the dark gray curve shows the estimated
NN-ARx PBR-HRF and its confidence interval, estimated from
the real data around the region marked by the red crosshair in
panel A and averaged across voxels satisfying F ≥ 9.5 within a 7-
mm radius sphere. The light gray curve shows the estimated NN-
ARx NBR-HRF and its confidence interval, estimated from the
real data around the DMN node marked by the green crosshair
in the top left slice in in panel A and averaged across the voxels
satisfying F ≥ 70 within a 10-mm radius sphere. The red and
green curves show the unnoisy simulated PBR-HRF and NBR-
HRF, respectively, of the fitted model with the estimated value of
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FIGURE 3 | NN-ARx estimation and classification of HRFs. (A) Example of a portion of simulated fMRI time series for the ABS mechanism. The input u (t) is

represented with a black trace at the bottom graph. (B) Both positive and negative HRFs estimated using NN-ARx from the example in A. (C) Estimated HRFs from all

trials. The black continuous curve represents the average across trials, whereas the black dash curve corresponds to a simulation without noise. To geometrically

illustrate their separability, the 3D plot depicts the scores of the first three components of the PCA decomposition of the matrix formed by stacking all HRF as row

vectors, after normalizing their amplitudes. PBR (red), ECI (yellow), NDA (green), ANC (cyan), and ABS (blue). (D) Results of the five-fold cross-validation of the SVM

classifier with a coarse Gaussian kernel function resulted in 6.3% of misclassification. Center figure shows the confusion matrix. TPR, true-positive rate; FNR,

false-negative rate; PPV, positive predictive value; FDR, false discovery rate. As expected, the PBR is distinguishable from all the NBRs. NDA and ANC mechanisms

were also perfectly classified, whereas ECI and ABS are the ones that are closer to each other.

the recovery time constant: τe2 = 3s. For illustration purposes
(panel C), we also show the temporal behavior of the simulated
BOLD signal in the NBR region (with τe2 = 3s), the time series
of the real BOLD signal, and the IEDs (input). To account for
the actual relative effect of the IEDs, the amplitude of the input
pulses was multiplied by the normalized power of the EEG in
F8. The patient underwent a right anterior temporal lobectomy
and partial hippocampus/anterior–insular resection. The patient
is not yet seizure-free.

Patient 4 is a 10-year-old boy with focal seizures and leg
pedaling. The patient exhibits ANC-type NBR (cyan crosshair),
just in the edge of a tumor in the left frontal cortex (Figure 7).
Although the null hypothesis in the significant voxels could not
be rejected with a probability corrected by multiple comparisons,
this probability was set to a very low value (p < 0.0005), and
the minimum cluster size of the significant regions was set to
five voxels (by decreasing the minimum size of significant voxels,

more significant voxels appear in the upper edge of the lesion).
Moreover, the HRF was significant according to the permutation
test. This HRF corresponded to 50 IEDs identified in electrode F7.
Other IEDs, for a total of 81, were also identified and included
as regressors in the linear models. Panel A shows an axial slice
of the thresholded F statistics map built from the estimated
coefficients of the GLM overlying on the T1-weighted image. The
IEDs were detected using the EEG signal in electrode F7 (green
circle), which was very close to the area with the ANC type of
NBR. The right inset shows a short segment of the preprocessed
EEG data where 2 of 50 IEDs were identified. The patient suffers
from tuberous sclerosis complex (B). The cyan crosshair—the
maximum value of the F statistics—locates the center of the NBR
region, in the perimeter, and below one of the patient’s tumors.
The tumor is highlighted with the yellow circle in the axial slice
and the red arrow in the coronal slice of the T2-weighted image.
In panel C, the gray curve shows the estimated NN-ARx HRF
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FIGURE 4 | Patient #1 shows an irritative zone with ABS-type HRF. (A) Slices showing the thresholded F-statistics map built from the estimated coefficients of the

GLM overlaid on the T1-weighted image. The blue crosshair locates the center of the NBR region in the Right Post-central Gyrus; whereas the red crosshair locates

the center of the PBR region in the Right Superior Parietal Lobule (SPL). The cartoon at the bottom illustrates the ABS mechanism-the regions share the final segment

of the Anterior Parietal Artery. (B) The dark gray curve shows the estimated NN-ARx PBR-HRF and its confidence interval, estimated from the real data, and averaged

across the voxels within a 10 mm-radius sphere with origin in red crosshair in (A). The light gray curve shows the estimated NN-ARx NBR-HRF and its confidence

interval, estimated from the real data, and averaged across the voxels within a 10 mm-radius sphere with origin in the blue crosshair in (A). The light red and blue

curves show the unnoisy simulated PBR-HRF, NBR-HRF of the fitted ABS model with the estimated values R_A = 0.17. (C) Temporal behavior of the ABS simulated

BOLD in the PBR and NBR regions (with the above-mentioned estimated parameters), the time series of the real fMRI and the input used in the NN-ARx estimation.

and its confidence interval, estimated from the real data, and
averaged across the voxels satisfying F ≥ 6.5 within a 10-mm
radius sphere with origin in the crosshair in panel A. The cyan
curve shows the unnoisy simulated HRF of the fitted OTT model
with the estimated value of the neurometabolic coupling gain:
κ = 0.51 s−1. We also show the simulated temporal behavior
of g and the simulated BOLD signal in the NBR region (with κ =

0.51 s−1), the time series of the real fMRI, and the IEDs (input).
Also, to account for the actual relative effect of the IEDs, the
amplitude of the input pulses was multiplied by the normalized
power of the EEG in F7. Our EEG-fMRI results predict the SOZ

in the periphery of the tumor. The patient has neither been sEEG
implanted nor undergone a surgical procedure.

Patient 5 is a 9-year-old girl with electric status epilepticus
on sleep and left (C3-P3-FZ) ictal spikes–waves discharges. A

very significant PBR was found in the premotor cortex with
high probability to be the SOZ (Figure 8). There is a non-
enhancing cystic lesion in the left posterior frontal lobe (A).
Interictal PET (C) reveals hypermetabolism (perhaps due to the
high frequency of IEDs) on the left posterior paracentral (both
precentral and postcentral sulcus) in agreement with the PBR.
EEG-BSI indicates brain sources on the bank of the left central
sulcus (C). Hence, we expect total seizure control if this area is
resected. In contrast, we found an NBR posterior to the cyst that
was classified as ABS. We found a PBR nearby this deactivation,
but it was not significant. To illustrate the usefulness of the NN-
ARx method, we compared HRFs estimated with it and those
obtained with the impulse response function (IRF) method (SPM
software). The IRF method was not able to capture underlying
HRFs. Results from the EEG-fMRI analysis are shown in panel D.
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FIGURE 5 | Patients #2 shows an irritative zone with ECI-type HRF with a high probability to be the seizure onset zone. (A) Two modalities of fMRI anatomical imaging:

left, T1-weighted; right, FLAIR. (B) Two modalities of nuclear imaging: left, interictal PET; right, ictal SPECT. (C) Left, Ictal EEG points out to a bifrontal spike/slow wave

at 3-4Hz; right, brain source imaging (EEG-BSI) in Right Tempo-Frontal. (D) Composed panel: left top and center, two slices with the thresholded F-statistics map built

from the estimated coefficients of the GLM overlaid on the T1-weighted image with blue crosshair locating the center of one NBR region in the Right Frontal Lobe, left

bottom-estimated NN-ARx of this particular NBR-HRF was classified as ECI mechanism, right-stereo EEG (sEEG) electrodes placement is shown as reference.

DISCUSSION

The most accessible, inexpensive, and least-invasive brain

imaging method available for localizing seizure foci with high

sensitivity (85%) is fMRI combined with EEG. Unfortunately,

its benefits remain controversial for many patients, owing to

an incomplete understanding of the neuronal, vascular, and
metabolic responses in epileptic tissues, decreasing the sensitivity
of the biomarker used to locate foci. A large percentage (∼17.4%)

of discordance in the use of the EEG-fMRI technique is due to a

poor classification of clinically relevant NBR responses (Table 2).
Here, we hypothesize that NBRs during IEDs could be caused

by both clinically and non-clinically relevant mechanisms. A
clinically relevant mechanism should be that resulting as a direct
consequence of epileptogenic tissues, i.e., an enhanced inhibition
and a vascular/metabolic balance mismatch both due to tissue
overexcitability. A secondary effect, such as blood flow stealing
and resting-state network shutdown, should be considered not
clinically relevant and hence not discussed during the surgical
workup. Therefore, tools aiming at the classification of these four
mechanisms might increase accuracy in the localization of foci
for neurosurgical excision, improving success rates. Henceforth,
we discuss the rationale and implications of the mechanisms
proposed for NBR genesis in epilepsy.

Modeling NBRs With a Neuronal Network
Origin
Inhibition-related phenomena, i.e., ECI and NDA, require
accounting for the imbalance between the local activation of
inhibitory and excitatory neuronal states, which depend on
their respective connectivity structure. A two-state model (P-
DCM) was used by Havlicek et al. (44, 53) to explain NBR
during static and flickering visual stimulation. In this article, we
extended the P-DCM model to include an additional external
input to the inhibitory population in each brain region of
interest and an IED-evoked synaptic modulation of the RSNs.
Long-range excitatory (thalamocortical/corticocortical) inputs
targeting inhibitory populations in the granular layers of the
cerebral cortex have been extensively reported in previous
literature. IEDs are mostly initiated by a brief increase in
excitatory feedback gains and decrease in the thresholds for firing
(63). In many cases, local neuronal excitability is followed by an
enhancement in cortical inhibition (e.g., the wave component
in the spike-wave events), which has been linked to a robust
hyperpolarization in III/V layer pyramidal cells (25, 26). Data by
Pittau et al. (13) suggested this type of enhanced inhibition might
cause NBR in, or near, the actual IZs. Therefore, we hypothesize
NBR with an ECI-HRF type should be included as a potential
candidate for ablation in the epilepsy surgical workup. We
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FIGURE 6 | Patients #3 shows an irritative zone with NDA-type HRF in a brain area of the DMN. (A) Slices showing the thresholded F-statistics map built from the

estimated coefficients of the GLM overlaid on the T1-weighted image. Top left axial slice: green crosshair locating the center of one NBR region in the Right Lateral

Parietal node of the DMN—coinciding with the maximum value of the F-statistics. Bottom left sagittal: green crosshair locating another NBR region in the caudate

nucleus. Right slices: Red crosshair locating the center of the PBR region in the right frontal cortex-presumably in the origin of the IEDs. The IEDs were detected using

the EEG signal in electrode F8. The approximate location of this electrode is shown with a green circle in the right axial slice to illustrate the possible relation of frontal

PBR and the IEDs. The right inset shows a short segment of the preprocessed EEG data where 2 IEDs were identified. (B) The dark gray curve shows the estimated

NN-ARx PBR-HRF and its confidence interval, estimated from the real data around the region marked by the red crosshair in (A). The light gray curve shows the

estimated NN-ARx NBR-HRF and its confidence interval, estimated from the real data around the DMN node marked by the green crosshair in the top left slice in (A).

The red and green curves show the unnoisy simulated PBR-HRF and NBR-HRF, respectively, for a τe2 = 3s. (C) For illustration purposes, we also show the temporal

behavior of the simulated neuronal activity and BOLD signal in the NBR region [with τe2 = 3s], the time series of the real fMRI and the input. To account for the actual

relative effect of the IEDs, the amplitude of the input pulses was multiplied by the normalized power of the EEG in F8.

believe the NBR results from an abnormal enhancement in the
external input to inhibitory populations in the neocortex, which
is modeled by a large response time of the inhibitory population
τi1. In this article, the τi1 parameter was fitted using the BOLD
data to accurately represent the particular NBRwaveform. On the
other hand, the recovery of the neuronal activity of the disrupted
RSN (NDA) after an IED affects one of its nodes is characterized
by amodulation of the excitatory synapses in specific areas within
the RSNs, which was characterized by a reduced intralaminar
excitatory connectivity ce2 = 0.01 and a large response time
τe2. The latter actually depends on the way the different nodes
interact to effectively “shut down” and recover the network. Note
that brain dynamics operate near criticality (64–66), i.e., on the
brink to instability. Neuronal activities in this situation require

higher recovery time to reach equilibria after perturbed and are
associated with large-scale dependencies and scale invariance
(67). Therefore, the time response for excitatory τe2 was fitted to
the BOLD data to accurately characterize the NDA type of NBRs.

Modeling NBRs With a Vascular/Metabolic
Origin
Enhancements in the neurovascular coupling gain ε cause
increases in CBF, hence a larger PBR effect. Ictal hyperperfusion
has been observed with 15O-H2O PET and 99mTc-HMPAO/ECD
(33, 34). Using invasive recordings from a preclinical model of
epilepsy, we have reported increases in the perfusion gain around
the SOZs (35). In this previous study, we associated a small value
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FIGURE 7 | Patients #4 shows an irritative zone with ANC-type HRF in a brain area at the edge of a tumor (TSC). (A) Axial slice of the thresholded F-statistics map

built from the estimated coefficients of the GLM overlaid on the T1-weighted image. The IEDs were detected using the EEG signal in electrode F7. The approximate

location of this electrode is shown with a green circle to illustrate the possible relation between the NBR region and the IEDs. The right inset shows a short segment of

the preprocessed EEG data where 2 IEDs were identified. (B) The patient suffers from tuberous sclerosis complex. The cyan crosshair—the maximum value of the

F-statistics—locates the center of the NBR region, in the perimeter and below one of the patient’s tumors. The tumor is highlighted with the yellow circle in the axial

slice and the red arrow in the coronal slice of the T2-weighted image. (C) The gray curve shows the estimated NN-ARx HRF and its confidence interval, estimated

from the real data, and averaged across the voxels within a 10 mm-radius sphere with origin in the crosshair in (A). The cyan curve shows the unnoisy simulated HRF

of the fitted OTT model with the estimated value of the neuro-metabolic coupling gain: κ = 0.51 s−1. (D) For illustration purposes, we also show the simulated

temporal behavior of the state variable g and the simulated BOLD in the NBR region [with κ = 0.51 s−1], the time series of the real fMRI and the input. To account for

the actual relative effect of the IEDs, the amplitude of the input pulses was multiplied by the normalized power of the EEG in F7.

of κ in the SOZ with an increase in the baseline O2 metabolism,
which might be related to reported glucose hypermetabolism
in the SOZs from ictal FDG PET. The interplay between
O2/glucose metabolism and blood perfusion during IEDs is still
controversial. Several studies have shown a hypometabolism in
IZs, whereas others have reported complex glucose metabolism
patterns with hypermetabolism also in some SOZ candidates (34,
68). Using 15O-H2O PET, Bittar et al. (68) showed an increase in
blood perfusion during IEDs. However, reductions in perfusion
have been also reported in the past (34). If this neurovascular
coupling gain is kept constant, the parameter that is highly
correlated with NBR amplitude will be κ . A disproportionate
increase of this value leads to the ANC type of HRF. In this
mechanism, the NBR can be seen as an exaggerated initial dip

as a result of an abnormally enhanced O2 metabolism. It is
hypothesized that this particular type of NBR may be clinically
relevant while defining IZs. NBR can also have a pure vascular
origin via an ABS effect. Here, we use a model proposed by
Suarez et al. (39) that couples two Windkessels by a common
artery to classify ABS types of HRFs. Simulations indicate
that the parameter that determines the NBR amplitude is the
resistance of the vessel (artery), relative to the total steady state
resistance of the vasculature within the tissue, i.e., the arterioles,
capillaries, and venules. A vascular anatomical network (VAN)
model proposed earlier by Boas et al. (69) predicts also a
relative decrease in CBF and O2 saturation around a brain area
undergoing a positive functional hyperemic response. However,
the authors are not aware of the application of the VANmodel to
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FIGURE 8 | Patients #5 shows an irritative zone with ABS-type HRF. (A) Three different slices of anatomical fMRI imaging (T1-weighted) show non-enhancing cystic

lesion in the Left Posterior Frontal Lobe (red crosshairs). (B) Slices showing the thresholded F-statistics map built from the estimated coefficients of the GLM overlaid

on the T1-weighted image; left panel, NBR highlighted with blue crosshairs; right panel, PBR highlighted with red crosshairs. (C) Composed panel: top, two slices of

nuclear imaging (interictal PET); bottom, EEG-BSI data. (D) Comparison between the NN-ARx method with the impulse response function (IRF) method (SPM

software). The IRF method was not able to capture underlying HRFs. Results from the NN-ARx were classified as the ABS mechanism.

study NBRs in epilepsy. The existence of ABS effect in the brain
have been experimentally demonstrated by several groups (38,
41). Here, we recommend excluding IZs with ABS types of NBRs
as potential candidates of SOZ. Some authors have suggested
that a type of NBR might also result from the combination of
blood backpressure and neuronal inhibition (47, 70). That would
explain the presence of the poststimulus overshoot, which is
in contrast to those observed in our pure vascular simulations.
This undershoot is shown to be determined by the dynamics of
the inhibitory neuronal state (44). Other causes including vein
delayed compliance might also explain these transient. However,
these last mechanisms were not investigated in this study.

NBR Classification
In this article, we focus on the possibility of detecting and
classifying the NBR mechanisms using the HRFs extracted from
BOLD fMRI signals. We use linear models for the detection
and estimation of the HRFs, i.e., GLM and NN-ARx methods,
respectively. Under the assumption of the extended balloon
model, the validity of the GLM was previously investigated by
quantifying the effect size of second-order Volterra kernels (55).
Under the same model, the validity of the NN-ARx to estimate
HRFs was evaluated in (17, 45). Although linear models have
been used to detect and reconstruct BOLD responses for decades,
even before addressing the non-linear characteristics of BOLD
signals (59, 71), we decided to analyze if linear models are able
to accurately characterize PBRs and NBRs in epileptic patients.

In general, for balloon/Windkessel models—with sporadic IED
events and typical canonical-like responses (57), these linear
models are suitable for spatial detection estimation of the
HRF. We investigated if the NBR mechanisms can be solely
classified from their BOLD responses. This is important for
clinical applications when only standard fMRI paradigms are
available or designed. Figure 3D shows that the machine learning
classifier is able to differentiate PBR (red), ECI (yellow), NDA
(green), ANC (cyan), and ABS (blue) in 100% of the cases.
However, ECI and ABS were undistinguishable in some trials.
In practice, this might be worse as there is a loss of sensitivity
and specificity related to the usual misclassifications of IEDs,
which is expert dependent. Furthermore, we cannot outline
the possibility of having more than one NBR mechanism in
the same area at the same time. Thus, failing to identify IZs
with multiple NBR mechanisms could lead, in the worst-case
scenario, to the incorrect clinical assessment. According to our
hypothesis, an ABS/ECI misclassification will be the most critical
case. However, these mechanisms are different in nature, and our
model predicts different responses when using other imaging or
recording modalities. At the expense of experimental feasibility,
other imaging technique can be combined with our EEG-
fMRI methodology to verify the predicted NBR mechanisms.
For example, MION (38) and/or VASO (47) can be used to
measure CBV concurrent with BOLD signals. Measurements
of neuronal activity can be incorporated using ECoG/sEEG
and EEG (27). In addition, CBF can be also included using
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TABLE 2 | Results from two studies (different laboratories) about the accuracy of the EEG-fMRI technique, with specifications to (a) typical percentage of refractory

epileptic patients who will not be able to complete a successful EEG-fMRI study and (b) typical percentage of these patients with a “discordant” NBR result.

References No. Removed [Art, No IED] Concordance (%) Discordant (%) NBR-/Tot (%)

PBR NBR Total PBR NBR Total

Salek-Haddadi et al. (14) 63 29 (46.0%) 17 4 62% 2 9 32% 9/34 (26%)

An et al. (1) 47 12 (25.5%) 21 6 77% 5 3 23% 3/35 (8%)

Total 110 41 (37.3%) 38 10 69% 7 12 27% 12/69 (17.4)

arterial spin labeling (ASL) (30) and/or FAIR (47). In the
case of ABS/ECI misclassification, a radiologist could use EEG
concurrently recordedwith ASL focused on the particular regions
to verify whether there is a decrease in CBF. If no decrease in
CBF is observed, ECI mechanisms should be expected. With
these multimodal observations, we foresee a significant increase
in the margins of classification of the NBR mechanisms, even
in the case more than one is present in the same region (47,
72). It is important to highlight that none of the available
imaging modalities (Table 1) provides conclusive results, and a
thorough data evaluation in the surgical workup is needed for
each clinical case. Our approach only aims at providing another
level of EEG-fMRI data interpretation to improve the accuracy
of this technique. To illustrate this, five specific clinical cases are
discussed below.

Epileptic Cases Discussion
We found an ABS type of NBR in patients 1 and 5. In
patient 1, an NBR was located in the SPL and a PBR in the
PG. The NBR was classified as ECI, which would occur via
either U fibers or pure vascular phenomena. However, we cast
doubt on ECI as we believe an inhibitory pathway from SPL
to PG is rather weak. Note that the PG hosts the primary
somatosensory cortex (S1) (73), which is a granular cortex
that mainly receives somatotopic feedforward afferents from the
ventral posterolateral and posteromedial relay nuclei (VPL and
VPM) of the thalamus (74). In addition, the SPL, involved in
transforming visual information in complex motor planning, has
efferent pathways mainly to the premotor supplementary motor
cortices in the precentral gyrus. A top–down inhibition from
higher areas (prefrontal cortex) to the somatosensory area is
mainly via efferent pathways. Moreover, both difussion spectrum
imaging (DSI)-based connectivity (75) and cortical thickness–
based connectivity (76) between SPL and PG are rather low.
The mechanism might be ABS. Note that the detected BOLD
responses are in the vascular domain of the middle central artery,
at both sides of the postcentral sulcus. Thus, they might be
sharing a final segment of the anterior parietal artery. Although
we do not discard the existence of a venous blood backpressure
effect, in which the regions could be sharing some anastomotic
vein feeding the central sulcal vein or a branch of the superior
anastomotic vein of Trolard, it has been reported that venous
CBV changes are relevant only for longer stimuli (77). The NBR
in patient 5 was found posterior to the cyst. We used data
from this patient to illustrate the HRF estimation with the IRF

method (SPM) and our NN-ARx method. Because of a probable
revascularization around the cyst, angiography data from this
patient will be required for a discussion about possible scenarios

for the ABS effect. A frontal eye-field NBR with an ECI HRF was
found in patient 2, which is most likely due to ictal propagation

with frontal slow-wave responses. Slow-wave discharges have

been found associated with NBR (13). DMN deactivations, like
those found in patient 3, have been systematically reported

in the literature for temporal lobe epilepsy (TLE) (11, 37)

and for other types of focal epilepsy (36, 78). The pattern of
deactivation depicted in Figure 6, with a predominance in the

parietal node of the DMN ipsilateral to the focus, is similar to

that reported ibyn Fahoum et al. (36) for four of five patients,

with concomitant decrease of electrophysiological activity. Our
results suggest that the PBR region might have afferents on the

anterior part of the caudate nucleus that relay to central nodes of
the DMN. This is consistent with the hypothesis of widespread
secondary inhibition of non-seizing cortical regions via basal
ganglia (79). The temporal profile of the PBR HRF in the right
IFG experienced an unpredicted decay (or rebound) correlated
with the amplitude of the NBR in the DMN nodes. This might
be seen as an interruption of the PBR mechanism by inhibitory
afferents coming from the regions exhibiting NDA, which in
this case are present all around the right IFG. This might have
implications in the interpretations of BOLD responses during
IEDs or stimulation paradigms. If the location of the PBR is
close to an affected RSN node, its HRF waveform might be
misleading of the actual underlying PBR mechanism, due to
either the interaction between mechanisms, i.e., inhibitory inputs
from the NBR to the PBR region, or the effect of the BOLD spatial
point-spread function. This rebound can be also explained as an
increase in dHb due to an increase in neuronal activity in theNBR
region, or even a vascular reallocation phenomena, as suggested
by Hu and Huang (40). They observed positive and negative
optical responses, concurrent with local field potentials (LFP)
and multiunit activity (MUA) measurements, in rats during
hindlimb electrical stimulation. Finally, it has been hypothesized
that NDA is a disruption of RSN provoking a reduction of
consciousness and cognitive reserve (36). Interestingly, our
results suggest that a recovery from this disrupted state is not
instantaneous. In our data, the estimated value for the recovery
time constant was τe2 = 3s. The Epilepsy Connectome Project
(ECP) (80) constitutes a huge database that contains clinical,
neurophysiological, and resting-state fMRI (rs-fMRI) data of
105 patients with TLE and 55 healthy individuals as control.
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Using graph (nodes and edges) theory combined with rs-fMRI
measures, a characterization of abnormal patterns in the local
and global neuronal connectivity in TLE has been possible,
thanks to the ECP. Our model-based method to identify different
types of NBRs in epilepsy can help provide a neurophysiological
foundation to the reported connectivity maps abnormalities.
The ANC mechanism, as reported for patient 4, is related to a
decrease in the CBF/CMRO2 balance. NBRs in the hippocampus
of rats during bicuculline-induced generalized tonic–clonic
seizures were associated with this type of mechanism (81). The
authors reported that, even with higher LFP/MUA activity in
the hippocampus, as compared to the cortex, the CBF was
lower, and the CMRO2 was higher, yielding to NBRs in the
hippocampus. Quantitatively, the unbalance corresponds to a
decrease in the ratio ε

κ
in the OTT model (56), which is ∼ 0.4

0.05 =

8 for normal positive responses. Song et al. (35) estimated a
ratio approximately five-fold smaller in rat with focal cortical
seizures. Although the rCBF/CMRO2 coupling was reported to
be preserved in human IEDs without any apparent lesion (82),
we do not discard the possibility of an unbalance produced by a
more critical state of tissue pathology. For example, the typical
calcification of the surrounding blood vessels present in TSC
tumors (83) could hamper the expected IED-induced increase
of rCBF. We estimated κ = 0.51s−1 for the IED-related ANC
mechanism around the lesion, which yields 0.28

0.51 = 0.55, 14 times
smaller than the normal values.

Final Remarks
It is worth noting the foreseeable boost that BOLDmodeling will
have with the advent of new and optimized sequences in high-
field spin-echo fMRI, with the considerably improved ability
to measure high-resolution layer-dependent BOLD images and
correlates of rCBV and rCBF (47, 70, 84–89). This allows for the
construction and estimation of more detailed models of BOLD
generation, through understanding of the actual role of arteries,
capillaries, and veins in the generation of these observables and
the possible biases that the variability of neurovascular/metabolic
coupling, CBV, and signal-to-noise ratio (SNR) across layers
could introduce. For example, it has been reported that the
baseline CBV distribution varies over cortical layers biasing fMRI
signal to layers with high CBV values (77). This affects the
interpretation of what the contribution of the different vascular
compartments to the average low-resolution BOLD response is.
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