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Abstract: Gummy stem blight caused by Stagonosporopsis cucurbitacearum is the most destructive
disease of muskmelon cultivation. This study aimed to induce disease resistance against gummy
stem blight in muskmelon by Trichoderma asperelloides PSU-P1. This study was arranged into two
crops. Spore suspension at a concentration of 1 × 106 spores/mL of T. asperelloides PSU-P1 was
applied to muskmelon to investigate gene expression. The expression of PR genes including chitinase
(chi) and β-1,3-glucanase (glu) were determined by reverse transcription quantitative polymerase
chain reaction (RT-qPCR), and enzyme activity was assayed by the DNS method. The effects of
T. asperelloides PSU-P1 on growth, yield, and postharvest quality of muskmelon fruit were mea-
sured. A spore suspension at a concentration of 1 × 106 spore/mL of T. asperelloides PSU-P1 and
S. cucurbitacearum was applied to muskmelons to determine the reduction in disease severity. The
results showed that the expression of chi and glu genes in T. asperelloides PSU-P1-treated muskmelon
plants was 7–10-fold higher than that of the control. The enzyme activities of chitinase and β-1,3-
glucanase were 0.15–0.284 and 0.343–0.681 U/mL, respectively, which were higher than those of the
control (pathogen alone). Scanning electron microscopy revealed crude metabolites extracted from
T. asperelloides PSU-P1-treated muskmelon plants caused wilting and lysis of S. cucurbitacearum hy-
phae, confirming the activity of cell-wall-degrading enzymes (CWDEs). Application of T. asperelloides
PSU-P1 increased fruit weight and fruit width; sweetness and fruit texture were not significantly
different among treated muskmelons. Application of T. asperelloides PSU-P1 reduced the disease
severity scale of gummy stem blight to 1.10 in both crops, which was significantly lower than that
of the control (2.90 and 3.40, respectively). These results revealed that application of T. asperelloides
PSU-P1 reduced disease severity against gummy stem blight by overexpressed PR genes and elevated
enzyme activity in muskmelon plants.

Keywords: BCAs; disease resistance; gene expression; chitinase; β-1,3-glucanase

1. Introduction

Gummy stem blight is a devastating disease of muskmelon cultivation. The disease is
caused by the fungal pathogen Stagonosporopsis cucurbitacearum [1,2]. Interactions between
the plant and fungi trigger a defense response in the plant, which is associated with
disease resistance [3]. Plants have developed an elaborate defense response to combat
such stresses [4,5]. Plants are also capable of producing pathogenesis-related (PR) protein
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to defend themselves from infecting fungi [6,7]. The PR proteins, PR2 (β-1,3-glucanase)
and PR3 (chitinase), produced by plants are considered the main key enzymes responsible
for degrading fungal cell walls, resulting in resistance against plant diseases [8,9]. β-
1,3-Glucanase and chitinase hydrolyze the fungal cell wall components β-glucan and
chitin, respectively, into small molecules [10,11]. Plants that contain high activity of β-1,3-
glucanase and chitinase are able to resist plant diseases [12].

Trichoderma species are often collected and isolated from the soil rhizosphere and
soil habitat [13]. Trichoderma species are known as good biological control agents (BCAs)
to control fungal diseases with multifaceted mechanisms [14]. They are strong antago-
nists due to their capacity to compete for nutrients and space [15], produce antifungal
metabolites [13,16], induce the defense response [17], and increase plant growth [18]. Some
studies have shown that Trichoderma species can produce cell-wall-degrading enzymes
(CWDEs) and release them into cell-free culture filtrate, which restricts fungal growth [19].
Furthermore, Trichoderma asperellum T1 can induce the defense response by elevating β-
1,3-glucanase and chitinase enzyme activity against leaf spot in lettuce [5]. Therefore, the
ability to produce CWDEs by antagonistic microorganisms and the ability to induce plants
to produce those enzymes using a BCA may be of high interest for managing plant disease.

Our previous research found that T. asperelloides PSU-P1 acts as a biological control
agent (BCA) with strong antifungal ability against S. cucurbitacearum, the pathogen of
gummy stem blight, and can reduce disease severity at the seedling stage [20]. However,
the plant response to the BCA with long-term use throughout the plant’s lifespan has not
been clarified. Altogether, the ability of BCA to induce disease resistance in muskmelon
in mature plants, to the harvesting stage, against gummy stem blight disease has also not
been determined. Therefore, this research aimed to investigate the effect of T. asperelloides
PSU-P1 on the expression of pathogenesis-related (PR) protein genes, the activity of cell-
wall-degrading enzymes, and the postharvest quality of muskmelon.

2. Materials and Methods
2.1. Sources of Trichoderma and Pathogens

Trichoderma asperelloides PSU-P1 was screened for antifungal ability against
S. cucurbitacearum in a previous study [20] and was used as a BCA for biotic stress in this
study. Both T. asperelloides PSU-P1 and the fungal pathogen S. cucurbitacearum were obtained
from the Culture Collection of Pest Management Division, Faculty of Natural Resources,
Prince of Songkla University, Thailand. T. asperelloides PSU-P1 and S. cucurbitacearum were
cultured on potato dextrose agar (PDA) and incubated at an ambient temperature of
28 ± 2 ◦C for 5 days before use in this study.

2.2. Plant Inoculation

Field trials were conducted to test the effect of Trichoderma on the induction of PR
genes and CWDE activity. The experiment was set up in two crops: the first crop was
cultivated from June to July 2020 and the second crop was cultivated from August to
September 2020. Muskmelon plants were cultivated in a polyhouse with 28 ± 2 ◦C and
12/12 h light/dark cycle. A total of 20 muskmelon plants were grown in sterile soil for
14 days and then subjected to inoculation with T. asperelloides PSU-P1. A spore suspension
of T. asperelloides PSU-P1 was prepared with distilled water (DW) and the concentration was
adjusted to 1 × 106 spore/mL. The experiment was conducted by complete randomized
design (CRD) with 10 replications (10 plants). The experiment included two treatments: DW,
and drenching with T. asperelloides PSU-P1 alone. A total of 50 mL of T. asperelloides PSU-P1
spore suspension was applied to each muskmelon plant once a week, and young leaves
of muskmelon plants were collected at 7, 14, 21, 28, 35, 42, and 49 days post-inoculation.
T. asperelloides PSU-P1-treated muskmelon plants and those in the control group were
subjected to RNA extraction and protein extraction for further study.
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2.3. RNA Extraction and Quantitative RT-PCR

Young muskmelon leaves were harvested and subjected to RNA extraction by TriZol
reagent (ThermoFisher, Waltham, MA, USA) according to the manufacturer’s instructions.
A total of 0.1 g of young muskmelon leaves were ground by small mortar and pestle and
added to TriZol reagent. After centrifugation (14,000× g), supernatants were collected and
precipitated with absolute ethanol. Total extracted RNA was air-dried and dissolved in
RNase-free DW. The concentration of RNA was measured and approximately 1 ng of total
RNA was subjected to reverse transcription to single-strand cDNA followed by reverse
transcription quantitative PCR (RT-qPCR) as previously described by Dumhai et al. [21].
The reaction mixture was analyzed using iScript One-Step RT-PCR reagent with SYBR
Green (Bio-Rad, Hercules, CA, USA) and 1 ng of RNA templates. Primer pairs used for
the amplification of chitinase (chi), β-1,3-glucanase (glu), and actin (act) genes are shown in
Table 1. The actin gene was used as an internal reference gene to normalize the variation in
input total cDNA templates between the control and Trichoderma-treated samples. Relative
gene expression was subjected to analysis of fold change in expression relative to actin as a
control by Bio-Rad CFX Manager analysis software (Bio-Rad, Hercules, CA, USA).

Table 1. Specific primer pairs for the gene expression determinations with reverse transcription
quantitative polymerase chain reaction (RT-qPCR).

Genes Accession Number Primer Sequences (5′→3′) Product Size (bp)

chi AF241538 Chi-F CGTGGACCAATGCAACTCAA 242

Chi-R ATTCCCTGTGCTGTCATCCA

glu AF459794 Glu-F TGGAGAAGAATGGTGGAGGA 188

Glu-R GTCAGACATGGCGAACACAT

act AY859055 ACT-F TGGTATGGAAGCTGCAGGAA 158

ACT-R GGGCTGTGATTTCCTTGCTC

2.4. Protein Extraction and Enzyme Assays

Muskmelon leaf samples (10 g) were ground using a small mortar and pestle in 25 mL
of phosphate buffer at pH 7.0 for chitinase and β-1,3-glucanase assay. The homogenates
were centrifuged at 14,000× g for 10 min at 4 ◦C, and supernatants were selected and
subjected to enzyme assay immediately. The activity of chitinase and β-1,3-glucanase was
determined by the 3,5-dinitrosalicylic acid (DNS) method [22]. For chitinase activity, the
reaction mixture contained 250 µL of 1% (w/v) colloidal chitin in 50 mM KPB at pH 7.0 and
250 µL of crude enzyme. For β-1,3-glucanase activity, the reaction mixture contained 250 µL
of 1% (w/v) laminarin in 50 mM acetate buffer at pH 5.5 and 250 µL of crude enzyme.
The reaction mixtures were incubated at 50 ◦C for 30 min. The increase in reducing sugar
products was measured using a UV–vis spectrophotometer (UV5300, METASH, Shanghai,
China) at 575 nm and 550 nm for chitinase and β-1,3-glucanase, respectively. Enzyme
activity was converted to units per milliliter (U/mL).

2.5. Scanning Electron Microscopy

If the crude metabolites extracted from T. asperelloides PSU-P1 contained CWDEs,
incubating fungal mycelia with the crude metabolites could cause changes in hyphal
morphology. To observe the morphology change of S. cucurbitacearum, scanning electron
microscopy was conducted. Crude metabolites were prepared as described in Section 2.4.
Agar plugs of S. cucurbitacearum cut from 7-day-old colonies were incubated with the
crude metabolites of T. asperelloides PSU-P1-treated muskmelon plants at 37 ◦C for 1 h,
whereas agar plugs of T. asperelloides PSU-P1 incubated in crude metabolites of uninoculated
muskmelon served as control. Agar plugs were then fixed in 3% glutaraldehyde at 4 ◦C for
24 h. Agar plugs were dehydrated in an alcohol series of 30, 50, 60, 70, 80, 90, and 100%.
The samples were dried with a critical point dryer (CPD) and sputter-coated with gold. The
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samples were observed by JSM-580 LV SEM (JEOL, Peabody, MA, USA) at the Scientific
Equipment Center, Prince of Songkla University.

2.6. Effect of T. asperelloides PSU-P1 on Plant Growth and Postharvest Quality

The growth of muskmelon plants, yield, and quality of fruit were assessed on harvest-
ing day. Stem diameter, shoot length, stem fresh weight of muskmelon plants, fruit weight,
and fruit width, were measured. For postharvest quality, sweetness and fruit firmness were
analyzed. Fruit firmness (stiffness) was measured by a System TA.XTplus Texture Analyzer
(Stable Micro Systems, Godalming, UK) and expressed as bar. The total soluble solids of
muskmelons were analyzed using a hand refractometer (N1; Atago Co., Ltd., Tokyo, Japan)
and expressed in degrees Brix (◦Brix) in muskmelon fruits.

2.7. Plant Inoculation and Disease Assessment

To test the effect of Trichoderma on the reduction of gummy stem blight disease,
field trials were conducted. The experiment was set up in two crops as described in
Section 2.2. A total of 40 muskmelon plants were grown in sterile soil for 14 days and
then subjected to inoculation with T. asperelloides PSU-P1 or S. cucurbitacearum. Spore
suspension of T. asperelloides PSU-P1and S. cucurbitacearum was prepared with DW and
adjusted to a concentration of 1 × 106 spore/mL. The experiment was conducted by CRD
with 10 replications (10 plants). The experiment was composed of four treatments: DW,
drenching with T. asperelloides PSU-P1 alone, drenching with S. cucurbitacearum alone, and
drenching with T. asperelloides PSU-P1 and challenging with S. cucurbitacearum. A total
of 50 mL of T. asperelloides PSU-P1 and S. cucurbitacearum spore suspension was applied
into each muskmelon plant once a week until harvesting day. Qualitative disease severity
scale was determined on harvesting day by the method previously described by Sunpa-
pao et al. [23], with some modifications, based on assessing the external symptoms of
muskmelon plants (0 = no symptom, 1 = small brown symptom <1 cm, 2 = brown symptom
>1 cm, 3 = brown symptom with gummy exudate, 4 = stem rot and collapse).

2.8. Statistical Analysis

Data on relative gene expression, enzyme activity, and plant growth were subjected
to one-way analysis of variance (ANOVA) and the statistically significant differences of
treated muskmelon plants and controls were analyzed by Student’s t-test and Duncan’s
multiple range test and independent-sample t-test with threshold p < 0.05. Disease scales
were subjected to ANOVA and analyzed by Kruskal–Wallis non-parametric statistical
test. Statistically significant differences were analyzed by Mann–Whitney U test with
threshold p < 0.01.

3. Results
3.1. Effect of Biotic Stress by T. asperelloides PSU-P1 on Gene Expression

To examine the effect of biotic stress by T. asperelloides PSU-P1 on inducing the defense
response in muskmelon, the expression of chi and glu genes was analyzed by RT-qPCR. The
expression levels of chi and glu genes in T. asperelloides PSU-P1 were 7–10-fold higher than
those of the control (Figures 1 and 2). In T. asperelloides PSU-P1-treated muskmelon plants,
the expression levels of chi were 0.2–0.32 for the 1st crop and 0.21–0.37 for the 2nd crop
(Figure 1), while the expression levels of glu were 1.34–1.68 for the 1st crop and 1.34–1.55
for the 2nd crop (Figure 2); both these expression patterns were significantly higher than
the levels in the control.

3.2. Application of T. asperelloides PSU-P1 Elevated Enzyme Activity in Muskmelon

We tested the effect of T. asperelloides PSU-P1 on CWDE activity in muskmelon plants
from the seedling stage through to the harvesting stage. Inoculation of T. asperelloides
PSU-P1 caused a high activity of CWDEs in this study. For the first crop, all T. asperelloides
PSU-P1-treated muskmelon plants showed a significantly higher activity of chitinase and
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β-1,3-glucanase than those of the control (untreated muskmelon plants). The activities
of chitinase and β-1,3-glucanase were 0.150–0.284 and 0.345–0.681 U/mL, respectively
(Figure 3). For the second crop, the results were similar; the activities of chitinase and
β-1,3-glucanase were 0.162–0.273 and 0.343–0.559 U/mL, respectively (Figure 4).
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3.3. Effect of Crude Metabolites on Fungal Morphology

Crude metabolites extracted from T. asperelloides PSU-P1-treated muskmelon plants
may contain CWDEs, which can cause morphology change, observed by wilting and lysis of
S. cucurbitacearum hyphae. SEM micrographs showed wilted and lysed fungal morphology
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of S. cucurbitacearum incubated with T. asperelloides PSU-P1-treated muskmelon metabolites
(Figure 5). The fungal morphology of S. cucurbitacearum incubated with untreated control
metabolites remained healthy (Figure 5).
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3.4. Effect of T. asperelloides PSU-P1 on Plant Growth and Postharvest Quality of Muskmelon Fruit

To test the effect of T. asperelloides PSU-P1 on the growth and yield of muskmelon,
an experiment in a polyhouse was conducted for two crops. After treatment with the
spore suspension of T. asperelloides PSU-P1 for about 2 months, stem diameter and shoot
length were not significantly different between control and T. asperelloides PSU-P1-treated
muskmelon plants in both crops (Table 2). Stem fresh weight, fruit weight, and fruit width
in T. asperelloides PSU-P1-treated muskmelon plants were significantly higher than those
of the control in both crops (Table 2). To investigate the quality of muskmelon fruit, fruit
sweetness and fruit firmness were measured, and the results displayed no significant
difference between treatment and control for both crops (Table 3).

Table 2. Effect of Trichoderma asperelloides PSU-P1 on muskmelon growth.

Crop Treatment Stem Diam. (cm) a Shoot Length (cm) Stem Fresh Weight (g) Fruit Weight (g) Fruit Width (cm)

1st Control 0.94 ± 0.19 193 ± 26.52 519.70 ± 22.63 1036.60 ± 22.86 38.84 ± 2.76

Treatment 0.98 ± 0.05 205.80 ± 30.71 589.44 ± 14.27 * 1274.40 ± 60.78 * 43.10 ± 3.84 *

2nd Control 1.15 ± 0.05 215 ± 10.62 862.87 ± 22.17 1450.50 ± 52.73 45.11 ± 0.68

Treatment 1.22 ± 0.12 211.50 ± 10.52 907.25 ± 29.78 * 1529.90 ± 21.98 * 48.35 ± 1.12 *
a Values are means ± SDs with 10 replications, values with asterisks are significantly different according to
independent sample t-test (* p < 0.05).

Table 3. Effect of Trichoderma asperelloides PSU-P1 on postharvest quality of muskmelon.

Crop Treatment Brix (◦Brix) a Texture (bar)

1st Control 14.18 ± 1.94 4.80 ± 0.40

Treatment 14.60 ± 0.96 5.16 ± 0.79

2nd Control 12.53 ± 0.86 5.40 ± 0.50

Treatment 13.00 ± 0.89 5.25 ± 0.98
a Values are means ± SD with 10 replications.
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3.5. Trichoderma asperelloides PSU-P1 Reduces Disease Severity in Field Crop

We tested the effect of T. asperelloides PSU-P1 on the reduction of gummy stem blight in
field trials. Treatment with T. asperelloides PSU-P1 reduced the qualitative disease severity
scale caused by S. cucurbitacearum in both crops. For the first crop, the disease severity scale
of T. asperelloides PSU-P1-treated muskmelon plants was 1.10± 0.74, which was significantly
lower than that of the control (pathogen alone), 2.90 ± 0.74 (Figure 6). Similar results were
observed for the second crop. T. asperelloides PSU-P1-treated muskmelon plants exhibited a
disease severity scale of 1.10 ± 0.74, significantly lower than that of the control (pathogen
alone), 3.40 ± 0.70 (Figure 6).
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4. Discussion

In this study, we tested the effect of T. asperelloides PSU-P1 in terms of the response
of PR genes against gummy stem blight of muskmelon in field trials. The experiments
were conducted on two crops, and we found that T. asperelloides PSU-P1 upregulated PR
protein genes, resulting in the release of CWDEs in muskmelon plants, causing disease
resistance. Furthermore, the application of T. asperelloides PSU-P1 reduced disease severity
in muskmelon plants in both crops.

The ability of BCAs to act as biotic stresses in plants has been widely studied in
several plant species. BCAs induce disease resistance by upregulating pathogenesis-related
gene expression [24]. For instance, the BCAs T. viride and Bacillus subtilis upregulated
chitinase gene expression against Fusarium oxysporum and Rhizoctonia solani in tomato
plants [25]. The application of non-pathogenic Fusarium as a BCA upregulated chitinase
and β-glucanase in common bean [26]. Our study is in agreement with those previously
reported, and showed that application of T. asperelloides PSU-P1 to muskmelon plants
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upregulated the expression of chitinase and β-1,3-glucanase genes. The results from both
crops also confirmed this phenomenon (Figures 1 and 2). Therefore, our results suggest that
the upregulation of PR protein genes is associated with disease resistance against gummy
stem blight in muskmelon plants.

In this study, we tested the ability of T. asperelloides PSU-P1 as a BCA to elevate CWDEs
in muskmelon plants. We found that application of T. asperelloides PSU-P1 caused high
activity of chitinase and β-1,3-glucanase in both investigated crops. It is known that
application of BCAs induces enzyme activity in plants. For instance, the application of a
biocontrol agent induced the defense mechanism in coconut palms, resulting in reduced
Ganoderma disease incidence in [27]. Application of T. asperellum MSST induced chitinase
and β-1,3-glucanase activities in tomato plants [28]. Furthermore, Baiyee et al. [5] reported
that T. asperellum T1 induced disease resistance against leaf spot disease on lettuce. Crude
metabolites of BCA-treated plants include CWDEs, which can cause abnormal changes
of fungal mycelia [5,29]. Our results showed that crude metabolites of T. asperelloides
PSU-P1-treated muskmelon plants contained lytic enzymes, which was confirmed by SEM
observation (Figure 5). Therefore, T. asperelloides PSU-P1 may induce and elevate CWDEs
in muskmelon plants, which involves the suppression of fungal pathogens.

In order to reduce excess use of synthetic fungicides, Trichoderma species have been
used as BCAs to control several plant species worldwide [30]. They have been used for
controlling soilborne fungal pathogens [31,32] and airborne fungi [33,34]. The application
of T. longibrachiatum and T. asperelloides increased plant biomass and reduced pathogen
DNA in maize root [35]. Furthermore, a new species of T. phayaoense exhibited biological
control activity against gummy stem blight and promoted plant growth in muskmelon
in [36]. In our previous study, T. asperelloides PSU-P1 was screened because of its strong
antifungal ability against S. cucurbitacearum [20] and was selected for use as a BCA in a field
trial in this study. Our current results showed that the application of T. asperelloides PSU-P1
in both crops reduced the disease severity compared to control. This finding suggests that
the application of T. asperelloides PSU-P1 as a BCA may be effective in managing gummy
stem blight in muskmelon.

The aim of BCAs is not only to induce the defense response in plants, but also to
promote plant growth in field trials. Trichoderma spp. promote soybean growth, with high
phosphorus uptake [37]. The application of Trichoderma in foliar fertilizer increased shoot
length and number of leaves and accelerated the appearance of shoots in black pepper [38].
The direct addition of T. longibrachiatum and T. asperelloides to the seeds showed yield
improvement and increased the growth parameter and crop of maize compared with non-
infected plants [35]. Our results are in agreement with those studies. The application of
T. asperelloides PSU-P1 as a BCA promoted plant growth, increasing the fresh weight, fruit
weight, and fruit width in muskmelon. The ability to promote plant growth by Trichoderma
species may be due to the capacity to induce phytohormones in plants [39]. However,
we did not determine the phytohormones in this study. Moreover, the application of
Trichoderma species has been known to not only control plant diseases but also maintain
postharvest quality in mango [40] and banana [41]. In this study, postharvest quality
(sweetness and firmness) was not significantly different between T. asperelloides PSU-P1-
treated and untreated muskmelon plants. This result suggests that the application of a
BCA, T. asperelloides PSU-P1, did not cause a negative impact on the postharvest quality of
muskmelon fruits.

5. Conclusions

Our current study revealed that a strong BCA (T. asperelloides PSU-P1) induced a
defense response in muskmelon plants by the upregulation of chi and glu gene expression
and elevating CWDEs (chitinase and β-1,3-glucanase). T. asperelloides PSU-P1 as a BCA
could be used to manage gummy stem blight in field trials in both crops in this study.
The use of T. asperelloides PSU-P1 increased the growth of muskmelon and maintained the
postharvest quality of muskmelon fruit.
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