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Abstract

Background: Protein kinases (PKs) have emerged as the largest family of signaling proteins in eukaryotic cells and are
involved in every aspect of cellular regulation. Great progresses have been made in understanding the mechanisms of PKs
phosphorylating their substrates, but the detailed mechanisms, by which PKs ensure their substrate specificity with their
structurally conserved catalytic domains, still have not been adequately understood. Correlated mutation analysis based on
large sets of diverse sequence data may provide new insights into this question.

Methodology/Principal Findings: Statistical coupling, residue correlation and mutual information analyses along with
clustering were applied to analyze the structure-based multiple sequence alignment of the catalytic domains of the Ser/Thr
PK family. Two clusters of highly coupled sites were identified. Mapping these positions onto the 3D structure of PK catalytic
domain showed that these two groups of positions form two physically close networks. We named these two networks as h-
shaped and c-shaped networks, respectively.

Conclusions/Significance: The h-shaped network links the active site cleft and the substrate binding regions, and might
participate in PKs recognizing and interacting with their substrates. The c-shaped network is mainly situated in one side of
substrate binding regions, linking the activation loop and the substrate binding regions. It might play a role in supporting
the activation loop and substrate binding regions before catalysis, and participate in product releasing after phosphoryl
transfer. Our results exhibit significant correlations with experimental observations, and can be used as a guide to further
experimental and theoretical studies on the mechanisms of PKs interacting with their substrates.
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Introduction

Phosphorylation of protein substrates by PKs is the most

abundant and important type of cellular regulation [1]. In

eukaryotes, PKs mainly phosphorylate serine and threonine

residues (Ser/Thr PKs) or tyrosine residues (Tyr PKs). The vast

majority of PKs are Ser/Thr PKs. Previous studies [2,3] on PK

structures have shown that the basic fold of the catalytic domains

of PKs is structurally well conserved (i.e., two-lobe structure), and

the peptide substrates are always held in the groove between the

two lobes in many PK-substrate complex structures. Despite these

highly conserved characteristics of the catalytic domains, different

PKs recognize different consensus sequences in their substrates

[2,4]. It has been estimated that about 30% of all cellular proteins

are phosphorylated on at least one residue [4,5]. Great progresses

have been made in understanding the mechanisms of PKs

phosphorylating their proper substrates [6,7]. These mechanisms

include the structure of catalytic cleft, consensus sequences, local

and distal interactions between kinase and substrate. However, the

detailed mechanisms, by which the structurally conserved catalytic

domains of PKs recognize and interact with their diverse

substrates, still have not been adequately understood.

Thanks to the availability of large sets of diverse sequences [8],

we can apply correlated mutation analysis to study Ser/Thr PKs.

Correlated mutation analysis serves as the most promising

approach and it has been widely used for predicting covariant

sites in proteins, which often contain the information of intra-

molecular or inter-molecular contacts [9,10]. Such covariance is

usually inferred from statistical analysis among the members of the

examined protein family. Statistical coupling analysis (SCA),

mutual information (MI) analysis and residue correlation analysis

(RCA) are the most typical covariance analysis algorithms. These

methods have been used to detect inter-residue contacts within

proteins [11–13], identify communication pathways in allosteric

proteins [14–18] and study drug-induced mutations using clinical

data [19,20]. No single method has proved itself vastly superior to

others [21] and different methods have different sensitivities to

identical background conservation [22]. In recent years, some

modifications over these methods were proposed in an attempt to

reduce the proportion of false-positive predictions [23–26].

However, relatively few studies have systematically evaluated the

degree to which these modifications are superior to the original

methods. However, by combining multiple methods to compen-

sate each other, it is possible to get more reliable results [27].
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In this article, three covariance analysis algorithms were

separately applied to analyze a structure-based MSA of the

catalytic domains of Ser/Thr PKs. We identified two distinct

groups of highly coupled amino acid positions in the catalytic

domains by combining the results of these three methods.

Mapping these positions onto the typical two-lobe structure of

PK catalytic domain showed that these two groups of positions

formed two different physically close networks: h-shaped and c-

shaped networks. The h-shaped network links the active site cleft

and substrate binding regions. This network might participate in

PKs recognizing and interacting with their substrates. The c-

shaped network, linking the activation loop and substrate binding

regions, might play an important role in supporting the activation

loop and substrate binding regions before catalysis, and participate

in product releasing after catalysis. Some of the residues identified

in these two networks have been shown to be important in

interacting with substrates. Our results can provide some new

insights into the mechanisms of interactions between PKs and

substrates.

Results

Sequence Collection and Pretreatment
In order to ensure that sequences of alignment are represen-

tative and diverse, we collected the homologue sequences by using

seventeen different sequences as initial query sequences. These

initial query sequences come from nine eukaryotic organisms

including vertebrate, invertebrate, plant and fungus, and they are

distributed over all subfamilies of Ser/Thr PKs (See Supporting

Information Figure S1) [8,28]. These collected homologue

sequences are from 206 eukaryotic organisms, and therefore can

adequately represent the properties of the Ser/Thr PK catalytic

domain family and eliminate the phylogenetic bias in the

collection of sequences. For the sake of obtaining high quality

alignments, we used a structure-based sequence alignment server,

FUGUE [29], to align our collected sequences. It has been known

that protein structure is far more conserved than protein sequence

over the course of evolution [30], so we can extract more

evolutionary information from a structure-based MSA. To avoid

apparent co-variation due to a common phylogenetic origin of

closely related sequences, any redundant sequences must be

removed [14,31]. This was accomplished by creating a new

alignment and adding one sequence at a time from the old

alignment, where sequences were added only if they had ,90%

identity to all sequences already in the new alignment. At last, the

new alignment has 1112 sequences, and this alignment becomes

the basis for the following analyses. The partial sequence

alignment result is showed in Supporting Information Figure S2.

The alignment generated many gaps. According to previous

studies [27], the number of gaps in each column has influence in

the coupling energy calculation of SCA. To reduce this potential

influence, we removed the columns with more than 47 gaps (.5%)

in the alignment. This resulted in an 11126223 matrix, which was

used for RCA, MI analysis and the calculation of coupling energy

of SCA. This alignment is available for download in Supporting

Information Text S1.

Statistical Coupling and Mutual Information Analyses
To find out whether our MSA is a well-sampled set for the Ser/

Thr PK catalytic domain family, we first compared the overall

amino acid distributions of MSA with those of all proteins from the

Swiss-Prot database [32]. Note that due to the large sequence

divergence of this family, there are only slight differences between

the overall amino acid distributions of all proteins and those of

Ser/Thr PK catalytic domains alone (Figure 1A), which indicates

that the collected sequences are representative of the Ser/Thr PK

catalytic domain family, and amino acid distributions at sites are

indeed reflective of the functional or structural constraints on this

family [14,18]. In addition, the MSA should be so large that

random elimination of sequences from the alignment will not

change the amino acid conservation at each site. We tested our

MSA following the methods described in [18] and concluded that

our MSA is large enough and satisfies the condition of statistical

equilibrium (see Supporting Information Figure S3A). The

magnitude of the static energy represents the extent of deviation

of the amino acid distribution at each site from the mean of the

alignment, and therefore it represents the extent of residue

conservation at that site. Figure 1B shows the static energy of all

347 positions using the numbering of catalytic domain of cAMP-

dependent protein kinase (PKAc). This figure describes the overall

conservation profile of the Ser/Thr PK catalytic domain family.

The static energy for all positions was then mapped onto the

structural model of PKAc (Figure 1C). The most conserved

positions are mainly located in the active site cleft, and the

intermediately conserved positions are clustered in other function-

ally important regions. This finding is consistent with the intuitive

expectation that a proper measure of conservation should be able

to map functionally important sites on a protein.

At the second step, we performed perturbations to calculate the

statistical coupling energy [14,18]. There are 126 sites with at least

one moderately conserved residue (30%,p,85%). Similarly,

perturbations at sites in the MSA should produce sub-alignments

that are also large and diverse enough so that they still represent

subsets of the parent MSA and do not substantially alter the state of

statistical equilibrium. We used a method similar with the above to

test each perturbation site, and we found that all 126 perturbation

sites used by us satisfy the criterion of statistical equilibrium (Figure

S3B). Perturbations were performed (one perturbation at each site)

for these 126 sites, and 126 subsets were generated. The extracted

sequences in a subset containing only the most conserved residue at

the perturbation site resulted in amino acid redistribution at this and

all other sites. If the perturbation at one site significantly changes the

amino acid distribution at another site, then these two sites have

high coupling energy. Otherwise, they have low coupling energy.

This resulted in a 2236126 matrix.

To understand the information contained in this statistical

coupling matrix, we performed an iterative two-dimensional

clustering analysis. This analysis method was originally developed

for identifying co-expressed gene clusters in many DNA micro-

array data analyses [33,34]. The main idea is to narrow down both

the perturbations that we use and the positions that are clustered,

each time extracting the sub-matrix that were clustered together in

the previous iteration and that contains large coupling energy or

removing the sub-matrix that may disturb proper clustering

results. Here, instead of clustering genes with similar expression

profiles in different samples, we used iterative clustering to reveal

positions in proteins that display similar patterns of statistical

coupling in many perturbation experiments. Because these

coupled ‘‘signals’’ may be masked by the ‘‘noises’’ generated by

other positions, we checked each position and perturbation before

clustering, and discarded 47 positions and 4 perturbations for

which the standard deviation of their coupled values is less than

0.1 in corresponding rows or columns [34]. In general, only a

small subunit of positions are strongly coupled, and these coupled

positions should show self-consistency, that is, these positions

couple largely only to each other [17,18]. Two iterations of the

clustering were performed (see Supporting Information Figure S4).

In the first iteration, we found a cluster of 4 perturbations which

CMA on Ser/Thr PKs
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have distinctly different coupling energy profiles and do not show

the property of self-consistency. We filtered this cluster because it

can interfere in the presentation of ‘‘proper position clusters’’. In

the second iteration, we focused on the matrix around regions of

large DDGstat values, and identified a group of 18 positions and 13

perturbations that form a self-consistent cluster (Figure 2A). These

positions show similar patterns of coupling for these 13

perturbations (see Supporting Information Figure S5) and all of

them have high DDGstat values for any perturbation used to

identify them (Figure 2B).

In order to validate the above results, we performed MI analysis

with the same MSA except for two completely conserved positions.

In MI analysis, we normalized each MI score by the corresponding

pair entropy (Hcd) to reduce the impact of phylogenetic

correlations [35]. Similarly, we also removed the four exceptional

sites identified in the above SCA in order to have proper results.

The position pairs with the highest MI/Hcd ratios were identified

by calculating the Z-score for each ratio in each position pair.

Prior modeling showed that a Z-score of 4 is the minimum value

that reliably identified co-evolving positions in in silico-generated

alignments [35], and so this Z-score value was chosen as our

minimum level of significance. Unlike SCA, MI analysis identified

two clusters of co-evolving residues as shown in Figure 3, and the

positions included in Figure 3A have remarkable overlapping with

those predicted by SCA. Apparently, a cluster of co-evolving

residues was not found in the statistical coupling matrix by the

clustering analysis. By rechecking the coupling energy profile of

each perturbation site presented as a bar chart, we found the

coupling energy profiles of several perturbations, as expected, are

very similar (see Supporting Information Figure S6). After we

extracted the coupling profiles of these perturbations to compose a

new matrix for clustering (see Supporting Information Figure S7),

we found a stable and self-consistent cluster of 10 positions, as

shown in the Figure 4A. These positions remarkably overlap with

sites in the Figure 3B predicted by MI analysis. Because the highest

coupling energy values in these profiles (Figure 4B) are smaller

than those of sites identified in Figure 2A and the number of sites

in this coupled cluster is fewer, these coupled ‘‘signals’’ are liable to

be masked and interfered by other higher ‘‘noises’’, and as a result,

the above clustering could not find out this coupled cluster.

Figure 1. Amino acid frequencies and static energy. (A) A comparison of amino acid distributions in the MSA (filled bars) and in all proteins
from the Swiss-Prot database (open bars). (B) The static energy (arbitrary unit) is plotted against primary structure using the numbering of PKAc. The
main a-helices and b-sheets are shown below the corresponding positions. (C) A mapping of static energy onto the structure of PKAc (1ATP). The
orange cartoon model shows the peptide ligand of PKA. The stick model represents ATP molecule bound at active site cleft of PKAc.
doi:10.1371/journal.pone.0005913.g001

CMA on Ser/Thr PKs
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In addition, we defined the highly conserved sites based on the

probability of residues (p$85%) at a site. There are 20 highly

conserved sites in the MSA. After mapping these sites onto the

3D structural model of PKAc, we observed these highly

conserved residues form a conserved core (see Supporting

Information Figure S8). Most of them are hydrophobic amino

acids. Apparently, such a hydrophobic core contributes to

structural stability.

Residue Correlation Analysis
In order to further verify the above results, we performed RCA as

described in [36] with the same MSA used in MI analysis. This

Figure 2. Clustering results of coupling energy matrix in the statistical coupling analysis (SCA). (A) The final cluster of 18 positions and
13 perturbations was obtained by iterative clustering. (B) The coupling energy profile of perturbation site 49L which is included in the final cluster.
doi:10.1371/journal.pone.0005913.g002

CMA on Ser/Thr PKs

PLoS ONE | www.plosone.org 4 June 2009 | Volume 4 | Issue 6 | e5913



analysis resulted in a 2236223 matrix. For the same purpose as in

SCA, this matrix was clustered using the two-dimensional hierarchi-

cal clustering method (Figure 5). Two clusters of high correlation

coefficients were indicated from the large background with the red

and green lines in the dendrogram (Figure 5A). The details of these

two clusters are shown in Figure 5B. The sites in clusters m and n

substantially overlap with those in the corresponding clusters

identified by both SCA and MI analysis, respectively. This

demonstrated again the existence of two different clusters of

correlated positions in the catalytic domains of Ser/Thr PKs.

To compare these covariant positions identified by these three

methods, we listed them in Table 1. Note that more than 70% of all

positions predicted by one method are also identified by other one

or two methods. To visualize these two different co-evolving

position clusters, we mapped the positions of each cluster onto the

3D structure of PKAc (Figure 6). Most of these highly coupled

positions in each cluster form a physically close network. According

to the distribution of these positions on the 3D structure, we named

these two networks as h-shaped and c-shaped networks, respectively

(Figure 6A and 6B). These co-evolving positions can not be found by

the structure or sequence conservation analysis.

Discussion

All members of Ser/Thr PK family have a common progenitor

[8,30]. As stated in the previous sections, the basic fold of catalytic

domains of PKs is structurally well conserved. This conserved

characteristic fold forms the structure basis of residue co-evolving

in this family. Although these ancestral PKs have been heavily

modified over the course of evolution to phosphorylate a variety of

targets, interact with a range of partner proteins, and respond to

different regulatory mechanisms, they might still share some

common molecular mechanisms of both catalysis and substrate

binding/releasing [30].

The H-shaped Network
Most sites in the h-shaped network are clustered in the substrate

binding groove extending from the active site cleft to the C-

terminus of the catalytic domain, some of which have been

reported important for interactions with peptide substrates [4].

This fact indicates their importance in determining the substrate

specificity of PKs. For instance, L49 and F54 lie in the nucleotide

positioning motif and are flanked by highly conserved residues.

G126, E127, F129, and E170 are situated in the linkage region,

which links large and small lobes. The adenine ring and

phosphates of ATP form many ionic and hydrogen-bonding

interactions with many residues, including F54, E127 and E170

and other important residues [37], that are highly conserved and

can not be detected by these covariant analysis methods [22].

E127 and E170 also interact with the P-3 and P-2 residues in the

peptide substrate. G200 acts as the docking surface for the P site

backbone. G202 and L205 have hydrophobic interactions with the

P+1 residue [37,38]. E203 provides a docking site for the P-6

residue. A recent study with a Ser/Thr PK, GSK-3b, indicated

that the F67 (F54 in PKA) plays an important role in

phosphorylating its substrate [39]. Several predicted substrate

binding sites also interact with the conserved residues in the

catalytic loop that in turn can align with the P-site hydroxyl group

for transferring of the c-phosphate group of ATP [40,41]. Our

results not only confirm these observations but also provide the

details of the linking residues involved in this process.

It is now clear that in many cases short peptide substrate

sequences may not exploit the complete binding capacity offered by

PKs [42], and PKs may utilize one or more regions outside the

consensus region for substrate recognition and recruitment [43,44].

These additional docking interactions increase the affinity between

kinases and their protein substrates by many times [45]. In Ser/Thr

PKs, the docking domains are often part of the catalytic domain [7].

The strategic location of those distal residues away from the active

site cleft in the h-shaped network strongly suggests they might serve

as docking or extended substrate-binding regions to participate in

the interactions between PKs and their protein substrates. Most of

these co-evolving residues are in an intermediate level of

conservation so that many sites have not been noticed in previous

studies [22]. Even so, crystal structures [46,47] and mutagenesis

[48] studies have provided some support for this speculation. In

Figure 3. Results of mutual information (MI) analysis. (A) and (B) respectively denote one group of co-evolving positions. Linkages between
positions in the MSA with residue numbers from a representative structure (1ATP) represent Z-scores more than 4.
doi:10.1371/journal.pone.0005913.g003

CMA on Ser/Thr PKs
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different kinase subfamilies, these sites may have different residues

[3,4], and different substrates recognize different positions [46,47].

Differences in the composition of residues in the distal sites and the

local preferences of the catalytic core for different amino acids

around the P-site in substrates work together to increase the overall

selectivity of kinase-substrate interactions [49].

Through interactions of co-evolving residues, protein substrate

binding induces conformational changes of PKs that are essential

for phosphoryl transfer [50–52]. In the opposite direction, ATP

binding, situated in the active site cleft, also induces conforma-

tional changes and is coupled with distal substrate binding [50,52–

54]. From the distribution of these coupled sites, we believe the h-

shaped network may provide a structural basis for this coupling

[55]. Recently, Taylor’s group proposed that there appear to be

two lines of communication in coupling adenosine binding with

peptide binding [56]. One is from the active site cleft to the D helix

via E127; and the second possible link from the active site cleft to

peptide-binding ledge is through the F helix in two ways. One way

is that the F helix may communicate ATP binding from highly

conserved D220 to substrate binding regions. These two links are

identical with the h-shaped network predicted by us. Both V226

and Y229 predicted by us are exactly situated in the F helix. A

Figure 4. Clustering results of coupling energy matrix with perturbations obtained by MI analysis and SCA. (A) The final cluster of 10
positions and 8 perturbations was obtained by iterative clustering. (B) The coupling energy profile of perturbation site 222W which is included in the
final cluser.
doi:10.1371/journal.pone.0005913.g004

CMA on Ser/Thr PKs
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second way is through F238 and W222. This link is overlapping

with the c-shaped network predicted here, which will be discussed

later. In a word, the h-shaped network may play important roles in

PKs interacting with their substrates, which matches some

previous experimental results.

The C-shaped Network
In the c-shaped network, the coupled residues, mainly clustered

in one side of the substrate binding regions, link the activation loop

with different parts of the substrate binding regions. Several

publications provided important implications for the roles of this

network. Crystal structures implicated that this network may have

functions in stabilizing the activation loop and substrate binding

regions [41,56]. However, recent studies with S. cerevisiae PKA

mutants Tpk1K336A/H338A and Tpk1R324A, mutant residues

corresponding to the K292, H294, R280 in PKA, found these

mutants can bind more of their substrates than the wild protein in

S. cerevisiae, and the binding observed was specific to substrates and

was dependent upon residues known to be important for

interactions with peptide substrates [48]. H294 is within the c-

shaped network. R280 is a highly conserved site and forms an ion

pair with another conserved site E208, which is also included in

the c-shaped network. This ion pair is stabilized by another site in

the c-shaped network, W222 [37]. W222 may play a key role in

substrate-associated conformational changes [57]. These observa-

tions suggest that the c-shaped network might participate in the

phosphoproduct releasing, and the structure stability is important

for this network to perform this function. In the CK1 subfamily of

Ser/Thr PKs, the A206-P207-E208 sequence is replaced by the

motif SIN, which is conserved in the CK1 subfamily, hence the ion

pair (E208-R280) is not formed, but residue E202 (W222) forms a

new ion pair with residue R261 (L273 in PKA) [30]. The overall

structure of the C-terminal sub-domain of CK1 is still very similar

with those for other Ser/Thr PKs. Coincided with the phosphoryl

Figure 5. Results of residue correlation analysis (RCA). (A) Two-dimensional clustering analysis of correlation coefficients. The clusters with
high correlation coefficients are highlighted by red and green lines in the dendrogram. (B) Closer view of the highly correlated clusters.
doi:10.1371/journal.pone.0005913.g005

CMA on Ser/Thr PKs
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transfer step, an order-disorder transition was generated due to an

internal entropy contribution to catalysis [58]. The electrostatic

repel between the highly conserved site D166 and the phospho-

residue in product could serve to facilitate the phosphoproduct

dissociation [59]. Based on all these results, we deduce that the c-

shaped network stabilizes the activation loop and substrate binding

regions before catalysis, and after phosphoryl transfer, serves as a

signaling pathway by which the electrostatic repel energy and the

local conformational changes due to internal entropy contribution

are propagated and lead to the release of phosphoproduct.

In the end, there are several issues to be concerned with. In

SCA, we found that four exceptional perturbations can generate

remarkably high coupling energy for many other sites, but these

sites are not self-consistent (see Supporting Information Figure

Figure 6. Mapping two clusters of correlated sites onto the 3D structure of PKAc. (A) The h-shaped network. The orange sphere model
shows the correlated sites identified by two or three methods, while the lightpink sphere model represents the correlated sites identified by only one
method. (B) The c-shaped network. The blue sphere model shows the correlated sites identified by two or three methods, while the lightblue sphere
model represents the correlated sites identified by only one method. The peptide ligand is showed with lightgreen cartoon model. The stick model
represents ATP molecule bound at active site cleft of PKA.
doi:10.1371/journal.pone.0005913.g006

Table 1. Highly coupled sites identified by SCA, RCA and MI analysis.

RCA MI SCA RCA MI SCA RCA MI SCA

L49 T195 Y229 Y229 Y229

F54 C199 G234

L74 G200 G200 P237 P237

H87 P202 P202 P202 F238 F238

P101 E203 I250 I250 I250

V104 L205 L205 F257

G126 G126 G126 P207 P207 P207 D267

E127 E127 E127 E208 E208 E208 L269

F129 F129 F129 I209 L273 L273 L273

E140 E140 I210 H294 H294

E170 E170 E170 Y215 Y215 Y215 K295

Q181 Q181 Q181 W222 W222 W222 W296 W296 W296

A188 V226 V226 V226

doi:10.1371/journal.pone.0005913.t001

CMA on Ser/Thr PKs
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S9A). We mapped these four sites onto the 3D structure of PKAc

and found that these sites are situated on the boundary between

these two networks (Figure S9B). Open question remains as to

what roles these sites play in proteins. In addition, it has been

noted that site pairs identified as correlated tend to be relatively

close in protein tertiary structure, however, many authors have

proved that correlations between sites that are physically distant in

protein structures might also be attributable to protein function

[16,31,60–62]. We do not know how some coupled sites, such as

Leu74, Val104 and Gln181, which are physically distant from

other sites, are functionally correlated with other residues

(Figure 6B). In general, these co-evolving positions are thermody-

namically coupled, but there is little evidence for the hypothesis

that thermodynamic coupling is limited to the subset of co-

evolving residues. Consequently, our results only demonstrate that

we identified two distinct co-evolving networks in the catalytic

domains of Ser/Thr PKs by using correlated mutation analysis,

and these two networks might play important roles in mediating

PKs interacting with their substrates. We do not deny that other

residues might also participate in such a process directly or

indirectly. Our results do not provide more details on how these

coupled residues play their roles in the process of PKs interacting

with their substrates. However, our results have been able to

provide new helpful information for further understanding the

mechanisms of this interacting process.

Materials and Methods

Data Source and Multiple Sequence Alignment
The sequences of the catalytic domains of Ser/Thr PKs were

collected from the non-redundant database of protein sequences

by PSI-BLAST [63] with default settings; seventeen representative

eukaryotic catalytic domain sequences with known structures were

used in initial searches, of which fifteen was included in the

HOMSTRAD [64]. The structure-based MSA was created by

using FUGUE [29]. Alignments were then manually adjusted to

improve the overall alignment. Because cAMP-dependent Protein

kinase (PKA) often serves as a prototype of the entire PKs [37], the

final alignment was truncated to include only positions present in

the catalytic subunit of PKA (PKAc), and for all calculations, the

numbering of PKAc was used. Finally, the alignment of 1238

sequences including 347 sites is available for analysis.

Statistical Coupling Analysis (SCA)
The static energy (DGstat) for each site and statistical coupling

energy (DDGstat) between any two sites were calculated by using the

SCA method described by Lockless and Ranganathan [14] and

Fodor et al. [65]. The programs were written in MATLAB

(Mathworks).

Mutual Information (MI) Analysis
MI analysis was performed according to the methods described

in [35]. To reduce the influence of entropy on MI values, the raw

MI values were normalized (i.e. divided by the joint entropy of the

corresponding positions, Hcd). A Z-score (the number of standard

deviations of MI/Hcd) was assigned to each normalized ratio. If a

Z-score was above a fixed threshold ( = 4), two corresponding sites

were linked by an edge, and each site was represented as a node.

The calculation programs were written in MATLAB. Network

graphs were visualized in Cytoscape 2.0 [66].

Residue Correlation Analysis (RCA)
Correlated coefficients for any two sites were calculated as

previously described [11,36]. For a given pair of sequences (k, l),

each substitution at a position (i or j) is associated with a similarity

score (Xikl or Xjkl, respectively) obtained from the McLachlan

scoring matrix [67]. The program was written in Fortran.

Clustering Analysis
As for SCA, a two-dimensional hierarchical clustering analysis

was iteratively performed on coupling energy matrices in order to

identify co-evolving residues in the catalytic domains of Ser/Thr

PKs [33]. The Euclidean distance was used for calculating

distances, and the complete linkage was used in clustering. As

for RCA, a similar two-dimensional hierarchical clustering

analysis was carried out on a correlation coefficient matrix, but

did not need iterative clustering. Softwares were written in

MATLAB.

Supporting Information

Text S1 This file includes the multiple sequence alignment of

catalytical domains of Ser/Thr protein kinases.

Found at: doi:10.1371/journal.pone.0005913.s001 (0.25 MB

TXT)

Figure S1 The distribution of initial query sequences which

were used to collect the homologue sequences on the phylogenetic

tree of eukaryotic PK family. The phylogenetic tree is visualized by

HyperTree sofeware

Found at: doi:10.1371/journal.pone.0005913.s002 (1.20 MB TIF)

Figure S2 A colorful representation for the partial result of

sequence alignment with the representative protein structures of

catalytic domains of serine/threonine kinases family (top 15 lines)

using FUGUE

Found at: doi:10.1371/journal.pone.0005913.s003 (2.00 MB TIF)

Figure S3 Statistical equilibrium in MSA and criterion for

selection of perturbations. (A) The average static energy at ten

unconserved sites is plotted against the number of sequences

randomly selected from the complete MSA. (B) The average

statistical coupling energy for ten unconserved sites is plotted

against the number of sequences randomly selected from the

complete MSA. This plot is for perturbation site 170. Other

perturbations can be tested according to the same method. Error

bars represent the standard deviation of the mean at the ten sites.

Found at: doi:10.1371/journal.pone.0005913.s004 (0.78 MB TIF)

Figure S4 Iterative clustering of the statistical coupled matrix for

the catalytic domains family of Ser/Thr PKs. (A) The unclustered

matrix, ordered by positions (N to C terminus) on rows

perturbations (N to C terminus) on columns. (B) The initial round

of two-dimensional hierarchical clustering revealed one cluster of

perturbations has distinct coupling energy profile, and is not self-

consistent. These perturbations were represented by magenta lines

in the dendrogram. Self-consistency means that each cluster

represents a set of positions that couple largely only to each other.

(C) The next round involved removing the perturbation cluster

which is not self-consistent, and then re-clustering. This round

revealed one cluster which is self-consistent and it was represented

by red lines in the dendrogram. (D) At the final round, the sub-

matrix corresponding to the red lines from (C) was extracted and

re-clustered

Found at: doi:10.1371/journal.pone.0005913.s005 (1.35 MB TIF)

Figure S5 Two profiles of statistical coupling energy generated

by perturbing at residues 49 (A) and 170 (B) included within the h-

shaped network are shown in order to explain the self-consistency

of this network.

Found at: doi:10.1371/journal.pone.0005913.s006 (1.20 MB TIF)
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Figure S6 Two profiles of statistical coupling energy generated

by perturbing at residues 222 (A) and 294 (B) are represented to

illustrate the self-consistency of these sites.

Found at: doi:10.1371/journal.pone.0005913.s007 (1.00 MB TIF)

Figure S7 Iterative clustering of the statistical coupling matrix in

order to identify another cluster of coupled positions. (A) The

unclustered matrix as illustrated in Figure S4. (B) The initial round

of two-dimensional hierarchical clustering with a group of specific

perturbations chosen by observing the results of MI and SCA

invealed a group of positions which are self-consistent and they

were represented by the red lines in the dendrogram. (C) The sub-

matrix corresponding to the red lines from (B) was extracted and

reclustered

Found at: doi:10.1371/journal.pone.0005913.s008 (0.76 MB TIF)

Figure S8 Mapping only the highly conserved sites (A) and

mapping both the highly conserved and co-evolving sites identified

by SCA (B) onto the tertiary structure of PKA catalytic domain

(1ATP).

Found at: doi:10.1371/journal.pone.0005913.s009 (1.35 MB TIF)

Figure S9 Mapping four exceptional sites onto the tertiary

structure of 1ATP. (A) The result of initial round clustering as

demonstrated in Figure S2B. The magenta lines on the column

represent four exceptional sites that have distinct coupling energy

profiles. (B) These four sites are mapped onto the 3D structure of

1ATP. (C) Showing the relationship between these exceptional

sites and two co-evolving networks on the 3D structure of 1ATP.

Found at: doi:10.1371/journal.pone.0005913.s010 (1.88 MB TIF)
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