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Thermogenic adipocytes possess a promising approach to combat obesity with its
capability promoting energy metabolism. We previously discovered that deletion of
GPR30 (GPRKO), a presumably membrane-associated estrogen receptor, protected
female mice from developing obesity, glucose intolerance, and insulin resistance when
challenged with a high-fat diet (HFD). In vivo, the metabolic phenotype of wild type (WT)
and GPRKO female mice were measured weekly. Acute cold tolerance test was
performed. Ex vivo, mitochondrial respiration of brown adipose tissue (BAT) was
analyzed from diet-induced obese female mice of both genotypes. In vitro, stromal
vascular fractions (SVF) were isolated for beige adipocyte differentiation to investigate
the role of GPR30 in thermogenic adipocyte. Deletion of GPR30 protects female mice
from hypothermia and the mitochondria in BAT are highly energetic in GPRKO animals
while the WT mitochondria remain in a relatively quiescent stage. Consistently, GPR30
deficiency enhances beige adipocyte differentiation in white adipose tissue (WAT) and
activates the thermogenic browning of subcutaneous WAT due to up-regulation of UCP-
1, which thereby protects female mice from HFD-induced obesity. GPR30 is a negative
regulator of thermogenesis, which at least partially contributes to the reduced adiposity in
the GPRKO female mice. Our findings provide insight into the mechanism by which
GPR30 regulates fat metabolism and adiposity in female mice exposed to excess calories,
which may be instrumental in the development of new therapeutic strategies for obesity.

Keywords: mitochondrial respiration, thermogenesis, GPR30, female mice, fatty acid oxidation
Abbreviations: Ab/Am, antibiotic antimycotic; AC, adenylate cyclase; ASM, acid soluble metabolites; BAT, brown adipose
tissue; BSA, bovine serum albumin; BW, body weight; cAMP, cyclic adenosine monophosphate; CRE, cAMP response element;
ECAR, extracellular acidification rate; FBS, fetal bovine serum; GPCRs, G protein-coupled receptors; GPR30, G protein-
coupled receptor 30; GPRKO, GPR30 knockout; HFD, high-fat diet; IBMX, 3-isobutyl-1-methylxanthine; KRB, Krebs-Ringer
bicarbonate buffer; OCR, oxygen consumption rate; PET, positron emission tomography; PKA, protein kinase A; PPARg,
peroxisome proliferator activated receptor g; RT, room temperature; STD, standard chow diet; SVF, stromal vascular fraction;
T3, triiodothyronine; UCP-1, uncoupling protein 1; WAT, white adipose tissue.
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INTRODUCTION

The escalation in the prevalence of obesity worldwide has nearly
tripled since 1975 and continues to rise rapidly (1). Obesity
increases the risks of a series of severe health conditions,
including type 2 diabetes, cardiovascular disease, musculoskeletal
disease, Alzheimer’s disease, depression, and some types of cancer
(2–4). Obesity might not be a fatal condition; however, it impairs
life quality of individuals and becomes a major public health
burden because of its complex pathophysiology. Obesity can be
caused by excessive energy intake, reduced energy expenditure, or
a combination of both (5, 6). Individuals with obese or overweight
conditions often have difficulties restoring energy homeostatic
capabilities, even after short-term behavioral changes or medical
interventions to lose weight (4). Although mounting efforts to
promote healthy eating habits and more physical activity to
enhance energy expenditure can be helpful at the societal level,
these attempts are not sufficient for people already living with a
high body weight, particularly when there is limited compliance
with prescribed behavioral changes. Therefore, impacting energy
homeostasis without altering energy intake or physical activity
would pose a challenging yet promising intervention option to
combat obesity.

The white adipose tissue (WAT) is the major energy storage
tissue (6, 7), whereas brown adipose tissue (BAT) dissipates excess
energy to generate heat through the action of mitochondrial
uncoupling protein-1 (UCP-1), thereby protecting against
hypothermia and obesity (8). Results from positron emission
tomography (PET) scanning showed that human adults possess
depots of BAT, which share physiological similarity with rodent
beige fat rather than the classical rodent interscapular BAT (9, 10).
Though recruited from subcutaneous WAT, beige adipocytes
contain a relatively high density of mitochondria and UCP-1
(11), which are highly inducible in response to b adrenergic
receptors stimuli, including cold and overfeeding (10, 12).

The stimulated catabolism of lipids and carbohydrates in
thermogenic adipocytes enhances metabolic homeostasis (13, 14)
and this thermo-promoting response is closely influenced by G
protein-coupled receptors (GPCRs) (15–17). GPCRs are the
largest family of cell membrane-associated receptors in the
human genome (18). GPCRs have a signature structural
similarity containing seven transmembrane domains, one
extracellular amino terminus, and one intracellular carboxyl
terminus that transduce cellular signaling (19). Metabolic
substrates oxidation fuels the mitochondrial futile cycles (20)
and the mitochondrial UCP-1-mediated respiration dissipates
energy chemicals to ultimately generate heat in thermogenic
adipocytes (21). GPCRs are involved in the stimulation of
thermogenic beige adipocyte recruitment in the subcutaneous
WAT (10, 22). We previously discovered that deletion of G
protein-coupled receptor 30 (GPR30), a recognized membrane-
associated estrogen receptor (23), protected female mice from
high-fat diet (HFD)-induced obesity (24). While the knockout of
GPR30 (GPRKO) didn’t alter the amount of food intake, GPRKO
female mice had significantly higher body temperatures as
compared with HFD-fed WT female mice, suggesting that
there is a difference in thermogenesis that likely contributes to
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the reduced fat accumulation over time in GPRKO female mice
fed the HFD. Thus, we tested in the present study whether
deletion of GPR30 may directly modulate thermogenic capacity
in adipose tissue, thereby exerting protective effects against diet-
induced obesity.
MATERIALS AND METHODS

Materials
Dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), insulin,
triiodothyronine (T3), indomethacin, rosiglitazone, forskolin
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
DMEM-high glucose, bovine serum albumin (BSA), and fetal
bovine serum (FBS) were from HyClone (Logan, UT, USA).
Antibiotic Antimycotic Solution (Ab/Am) was from Corning
(Manassas, VA, USA) and Collagenase was from Worthington
(Lakewood, NJ, USA). Antibody for UCP-1 (AB3036) was from
Millipore (Burlington, MA, USA). Antibody for Tubulin was
from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Nitrocellulose membranes and protein assay kits were from
Bio-Rad (Hercules, CA, USA). Cyclic AMP ELISA kit was
from Cayman Chemical Co (Ann Arbor, MI, USA). All other
chemicals and enzymatic kits are indicated below.

Animals
All protocols for the following animal experiments were
approved by the Institutional Animal Care and Use Committee
at Virginia Tech. GPR30 heterozygous mice on a 129
background were kindly provided by Dr. Deborah J. Clegg (UT
Southwestern Medical Center, TX). Homozygous GPRKO and
their WT littermates were generated by mating heterozygous
mice, and genotyped using PCR. All mice were housed under
constant temperature (22-24°C) with a 12h light/dark cycle and
free access to standard chow diet (STD, D06072701, Research
Diets, New Brunswick, NJ, USA) and water.

Mitochondrial Respiration Measurements
BothWT and GPRKO female mice (n=3) at 12 weeks of age were
housed separately and fed a 58% HFD (Research Diets Inc., New
Brunswick, NJ, USA) ad libitum for one month to induce
adiposity. Then the measurements of mitochondrial respiration
of the whole adipose tissue was assessed as instructed (25, 26)
with modifications. Briefly, approximately 10 mg of BATs was
isolated from the same interscapular area of each animal and the
fat pads were cut into small pieces and placed into the Agilent
Seahorse (Santa Clara, CA) XF24 tissue culture plate. After
washing with the assay buffer (Seahorse XF base medium)
three times, mitochondrial respiration via oxygen consumption
rate (OCR) and extracellular acidification rate (ECAR) were
measured in the XF24 plate reader following the established
protocol (25) to determine the mitochondrial response: 8 µg/mL
oligomycin, 8 µM FCCP (mitochondria l oxidat ive
phosphorylation uncoupler), 12 µM antimycin A (AA), and 3
µM rotenone (Rote). Basal OCR was determined by five
consecutive measurements after tissue equilibration and the
overall OCR was calculated by averaging the total 20
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measurements. Data were normalized to the wet weight of
fat pads.

Fatty Acid Oxidation Measurements
Fatty acid oxidation in the interscapular BAT from WT and
GPRKO female mice were assessed by measuring and summing
14CO2 production and 14C-labeled acid-soluble metabolites from
the oxidation of [1-14C] palmitic acid from Perkin Elmer
(Waltham, MA) as previously described (24). Both WT and
GPRKO female mice used for this study were fed a HFD for one
month starting 12 weeks of age.

Adipose Tissue Stromal Vascular Fraction
(SVF) Cells Isolation
SVF from WAT of WT and GPRKO female mice were isolated as
instructed (27). Briefly, subcutaneous white fat pads were washed in
Krebs-Ringer bicarbonate buffer (KRB) supplemented with 1% BSA
then quickly transferred to the collagenase solution for
approximately 50 min at 37°C with 10 seconds shaking at 10
minutes interval apart. After the collagenase digestion, stromal
cells were separated by centrifugation twice at 300 rcf for 5 min
and washed twice with prewarmed PBS supplemented with 1% BSA
afterwards. SVF were then seeded for subsequent experiments.

Intracellular Cyclic AMP (cAMP)
Measurements
SVF cells isolated from obese WT and GPRKO female mice were
seeded in 6-well plates at 1 x 106 cells/well. On the next day after
seeding, culture medium was changed to KRB for 20 min and the
SVF cells were then treated with vehicle or forskolin (5 µM) for
15 min. The intracellular cAMP contents were measured by
using a cyclic AMP ELISA kit as previously described (28). Data
were normalized to the cellular protein concentration in the
same samples.

CRE-Luciferase Activity Measurements
To determine whether GPR30 affects cAMP-regulated
transcription, CRE-luciferase (CRE-luc) activity in SVF cells
were measured as previously described (29). Briefly,
subcutaneous SVF cells from WT and GPRKO female mice
were seeded in a 12-well plate until approximately 60%
confluence. Then cells were co-transfected with 0.25 mg CRE-
luc reporter plasmid and 5 ng pRL reporter control vector per
well using Lipofectamine 2000 transfection reagent (Invitrogen,
CA, USA). After overnight transfection as instructed, stromal
cells from HFD-fed WT and GPRKO female mice were starved
with serum-free medium for 4 hours. After starvation, stromal
cells were changed to complete culture medium (DMEM
supplemented with 10% FBS and 1% Ab/Am) with or without
forskolin (5 mM) for 16 hours. Luciferase activity was determined
using a dual-luciferase assay system (Promega, WI, USA) and
normalized to pRL renilla activity.

Beige Adipocyte Differentiation
Beige adipocyte differentiation was induced by treating confluent
but not packed stromal vascular cells isolated from subcutaneous
WAT with DMEM medium containing 10% FBS, 1% Ab/Am,
Frontiers in Endocrinology | www.frontiersin.org 3
125 µM indomethacin, 5 µM dexamethasone, 0.5 mM IBMX,
and 0.5 µM rosiglitazone. Two days after induction, cells were
maintained in medium containing 10% FBS, 1% Ab/Am, 5 µg/ml
insulin, and 1 nM T3 for an additional two days, and then
cultured in complete medium for 3-4 days until the multilocular
droplets formed and filled with lipids (30). The triglycerides
stored in the droplets of beige adipocytes were quantified by an
Oil Red O staining assay as previously described (24). To
investigate the role of GPR30 in SVF differentiation by using
synthetic compounds, the GPR30 specific agonist G-1 (100 nM)
and antagonist G15 (5 mM) were added together with the
induction cocktail to both WT and GPRKO cells during beige
adipocyte differentiation. Total RNAs were collected after
differentiation and thermogenic genes were analyzed.

Cold-Induced Thermogenesis In Vitro
Stromal vascular cells were isolated from subcutaneous WAT of
WT and GPRKO female mice and then treated with beige
adipocytes differentiation cocktail as described above. Total
RNAs were collected on the initiation day and termination day
of differentiation with or without cold exposure (31°C, 5% CO2)
for four hours to investigate the effect of GPR30 in cold-
stimulated thermogenesis (31, 32).

Cold Tolerance Test
Starting at 10 weeks of age, the body weight (BW), food intake,
and rectal body temperature of both WT and GPRKO female
mice were measured weekly (n=7-10). The acute cold tolerance
test was performed as described (31) at week 8. Briefly, the rectal
body temperature was measured before moving mice from a
normal room temperature (RT) into a 4°C room (Cold) with ad
libitum access to STD diet and water for 4 hours. The condition
and behavior of mice were constantly observed during the test.
The rectal temperature of mice was measured at the end of the
test, and then mice were transferred to the RT environment.

Western Blot
Subcutaneous WAT and interscapular BAT lysates with equal
amounts of protein from WT and GPRKO female mice were
subjected to immunoblot analysis as previously described
(29, 33). The immune-reactive proteins were detected by
chemiluminescence and quantified using a ChemiDoc™ Touch
Imaging System (Bio-Rad, Hercules, CA, USA). The relative
protein levels were normalized to those of the housekeeping
protein and compared to the WT group.

Real-Time Quantitative PCR
Total RNA was extracted from adipose tissues and beige
adipocytes using TRI reagent (Molecular Research Center, OH)
and reverse-transcribed using GoScript™ Reverse transcriptase
and random primers (Promega, WI). Amplification reactions were
performed on an Applied Biosystems® 7500 Fast Real-Time PCR
System as we previously described (34). Data were analyzed by the
RQ=2−DDCt method. The primers used were: Ucp-1 (5’-AGC
CGGCTTAATGACTGGAG-3’ and 5’-TCTGTAGGCTGCCCAA
TGAAC-3’), Prdm16 (5’-CAGCACGGTGAAGCCATTC-3’ and
5’-GCGTGCATCCGCTTGTG-3’), mCidea (5’-TGCTCTTCT
May 2022 | Volume 13 | Article 877152
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GTATCGCCCAGT-3’ and 5’-GCCGTGTTAAGGAATCTGCTG-
3’), and 18S RNA (5’-ACCTGGTTGATCCTGCCAGTAG-3’ and
5’-TTAAiTGAGCCATTCGCAGTTTC-3’).

Statistical Analyses
Data were analyzed using the software JMP (Version 12, SAS
Institute, Cary, NC, USA). Group differences were compared
using one-way analysis of variance (ANOVA) followed by
Tukey’s test, with p<0.05 considered significantly different.
Data are presented as mean ± SE.
RESULTS

Deletion of GPR30 Promotes Cellular
Respiration in BAT
Our previous work, using both in vivo and in vitro approaches,
demonstrated that deletion of GPR30 protected female mice from
HFD-induced obesity and the GPRKO animals had higher body
temperature (24). To further explore how GPR30 deficiency exerts
a metabolic promoting effect, we measured mitochondrial oxygen
consumption rate (OCR) and extracellular acidification rate
(ECAR) in BAT from the same area of each animal using the
Frontiers in Endocrinology | www.frontiersin.org 4
Agilent Seahorse metabolic analysis. As shown in Figure 1A, basal
respiration in BAT was highly promoted in GPRKO females as
compared to that in WT littermates. Interestingly, FCCP-
stimulated maximal respiration were the same between WT and
GPRKO mice (data not shown). To address the difference in
mitochondrial metabolic phenotype of WT and GPRKOmice, the
bioenergetics mapping was plotted using the overall OCR and
ECAR (35, 36). As seen in Figure 1B, all measurements of WT
animals fell into the quiescent quadrant, whereas the majority of
the GPRKO measurements fell under the energetic quadrant with
higher OCR and ECAR, suggesting that deletion of GPR30
promotes the mitochondrial energetic phenotype.

To determine mitochondrial and non-mitochondrial
respiration (37), rotenone (complex I inhibitor) and antimycin
A (complex III inhibitor) were added at the final stage of the
cellular respiration analysis experiment as described (38). As
shown in Figure 1C, GPRKO female mice had significantly
higher mitochondrial and non-mitochondrial respiration,
respectively. To determine the amount of oxygen consumption
driven by mitochondrial inducible proton leak, the ATP synthase
inhibitor oligomycin was added. As shown in Figure 1D, the
ATP-linked mitochondrial respiration was similar between WT
and GPRKO female BAT; however, the inducible mitochondrial
A B

DC

FIGURE 1 | Deletion of GPR30 promotes cellular respiration in BAT. BAT from three WT and GPRKO female mice, respectively, were analyzed using the XF24 Islet
Capture Microplate as described in the Materials and Methods. (A) Basal OCR were calculated after the equilibration of tissues and before oligomycin injection.
(B) The overall OCR and ECAR were plotted to represent the mitochondrial metabolic states. (C) Cellular and (D) mitochondrial respiration was calculated. Data are
normalized to wet weight of fat pads and represented as means ± SE (n=3). **p<0.01. ***p<0.001.
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proton leak significantly increased in the HFD-fed GPRKO female
BAT as compared withWT littermates, suggesting a more efficient
ATP utilization and a lower efficiency of mitochondrial coupling
respiration while elevated uncoupled respiration possibly
mediated by UCP-1 in the absence of GPR30.
Deletion of GPR30 Affects Fatty Acid
Oxidation in BAT and Boosts cAMP
Release in WAT-Derived SVF
Since the increased proton leak respiration in GPRKO female
BAT may have resulted from an increased substrate oxidation
(39), we isolated BAT from WT and GPRKO female mice that
were fed the HFD for 4-weeks and assessed substrate oxidation.
As shown in Figure 2A, GPRKO female mice tended to have
higher CO2 production in BAT as compared with the WT
littermates (31.76 ± 3.01 mmol/mg pro/hr vs. 24.76 ± 1.86
mmol/mg pro/hr, respectively, p=0.052), whereas the
production of acid soluble metabolites (ASM) in BAT was
similar between WT and GPRKO female mice (Figure 2B).
Hence, the efficiency of substrate oxidation in BAT were not
significantly altered by the deletion of GPR30 (Figure 2C).
Frontiers in Endocrinology | www.frontiersin.org 5
As reported before, the well-known second messenger cAMP
activates protein kinase A (PKA), which activates a lipase that
hydrolyzes triglycerides into glycerol and free fatty acids, the
latter being a direct substrate for mitochondrial thermogenesis
(40, 41). As shown in Figure 2D, the stromal cells from HFD-fed
GPRKO female mice tended to produce more cellular cAMP as
compared with the cells from HFD-fed WT littermates. The
cAMP content increased 2.34-fold in GPRKO cells over the WT
cells, when treated with the adenylyl cyclase agonist forskolin
(p=0.006). Consistently, the cAMP-mediated transcriptional
activity in GPRKO stromal cells as determined by a cAMP-
responsive element (CRE) driven luciferase activity assay was
greater than in WT cells (Figure 2E).

Deletion of GPR30 Promotes
Mitochondrial Uncoupling
Respiration in BAT
As discussed above, GPRKO BAT had lower efficiency of
coupling respiration but the overall mitochondrial OCR was
higher than that of WT, indicating that deletion of GPR30 may
promote inducible mitochondrial uncoupling respiration.
Accordingly, interscapular BAT was isolated from WT and
A B

D E

C

FIGURE 2 | Deletion of GPR30 affects fatty acid oxidation in BAT and boosts cAMP release in WAT-derived SVF. (A) CO2 production and (B) acid soluble metabolites (ASM)
production of BAT were measured as described in Materials and Methods. (C) Substrate oxidation efficiency were calculated as the ratio of CO2 to ASM production.
(D) Primary SVF from subcutaneous WAT of WT and GPRKO were isolated from HFD-fed mice. The intracellular cAMP production was measured as described in Materials
and Methods. Adenylyl cyclase agonist forskolin alleviated cAMP production level to 2.34 fold higher in HFD-fed GPRKO cells than that of WT. (E) CRE-luciferase activity was
alleviated in GPRKO cells when treated with adenylyl cyclase agonist forskolin. Data are represented as means ± SE (n=3-4). *p<0.05; **p<0.01; ***p<0.001.
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GPRKO obese female mice to assess the effect of GPR30 on
thermogenesis. As shown in Figures 3A, B, the relative UCP-1
protein levels in BAT were significantly higher in GPRKO
animals as compared to WT female mice. The stimulated
UCP-1 activity within subcutaneous WAT is shown to
improve metabolic phenotypes (42–44), thus protein lysates
from subcutaneous WAT of WT and GPRKO female mice
were probed against UCP-1 and it was only detectable in one
of the WT samples while half of the GPRKO samples displayed
relatively high levels of UCP-1 (Figures 3C, D).

Deletion of GPR30 increased Ucp-1 gene expression in the
isolated SVF before treating cells with differentiation cocktail
(Day 0, D0). The gene expression of Ucp-1 in GPRKO group
tended to be higher as compared to WT beige adipocytes on the
last day of differentiation (Day 8, D8). Interestingly, Ucp-1
Frontiers in Endocrinology | www.frontiersin.org 6
abundance in GPRKO cells elevated approximately three times
higher than that of WT after 4 hours of cold exposure
(Figure 3E). Interestingly, the expression of Gpr30 displayed a
similar pattern in WT SVF-differentiated adipocytes after cold
exposure (Figure 3F), suggesting a possible correlation between
GPR30 and the mitochondrial uncoupling proteins in
thermogenic adipocytes.
Deletion of GPR30 Promotes Beige
Adipocyte Differentiation and Activates
the Thermogenic Browning of
Subcutaneous WAT
To characterize the potential role of GPR30 in browning of WAT,
we isolated the primary SVF from subcutaneous WAT and treated
A B

D

E F

C

FIGURE 3 | Deletion of GPR30 upregulates UCP-1 in response to overfeeding or cold exposure. (A) Western blot analysis of UCP-1 and tubulin loading control
from BAT and (B) densitometric analysis of UCP-1 protein levels normalized to tubulin. (C) Western blot analysis of UCP-1 and tubulin loading control from
subcutaneous WAT and (D) densitometric analysis of UCP-1 protein levels normalized to tubulin. All data are presented as means ± SE (n=6-8). *p<0.05. Total
RNAs were collected after cold challenge as described in Materials and Methods and the relative gene expression of (E) Ucp-1 and (F) Gpr30 were analyzed by
RT-qPCR. Data are normalized to WT and represented as means ± SE (n=3). *p<0.05. **p<0.01. n.s., not significant.
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with beige adipocyte induction cocktail containing rosiglitazone,
indomethacin, dexamethasone, and IBMX (30). As seen in
Figures 4A, B , stromal cells isolated from GPRKO
subcutaneous fat displayed an increased beige differentiation
efficiency, about 68% higher, than that of the WT control.
Consistently, the protein expression of UCP-1 in GPRKO-
isolated SVF-differentiated beige adipocytes was 53% higher
than that of the WT group (Figures 4C, D). The expression of
Frontiers in Endocrinology | www.frontiersin.org 7
the brown/beige fat selective genes (Ucp-1, Prdm16, and Cidea)
(45–48) were 2-4 fold higher in the differentiated GPRKO beige
adipocytes than that of WT (Figure 4E). In addition, we treated
the primary stromal cells with GPR30 specific agonist G-1 and
antagonist G15 during beige adipocyte differentiation. G-1 and
G15 treatment did not alter thermogenic gene expression in the
GPRKO group (Figure 4F), however, antagonism of GPR30
significantly increased the gene expression of Ucp-1 and Prdm16
A B

D

E

F G

C

FIGURE 4 | Deletion of GPR30 promotes beigeing of WAT. (A) The triglycerides stored in the multilocular lipid droplets were visualized using Oil Red O staining as
indicated respectively. (B) The Oil Red O stain content were extracted and normalized to WT. Data are represented as means ± SE (n=3). (C) Western blotting
against UCP-1 in mature beige adipocytes. Tubulin served as loading control. Data are normalized to (D) WT and represented as means ± SE (n=4). (E) mRNA
levels for brown fat-selective genes Ucp-1, Cidea, and Prdm16 were analyzed by RT-qPCR. Data are normalized to WT and represented as means ± SE (n=7). The
relative gene expression of Ucp-1 and Prdm16 in (F) GPRKO- and (G) WT-derived cells treated with G-1 and G15 were analyzed by RT-qPCR. Data are normalized
to control and represented as means ± SE (n=3). *p<0.05.
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in WT-isolated SVF-differentiated beige adipocytes (Figure 4G).
Collectively, these results demonstrated that GPR30 deficiency
enhanced beige adipocyte differentiation by upregulating UCP-1,
which may promote adipose tissue mitochondrial function and
thereby protect against diet-induced adiposity.
GPR30 Deficiency Promotes
Adaptive Thermogenesis
Cold and overfeeding are the demonstrated stimuli activating
nonshivering adaptive thermogenesis (10, 12, 49, 50). To further
confirm whether the effect of GPR30 in thermogenic program in
vitro is physiologically relevant, we performed a cold tolerance
test using WT and GPRKO female mice. Consistent with our
previous findings, the body weight, food intake, and body
composition were similar between WT and GPRKO mice fed a
STD diet (Figures 5A–C). The core body temperature of WT
and GPRKO animals were constantly fluctuating without
apparent pattern (Figure 5D). Mice were then exposed to the
cold for 4 hours. As shown in Figure 5E, WT female mice had a
reduced ability to defend their body temperature after 4-hour
cold exposure, whereas deletion of GPR30 effectively protected
female mice from developing hypothermia. Taken together, our
results indicate for the first time, to our knowledge, that GPR30 is
involved in regulating thermogenesis in response to either cold
or overfeeding in female mice.
Frontiers in Endocrinology | www.frontiersin.org 8
DISCUSSION

The present study provides evidence that GPR30 is a negative
regulator of thermogenesis, which at least partially contributes to
the reduced adiposity in theGPRKO femalemice. First, UCP-1, the
key regulator of brown and beige fat thermogenesis (8), is
upregulated in the absence of GPR30. Second, the mitochondria
in BAT are highly energetic in GPRKO animals while the WT
mitochondria remain in a relatively quiescent stage. Third, deletion
of GPR30 promotes the differentiation of beige adipocytes and
inducesBAT-specific gene transcription inWAT, and last, GPRKO
increases adaptive thermogenesis in female mice exposed to cold.
Together, our findings provide insight into the mechanism by
which GPR30 regulates fat metabolism and adiposity in female
mice exposed to excess calories.

It has been presumed that white and brown adipocytes are
developmentally related (51), as they express common enzymes
and, importantly, both require PPARg for their differentiation (52,
53).While beige cellsmay have similarmorphology and function as
those of brown fat cells, it has been demonstrated that beige cells
have a unique gene expression pattern different from that of either
whiteorbrown fat cells.Recently, thewidelyusedadipocyte cell line,
3T3-L1 cells, have been reported to express the BAT-selective gene
Ucp-1 (54), suggesting that there is no common boundary between
white and brown/beige adipocytes as previously thought. The 3T3-
L1 cells can be induced to beige-like adipocytes with the treatment
A B

D E

C

FIGURE 5 | Deletion of GPR30 didn’t alter the regular rectal temperature but protected lean female mice from hypothermia. WT and GPRKO female mice were fed
a standard chow diet (STD) for 8 weeks. (A) The body weight and (B) food intake were measured weekly. (C) The body composition were measured at week 7.
(D) The weekly core body temperature was measured, and (E) the cold tolerance test were conducted at week 8 as described in Materials and Methods. Data are
shown as means ± SE. n=7-10 mice/group. *p<0.05. **p<0.01.
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of rosiglitazone, T3, and IBMX,which are known inducers for beige
differentiation (30). Like the white adipocytes, brown adipocytes
and beige adipocytes store triglycerides in multilocular droplets, In
addition to the differences in morphological structures and
functions between WAT and BAT, there are distinct
transcriptional factors involved in BAT development and
thermogenesis (40, 55, 56), including Sirt1, Pgc-1a, Prdm16, etc.
(46, 57, 58). Pgc-1a has been shown to induce transcription of
numerous genes that comprise the thermogenic browning
program, including Ucp-1 and Dio2 (59). However, we discovered
that the mRNA levels of Pgc-1a were similar between WT and
GPRKO mice (data not shown). It is notable that isolated brown
adipocytes still expressBAT-selective genes in the absenceofPgc-1a
(60). Thus, the upregulation of UCP-1 in GPRKO adipose tissue
may be Pgc-1a-independent.

It has been well known that thermogenic responses of brown and
beige fat tissues in responses to cold exposure is primarily driven by
the sympathetic nervous system (SNS) through the release of
norepinephrine and subsequent activation of b-adrenergic receptor
(bAR)-mediated signaling in fat cells (61). Therefore, bAR agonists
are often used to mimic cold-induced SNS activity and subsequent
thermogenesis program in cultured brown and beige adipocytes.
However, we didn’t use bAR agonist to examine the effect of GPR30
deficiency on beige adipocyte differentiation, because activation of
bAR may fully drive the beige cell thermogenesis in both WT and
GPR30 KO cells, which could diminish the effect of GPR30 in the
presenceof the agonist, given that deletionofGPR30 increases cAMP
production, beige cell differentiation, and thermogenesis, the same
effects elicitedby activatingbAR.Thus, inpresent study,we evaluated
GPR30-regulation of thermogenesis in beige cells under cold
exposure, which was shown to directly stimulate thermogenic
activity of white and beige cells in a bAR signaling-independent,
cell-autonomous manner (32, 62).

We demonstrated that deletion of GPR30 greatly boosted the
agonism of adenylyl cyclase, releasing cAMP in energy-enriched
stromal cells. As reported before, mitochondrial cAMP signaling
is an indispensable mechanism regulating mitochondrial
energetics and homeostasis (63). Our result of CRE-luciferase
activity assays clearly indicates that GPR30 deficiency indeed
enhanced cAMP-regulated transcriptional activity.

In contrast to our previous finding that deletion of GPR30 only
exertedmetabolic effects in female but notmalemice fed either a high
fat diet or chow diet (24), a recent study reported that isoflavone
genistein, a GPR30 agonist, increased adipose cAMP content, UCP-1
expression, and energy expenditure while reducing body weight and
fatmass gain in wild-typemalemice, but these effects were blunted in
GPR30-/- mice (64), suggesting that activation of GPR30 promotes
thermogenic program in adipose tissue in male mice. These
observations also contradict to our findings in the present study that
inactivation of GPR30 increased cAMP production and thermogenic
adipocyte differentiation in female mice. More studies are needed to
investigate the reasons for causing these discrepancies,which could be
due to the differences in gender (male vs. female mice), diet (high-fat
sucrose vs. high-fat), and strain background (C57B6 vs. 129).

The primary function of mitochondria is to produce ATP as
energy by using nutritional substrates (65). However, not all of the
Frontiers in Endocrinology | www.frontiersin.org 9
external energy supply is fully coupled to ATP synthesis. The extra
energy is, thereby, dissipated as heat via the process of proton leak,
which is regulated by the uncoupling proteins located on the inner
membrane of mitochondria (66, 67). FCCP, a widely used
mitochondrial uncoupler (68), stimulated oxygen consumption in
WT adipose tissue, but it failed to manipulate the mitochondrial
respiration of GPRKOBAT (data not shown). Given that GPR30 is
a membrane-associated receptor and has been found in
mitochondria in C2C12 cells (69) and breast cancer cells (70), it is
reasonable to speculate that GPR30 localizes on the intermembrane
of adipocyte mitochondria and blocks the activity of UCPs.
Therefore, deletion of GPR30 elevates uncoupling protein activity
and promotes thermogenesis, resulting in enhanced energy
metabolism and reduced fat accumulation.

This study has some limitations. First, while we observed that
deletion of GPR30 drastically increased ucp-1 expression in beige
cells exposed to cool temperature (31°C), it is unclear whether and
to what extent this effect as observed in vitro contribute to the
protective action of GPR30 inactivation against cold-induced
hypothermia in mice, given that BAT may play a major role in
thermogenesis through SNS-mediated activation of bAR (41). In
that regard, the effects of GPR30 on beige and brown adipocyte
thermogenesis under HFD feeding, the cold stress, and selective
bAR agonism should be studied in the future research, which could
be instrumental in defining cellular and molecular mechanisms by
which inactivation of GPR30 promotes thermogenesis. Second,
although WAT in GPRKO female mice displayed higher UCP-1
protein levels as compared with WT mice, we don’t have direct
evidence that GPR30 deficiency increased the number of beige cells
in vivo, which needs to be determined in future study. Third, while
we were more focused on determining the effect of GPR30 on beige
adipogenesis, this study should have included examining the effect
of GPR30 on cAMP signaling and brown adipocytes of BAT-
derived SVF cells, given the critical role of BAT in thermogenesis.
Lastly, in the present study, whole bodyGPRKOmicewere used for
investigating the metabolic role of GPR30 in adipose tissues.While
it is preferable to use conditional GPRKOmice for determining its
tissue-specific effects, genetic tools to specifically target adipocyte
precursor cells for studying adipogenesis are unavailable, as the use
of presently available fat-specific Cre mouse lines (such as
adiponectin-driven Cre recombinase mice) can only delete
GPR30 in mature adipocytes (71).
CONCLUSION

In summary, we previously revealed the effects of GPR30 on energy
metabolism and fat mass control in female mice exposed to a HFD.
Here, we further demonstrate that deletion of GPR30 protects
female mice from hypothermia and promotes the mitochondrial
energetic phenotype in female BAT as compared toWT littermates.
Consequently, deletion of GPR30 enhances subcutaneous WAT-
isolated SVF differentiating to beige adipocytes and activates the
thermogenic beiging program through up-regulation of UCP-1,
which thereby protects female mice from HFD-induced obesity.
Further work will be required to delineate the detailed mechanism
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of GPR30-regulated beige adipogenesis, body weight control, as well
as the possible interaction between GPR30 and ERa-mediated
metabolic actions, which could potentially lead to a novel
therapeutic strategy to efficiently prevent the development of
obesity and obesity related metabolic diseases in females.
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