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SUMMARY

Persistent virus infections can cause pathogenesis that is debilitating or lethal. During these 

infections, virus-specific T cells fail to protect due to weakened antiviral activity or failure to 

persist. These outcomes are governed by histone modifications, although it is unknown which 

enzymes contribute to T cell loss or impaired function over time. In this study, we show that T cell 

receptor-stimulated CD8+ T cells increase their expression of UTX (ubiquitously transcribed 

tetratricopeptide repeat, X chromosome) to enhance gene expression. During chronic lymphocytic 

choriomeningitis virus (LCMV) infection in mice, UTX binds to enhancers and transcription start 

sites of effector genes, allowing for improved cytotoxic T lymphocyte (CTL)-mediated protection, 

independent of its trimethylation of histone 3 lysine 27 (H3K27me3) demethylase activity. UTX 

also limits the frequency and durability of virus-specific CD8+ T cells, which correspond to 

increased expression of inhibitory receptors. Thus, UTX guides gene expression patterns in CD8+ 

T cells, advancing early antiviral defenses while reducing the longevity of CD8+ T cell responses.
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In brief

T cells fail to eliminate chronic virus infections due to alterations in gene expression that 

undermine their activity. In this study, Mitchell et al. identify a histone-modifying enzyme that 

promotes effector gene expression and CTL activity early on yet reduces T cell survival, leading to 

infection persistence.

INTRODUCTION

Disseminating virus infections, such as HIV, hepatitis C virus, and hepatitis B virus, cause 

significant health burdens for millions of people worldwide (Virgin et al., 2009). While acute 

infections induce long-lived protective memory T cells, persistent infections in patients or 

mice result in virus-specific CD8+ T cells that are functionally impaired and unable to 

provide immune defense (Wherry and Kurachi, 2015). Such “exhausted” T cells arise 

through altered differentiation events that occur when T cells are exposed to prolonged 

periods of virus replication and inflammation. During ongoing infections, T cells express 

increased amounts of membrane-bound inhibitory receptors, including programmed cell 

death protein-1 (PD-1), lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and 

mucin domain-containing-3 (TIM-3), 2B4 (CD244), and others (Blackburn et al., 2009; 

Kahan et al., 2015; Wherry et al., 2007). These inhibitory receptors cooperatively restrict T 

cell functions by interfering with proximal T cell receptor (TCR) signaling, costimulatory 
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receptor signaling, or by altering gene expression to disable antiviral activity (Wherry and 

Kurachi, 2015).

Checkpoint blockade therapies, which interfere with PD-1 and/or other inhibitory receptors, 

can transiently restore function to a subset of virus-specific CD8+ T cells, particularly those 

expressing low-intermediate amounts of PD-1 (Barber et al., 2006; Im et al., 2016; Pauken et 

al., 2016). However, T cells that are PD-1hi fail to recover when PD-1-PD-ligand (PD-L)1/2 

interactions are blocked, as they have terminally differentiated into an exhausted state that is 

maintained through epigenetic mechanisms, including alterations in DNA methylation, 

histone 3 lysine 27 (H3K27) methylation, and H3K4 acetylation that regulate gene 

expression. The epigenetic landscape and transcriptional profile of exhausted CD8+ T cells 

are distinct from those of naive, effector, and memory subsets (Pauken et al., 2016; Scott-

Browne et al., 2016; Sen et al., 2016) and include alterations at the Pdcd1 locus (Bally et al., 

2016; Ghoneim et al., 2017; Lu et al., 2014; Sen et al., 2016; Youngblood et al., 2011; Zhang 

et al., 2014).

UTX (ubiquitously transcribed tetratricopeptide repeat, X chromosome; KMD6A [lysine 

demethylase 6A]) is a member of the Jumonji-C (JmjC) family of histone demethylases 

(Agger et al., 2007). UTX is located on the X chromosome and escapes X inactivation 

(Greenfield et al., 1998). Females lacking part or all of an X chromosome develop Turner 

syndrome, which is characterized by immune deficiencies in immunoglobulin and T cells 

subsets, including T follicular helper (Tfh) cells, and susceptibility to chronic otitis media 

(Cacciari et al., 1981; Cook et al., 2015; Jensen et al., 1976; Mock et al., 2000; Thrasher et 

al., 2016). Whereas EZH2 catalyzes the trimethylation of H3K27 (H3K27me3) to silence 

genes and can impact T cell commitment to memory or certain lineages (Gray et al., 2017; 

Yang et al., 2015), UTX and JMJD3 counter EZH2 by removing repressive methyl groups 

from H3K27 to permit gene transcription. UTX functions at regions proximal to 

transcription start sites (TSSs), and transitions poised enhancers into an active state to 

increase gene expression (Beyaz et al., 2017; Wang et al., 2017; Yoo et al., 2016). UTX 

interacts with transcription factors and epigenetic modifiers, such as KMT2D (MLL4), that 

can have similar functions in development (Shpargel et al., 2020) and can promote gene 

expression at specific loci (Froimchuk et al., 2017; Wang et al., 2017; Yoo et al., 2016). For 

example, UTX can associate with the transcription factors T-bet and eomesodermin to 

induce chromatin remodeling at the Ifng promoter (Miller et al., 2010). Some UTX-

dependent gene expression can occur independent of its demethylase activity (Miller et al., 

2010; Shpargel et al., 2012; Yoo et al., 2016). UTX is expressed ubiquitously, including in T 

cells at different stages of development (Cook et al., 2015), and is required for fetal 

development (Dalgliesh et al., 2010; Jin et al., 2011; Lan et al., 2007; Lee et al., 2012; 

Shpargel et al., 2012). UTX contributes to gene expression and plays multiple functions in 

development, health, and disease, although its role in CD8+ T cell responses is unclear.

In this study, we examined the effect of UTX on antiviral CD8+ T cell responses. Upon 

activation, CD8+ T cells increased expression of UTX and reduced levels of H3K27me3. 

Mice with a T cell-specific deletion in UTX were able to resolve acute lymphocytic 

choriomeningitis virus (LCMV) infection but not a variant (LCMV-A22) that widely 

disseminates and establishes chronic infection. During chronic infection, UTX-deficient 
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CD8+ T cells expressed lower amounts of antiviral cytokines and granzymes and were less 

able to protect against infection compared to wild-type (WT) T cells. UTX-deficient CD8+ T 

cells expressed lower amounts of inhibitory receptors and were resistant to apoptosis, 

corresponding to a striking outgrowth of cells that were maintained over time during 

infection. UTX contributed to gene expression in CD8+ T cells and was physically 

associated with enhancers and TSSs of numerous genes that were expressed in the presence 

of UTX. T cells expressing a demethylase-dead mutation of UTX resembled WT T cells in 

frequency and effector molecule expression, suggesting that UTX contributes to T cell 

effector functions independently of its ability to demethylate H3K27. Collectively, our data 

show that UTX promotes gene expression patterns that enhance cytotoxic T lymphocyte 

(CTL) killing but limit CD8+ T cell persistence during chronic infection.

RESULTS

UTX is required for CD8+ T cell-mediated control of disseminated virus infection

We assessed whether UTX expression and subsequent H3K27me3 densities change in CD8+ 

T cells following TCR activation. At baseline, naive CD8+ T cells expressed moderate 

amounts of UTX and high amounts of nuclear H3K27me3. UTX concentrations increased 

and total H3K27me3 levels declined upon in vitro TCR stimulation (Figures S1A and S1B), 

suggesting that UTX may contribute to CD8+ T cell responses. To determine whether UTX 

impacts antiviral CD8+ T cell responses in vivo, we generated Utxfl/flLckCre+ (UTX-TCD) 

mice where Utx is conditionally deleted in T cells during early stages of T cell development 

(Cook et al., 2015). UTX-TCD mice resolve acute LCMV-Armstrong infection but fail to 

control LCMV-A22 infection, a variant that establishes chronic infection for 40–50 days in 

immune-competent mice (Cook et al., 2015). Because both CD4+ and CD8+ T cells lack 

UTX in these mice, we sought to disentangle the effects of UTX expression in CD8+ T cells 

from its contribution to CD4+ Tfh cells (Cook et al., 2015), which promote antiviral 

antibody titers and virus control. Mice were depleted of CD4+ T cells prior to infection with 

LCMV-A22 (Figure 1A). Both UTX-TCD and Utx+/+LckCre+ (WT) control mice had 

similarly high viral loads in the blood at day 7 post-infection. The virus burden declined in 

the blood and tissues of WT mice by day 21 but remained somewhat higher in UTX-TCD 

mice (Figures 1B and 1C).

The control and eventual clearance of LCMV depends on antiviral CD8+ T cell responses. 

Prior to infection, both groups of mice had few activated CD8+CD44+ T cells, and the 

frequency and number of these cells were similar (data not shown). Upon LCMV-A22 

infection, there was a rapid accumulation of CD8+CD44+ T cells, which was 2.5-fold higher 

in the UTX-TCD mice at day 21 post-infection compared to WT mice (Figure 1D). This 

pool of activated CD8+CD44+ T cells includes virus-specific T cells of multiple specificities, 

such as DbGP33–41-specific and DbNP396–404-specific CD8+ T cells, which were increased 

2.7- to 4-fold in the spleens of UTX-TCD mice compared to WT mice (Figures 1E and S2). 

During the course of chronic LCMV infection, subsets of T cells can persist but 

progressively lose antiviral activity over time. Early evidence of T cell exhaustion can be 

seen at day 21 post-infection for both groups of mice, as relatively few GP33-specific CD8+ 

T cells made interferon (IFN)g (Figure 1F) compared to memory T cells found in acutely 
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infected mice (85%–90% IFNγ+; Whitmire et al., 2007). The geometric mean fluorescence 

intensity (gMFI) of IFNγ revealed a trend toward further loss of IFNγ production by T cells 

in UTX-TCD mice (Figure 1F). In sum, UTX-TCD mice generate more virus-specific CD8+ 

T cells yet show defects in immune protection and cytokine expression.

UTX intrinsically reduces virus-specific CD8+ T cell numbers during chronic virus infection

Focusing on the effect of UTX on T cell frequencies, we considered that UTX expression in 

the thymus might affect the precursor frequency of cells that are released to the periphery, 

potentially altering the frequency of naive CD8+ T cells that are specific for viral epitopes. 

To ensure that comparisons between donor cell types were accurate, we utilized an adoptive 

transfer model where a defined number of virus-specific WT and UTX-deficient CD8+ T 

cells could be compared in the same recipient mice (Figure 2A). UTX-TCD mice were 

crossed with LCMV-specific TCR-transgenic P14 mice to generate UTX-TCD P14 mice 

(Utx−/− P14 [P14+LckCre+Utxfl/fl]). All CD8+ T cells in these mice recognize the LCMV 

GP33–41 epitope, lack expression of UTX, and co-express the congenic Ly5a (CD45.1) and 

Ly5b (CD45.2) alleles (Figures 2A and S3A). For WT donor controls, we used cells from 

P14+Utx+/+LckCre+ mice that were homozygous for the Ly5a allele. Recipient mice were 

depleted of CD4+ T cells, allowing for high viral burdens at day 35 post-infection (Figure 

2B). This approach allowed us to track antiviral WT and UTX-deficient CD8+ T cell 

responses under identical inflammatory and virological conditions.

Both WT and Utx−/− P14s accumulated to high frequencies in the blood by day 10 post-

infection, although there were 3-fold more Utx−/− P14s than P14+LckCre+Utxwt/wt (WT 

P14) cells in the same recipients. The frequencies of both donor P14 cell populations began 

to decline after day 10; however, the ratio of Utx−/− to WT P14s steadily increased to 12-

fold by day 22 and 21-fold by day 35 (Figure 2C). In the spleen, Utx−/− P14s showed limited 

contraction and were as numerous at day 35 as at day 9, whereas WT P14 cells steadily 

contracted during this period (Figure 2D). When compared in separate recipient mice so that 

the cells were not in direct competition for antigen or cytokines, Utx−/− P14s were 

significantly higher in frequency and number compared to WT (Figures S3B and S4A–

S4G). These data indicate that UTX functions intrinsically within CD8+ T cells to limit their 

abundance after infection in both lymphoid and nonlymphoid tissues.

CD4+ T cell depletion is a common approach when investigating T cell exhaustion, as it 

replicates the defects in CD8+ T cells that are observed during chronic infections in humans. 

We considered that UTX might make CD8+ T cells dependent on CD4+ T cell help during 

chronic infection. We performed a dual adoptive transfer without depleting CD4+ T cells and 

found that Utx−/− P14s expanded 2.1-fold more than WT P14s and persisted at 3.3-fold 

higher frequencies at day 22 post-infection (Figure S3C). Additionally, mixed bone marrow 

chimera mice were generated with different ratios of WT and UTX-TCD bone marrow, 

resulting in mice with a polyclonal mixture of WT and Utx−/− T cells. At days 22–23 post-

infection, the endogenous Utx−/− GP33-tetramer+CD8+ T cells outnumbered their WT 

counterparts in chimeras established with 50:50 (WT/knockout [KO]) or 60:40 ratios of 

bone marrow, with more equivalent responses found only when the precursor frequency 

favored WT T cells by 80:20 (Figure S3D), consistent with UTX restricting CD8+ T cell 
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expansion and survival. A single copy of Utx was sufficient to limit T cell responses, as Utx 
heterozygous P14 cells (P14+Utxwt/flLckCre+) out-expanded and were maintained at higher 

frequencies in the spleen than WT P14 cells in the same recipients (Figure S3E and S3F). 

Cumulatively, these data show that UTX limits the accumulation and persistence of virus-

specific CD8+ T cells during chronic infection, and does so regardless of the availability of 

CD4 help or inter-clonal competition.

UTX restricts T cell responses and memory formation following acute LCMV infection

Consistent with earlier reports (Kaech et al., 2002; Russ et al., 2014; Yu et al., 2017), acute 

LCMV-Armstrong infection resulted in memory phenotype (CD44hi) T cells with 

upregulated expression of UTX compared to naive CD8+ T cells (Figure S5A), suggesting 

that UTX might play a role in T cell memory formation. To determine whether UTX-

mediated changes in CD8+ T cell frequency were common to acute and chronic infections, 

we examined primary and memory T cell responses following acute infection with LCMV-

Armstrong, which was resolved by day 8 (data not shown). Compared to WT, Utx−/− P14s in 

the same recipients trended toward an increase in frequency in the spleen at days 8 and 43, a 

pattern minimally impacted by the presence or absence of host CD4+ T cells (Figure S5B). 

A greater frequency of Utx−/− P14s were CD44+CD62L+ (central-memory phenotype) rather 

than CD44+CD62L− (effector-memory phenotype) (Figures S5C and S5D), and a higher 

proportion of Utx−/− memory T cells expressed interleukin (IL)-7R compared to WT (Figure 

S5E). Thus, UTX limits the number of central-memory phenotype T cells following acute 

infection, although its effects on T cell frequencies are less prominent as compared to those 

seen during chronic infection.

Utx−/− cells show evidence of resistance to apoptosis

Increases in T cell number can be achieved through enhanced cell division or decreased 

apoptosis. To address the effect of UTX on T cell proliferation, bromodeoxyuridine (BrdU) 

incorporation was assayed in co-transferred WT and Utx−/− P14s following LCMV-A22 

infection (Figure 2E). Roughly 80% of both donor cells were BrdU+ at day 7 post-infection 

(Figure 2F). Similarly, Ki67 nuclear antigen staining indicated slightly fewer proliferating 

Utx−/− T cells, compared to WT (Figure 2G). These data suggest that UTX does not 

suppress CD8+ T cell proliferation, consistent with our earlier findings that Utx−/− CD8+ T 

cells proliferate normally to anti-CD3/CD28 stimulation in vitro (Cook et al., 2015).

The ratio of pro-apoptotic BIM to anti-apoptotic BCL2 can be used to indicate the relative 

potential of cells to undergo apoptosis (Wojciechowski et al., 2007). At day 9 post-infection, 

WT and Utx−/− P14s expressed similar amounts of BIM, although WT T cells expressed 

lower amounts of BCL2, resulting in a significantly higher BIM/BCL2 gMFI ratio for 

WTP14s (Figure 2H). A greater proportion of WT P14s stained positive for cleaved 

caspase-3 (Figure 2I) and bound annexin V than did Utx−/− P14s (Figure 2J). Cumulatively, 

these independent measures of cell viability imply that UTX-deficient CD8+ T cells are 

relatively protected from apoptosis, which may explain how they are maintained over time 

while WT T cell frequencies decline.
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UTX supports the effector functions of virus-specific CD8+ T cells

We examined the functional impact of UTX on antiviral CD8+ T cell responses, focusing on 

T cell production of antiviral cytokines and their ability to function as cytolytic killers. At 

days 9 and 22 post-infection, splenocytes were briefly stimulated with GP33–41 peptide 

followed by intracellular cytokine staining (ICCS). While the proportion of donor P14+ T 

cells producing tumor necrosis factor (TNF) and IL-2 was similar (data not shown), fewer 

Utx−/− P14 T cells produced IFNγ compared to WT P14 cells at both times (Figure 3A). 

WT P14 cells made more IFNγ on a per cell basis than did Utx−/− P14s (Figure 3B), 

suggesting an intrinsic role for UTX in regulating CD8+ T cell production of IFNγ. The 

functional avidity of the T cells (Slifka and Whitton, 2001) (i.e., their ability to make IFNγ 
in response to trace amounts of antigen) was not impacted by UTX, as WT and Utx−/− P14 

cells from day 8 post-infection showed similar half-maximal responses (approximately 0.2–

0.5 nM) when exposed to varying concentrations of GP33–41 peptide (Figures 3C and 3D). 

However, the percentage of cells making IFNγ at high peptide concentrations and the 

amount of IFNγ made per cell (gMFI) were greatly reduced in the absence of UTX (Figures 

3C and 3D). Similarly, WT and Utx−/− CD8+ T cells induced by acute infection showed 

overlapping half-maximal responses (Figures S5F and S5G), but fewer Utx−/− memory T 

cells could make IFNγ and they expressed it at lower amounts on a per cell basis.

A higher percentage of WT P14 cells were granzyme B+ at day 9, compared to Utx−/− P14 

cells (Figure 3E), and a similar pattern held at day 22. Both WT and Utx−/− P14s could 

degranulate, as indicated by the migration of CD107a/b to the cell surface upon stimulation 

(Betts et al., 2003), although Utx−/− P14 cells showed slightly lower CD107a/b fluorescence 

on a per cell basis (Figure 3F). Finally, T cell antiviral activity was assessed by delivering 

WT or Utx−/− P14 cells to immune-deficient RAG-KO mice, followed by LCMV-A22 

challenge. At day 7 post-infection, Utx−/− P14 cells outnumbered WT cells (Figure 3G), yet 

there was more virus in the tissues of these mice than recipients with WT P14 cells (Figures 

3G and 3H). In total, these findings indicate that UTX enhances antiviral CD8+ T cell 

effector functions during chronic infection.

UTX increases inhibitory receptor expression by CD8+ T cells

During the course of persistent infection, CD8+ T cells express increasing amounts and 

combinations of inhibitory receptors. Inhibitory receptor signaling can block proximal TCR 

signaling or transmit other signals that reduce T cell reactivity or lead to T cell apoptosis. To 

assess the effect of UTX on inhibitory receptor expression, WT and Utx−/− P14s were 

transferred to separate mice followed by CD4 depletion and infection with LCMV-A22. In 

the blood, significantly higher proportions of WT than Utx−/− P14 cells expressed PD-1, 

LAG-3, TIM-3, and 2B4 (Figures 4A–4D), and a similar pattern was observed in the liver 

and lungs of mice (Figures S4H and S4I). The difference in expression appeared as early as 

day 8 and was maintained through day 37 post-infection. WT P14s also showed higher 

expression of PD-1 and TIM-3 on a per cell basis, though LAG-3 and 2B4 levels were not 

impacted by UTX (Figure 4E). These differences in inhibitory receptor expression occurred 

despite similar virus burdens in the recipient mice (Figures 4F). These findings indicate that 

UTX increases the expression of inhibitory receptors that can restrain T cell numbers and 

activity during persistent infection.
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UTX alters gene expression in virus-specific CD8+ T cells

UTX can impact transcription by demethylase-dependent and demethylase-independent 

mechanisms that include interactions with other chromatin-modifying enzymes or 

transcription factors (Beyaz et al., 2017; Froimchuk et al., 2017; Shpargel et al., 2012; 

Shpargel et al., 2017). To determine whether UTX significantly alters gene expression 

patterns in CD8+ T cells, WT and Utx−/− P14+ CD8+ T cells were fluorescence-activated 

cell sorted (FACS) to purity from day 21 infected mice and analyzed by RNA sequencing 

(RNA-seq) (Figure 5A). EdgeR analysis revealed that Utx−/− P14s showed significantly 

(false discovery rate [FDR] < 0.05; log2[fold change] < −1.0) decreased expression of 443 

transcripts compared to WT P14s (Figure 5B; Table S1). Gene set enrichment analysis 

(GSEA) revealed reduced expression of granzyme and other effector genes (Pauken et al., 

2016) in the absence of UTX (Figure 5C), consistent with the weak CTL-mediated 

protection afforded by UTX-deficient CD8+ T cells (Figure 3). GOrilla Gene Ontology 

analysis identified Utx−/− alterations in several cell cycle and immunological pathways 

(Figure 5D; Table S2).

To determine which changes in mRNA expression depend on the demethylase activity of 

UTX, we identified loci with reduced H3K27me3 in WT compared to UTX-deficient P14 

CD8+ T cells. CUT&RUN is a low cell number assay for chromatin occupancy where an 

antibody directs micrococcal nuclease to release bound DNA for sequencing (Skene and 

Henikoff, 2017). H3K27me3 CUT&RUN analyses (Figure 5E; Table S3) demonstrated that 

most genes with reduced expression by RNA-seq quantification (purple) showed increased 

H3K27me3. For example, when compared to Utx−/− cells, T cells with UTX expressed 

several genes (Gzma, Gzmb, Thy1) at higher levels, and these genes had lower densities of 

H3K27me3 marks (Figure 5F). A smaller subset of genes demonstrated enhanced expression 

in the absence of UTX (green), but there was no correlation with H3K27me3 (Figure 5E; 

Table S3).

We performed UTX chromatin occupancy analysis (CUT&Tag) to characterize where UTX 

binds throughout the genome. Peaks with a significant enrichment of UTX CUT&Tag signal 

were mapped to the closest gene within 20 kb distance (Table S4). UTX bound to several 

TSSs, but also frequently bound nearby distal genic regions or elsewhere within the gene 

body, which may represent regulatory enhancers. Existing ATAC-seq (assay for transposase-

accessible chromatin using sequencing) data from CD8+ T cells at day 30 of LCMV-

Clone13 infection (Beltra et al., 2020) were used to identify areas of open chromatin. The 

ATAC data were overlaid with H3K27ac chromatin immunoprecipitation sequencing (ChIP-

seq) maps from P14 cells from day 7 LCMV-Clone13-infected mice (Yao et al., 2019) to 

identify putative enhancers that are active during chronic infection. Peaks of UTX binding 

increased based on read counts after infection (day 0 versus day 15 post-infection, Figures 

5G and 5H). UTX-bound TSSs tended to have elevated associations over UTX-bound 

enhancers (Figure 5G versus Figure 5H) and both classes of peaks were lost in Utx−/− P14 

cells (KO). Out of 2,816 UTX-bound sites, there was a comparable split between TSSs (45% 

of UTX peaks) and enhancers (49% of UTX peaks), with most of these enhancers (>90%) 

having active acetylation during chronic LCMV infection (Figure 5I).
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Among genes that lost expression in Utx−/− P14 cells, 39% (82/212) were bound by UTX 

and showed an increase in H3K27me3 in Utx−/− cells compared to WT (Figure 5J, right). 

However, other UTX-dependent genes that were not directly bound by UTX (Figure 5J, left) 

showed similar increases in Utx−/− H3K27me3 (34%: 234/691), suggesting that H3K27me3 

changes may not be attributed to direct UTX binding. The overall density of H3K27me3 

reads were reduced at UTX-bound loci compared to genome-wide H3K27me3 peaks 

(Figures 5K and 5L). However, WT and Utx−/− P14 cells had similar low-level H3K27me3 

read density at both UTX-bound TSSs and enhancers (Figures 5M and 5N).

We examined whether UTX binding correlated with enhancer chromatin in T cells at 

different stages of T cell exhaustion (Tex), including progenitor cells (Texprog1/2) that are 

responsive to checkpoint blockade, Tex-intermediate (Texint) cells, and terminally 

differentiated cells (Texterm) that fail to recover function with blockade and are prone to 

apoptosis (Beltra et al., 2020). Based on Texprog1 ATAC-seq reads, annotated enhancers 

demonstrated elevated open chromatin when bound by UTX (Figure 5O). The chromatin 

accessibility of UTX-bound enhancers increased in Texint cells (Figure 5P), implying a shift 

in enhancer activation as P14 cells transition to the exhausted state. UTX-bound enhancers 

showed evidence of heightened activation (H3K27ac levels) in Tex (Figure 5Q). Overall, 

UTX binding tends to not correlate with dramatic changes in H3K27 methylation but may 

function in enhancer activation.

We examined UCSC browser images of chromatin occupancy for several genes that were 

regulated by UTX (Figures S6A–S6C). Genes associated with activation and T cell effector 

function such as Tnfrsf9 (4-1bb), Gzmb, and Cd9 lost expression and accumulated 

H3K27me3 in Utx−/− cells at day 15 of infection (Figure S6A). These regions were bound 

by UTX, which increased as the cells transitioned from naive to effector cells (Figure S6B). 

Active enhancers were annotated as non-TSS peaks of open chromatin (ATAC-seq of day 30 

LCMV-Clone13-infected P14 cells; Beltra et al., 2020), which also overlapped H3K27ac 

peaks (Yao et al., 2019) from day 7 LCMV-infected mice (Figure S6C, top). These putative 

enhancers aligned with H3K4me1 enrichment, as identified in effector CD8+ T cells from 

acutely infected mice (He et al., 2016). In contrast, TSSs appear as areas with enriched 

H3K4me3 (Figure S6C, bottom), as identified in CD8+ T cells from early stages of acute 

infection (Shan et al., 2017). UTX binding at these genic locations closely overlapped 

putative active enhancers (Tnfrsf9 and Cd9) or a TSS (Gzmb) but did not correlate with 

broad regions where H3K27me3 differs between WT and Utx−/− (Figure S6A). A composite 

of all significant changes in H3K27me3 and UTX binding with nearby gene expression 

results can be found in Tables S3 and S4.

A motif analysis (HOMER) of UTX-bound enhancers identified potential transcription 

factors that might function with UTX (Figure S6D; Table S5). These transcription factors 

include those induced by TCR and costimulatory molecule signaling (Jun, AP1, NFAT), 

BATF, a factor required for T-bet and BLIMP expression and cytokine responses (Kurachi et 

al., 2014), as well as T-bet and eomesodermin, which are associated with subsets of Texterm 

or Texprog cells (McLane et al., 2019). In sum, UTX can localize to TSSs or enhancers to 

directly promote the expression of effector genes in CD8+ T cells, although these effects 

appear regulated largely through H3K27me3 demethylase-independent mechanisms.
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UTX demethylase activity is not required for effector CD8+ T cell function during chronic 
infection

To assess whether demethylase activity is required for UTX to enhance the effector 

functions of CD8+ T cells, we analyzed T cells from mice with a catalytic-dead knockin 

point mutation of UTX (UtxKI/KI, Shpargel et al., 2017). UtxKI/KI mice given LCMV-

Clone13 or LCMV-A22 infection with CD4 depletion established persistent infections with 

antiviral T cell numbers and T cell expression of inhibitory receptors or granzyme that were 

not significantly different from WT mice (Figure S7).

To more precisely define the role of UTX demethylation in CD8+ T cells, WT, UtxKI/KI, and 

Utx−/− P14+ CD8+ T cells with distinct congenic markers (Ly5a, Ly5b, and Thy1.1) were 

co-transferred into the same recipients, followed by CD4 depletion and infection with 

LCMV-A22 (Figures 6A and 6B). At day 8 post-infection, the frequency of Utx−/− cells was 

significantly greater than either WT or P14+ UtxKI/KI (UtxKI/KI P14) cells, which were not 

significantly different between themselves (Figure 6C). T cell differentiation into 

functionally exhausted subsets is impacted by T-BET, EOMES, TOX, and TCF1 

transcription factors, which were differentially expressed depending on UTX genotype 

(Figure 6D). Utx−/− cells underexpressed T-BET and overexpressed EOMES and TCF1, 

whereas UtxKI/KI cells were similar to WT. Notably, both Utx−/− and UtxKI/KI 

underexpressed TOX1, suggesting that the demethylase domain of UTX is required for its 

expression, although Utx−/− P14 cells did not show increases in H3K27me3 at Tox (Table 

S3). As expected from Figure 2, Utx−/− T cells overexpressed BCL2, whereas UtxKI/KI T 

cells showed only a modest increase. Thus, some T cell transcription factors increase in 

expression in the presence of UTX, such as T-BET and TOX, with TOX requiring UTX’s 

demethylase activity for this effect. However, other transcription factors (e.g., EOMES, 

TCF1, BCL2) are reduced in the presence of UTX, perhaps due to UTX-dependent 

activation of inhibitors.

The donor cells varied in their expression of granzyme and IFNγ. As expected, a smaller 

fraction of the Utx−/− P14 T cells made granzyme, and their level of expression per cell was 

greatly reduced compared to WT (Figures 6E and 6F). UtxKI/KI P14 cells showed minimal 

reductions in frequency or amount of granzyme expressed, and similar patterns held when 

IFNγ expression was quantified (Figures 6G and 6H). Among all P14 populations, there 

were cells that made or did not make IFNγ upon peptide stimulation (Figure 6I). There were 

comparable frequencies of WT, Utx−/−, and UtxKI/KI CD8+ T cells among cells making 

IFNγ. However, a high frequency of Utx cells was found among the cells failing to make 

IFNγ, whereas few UtxKI/KI or WT cells were unable to make IFNγ. These data indicate 

that UTX does not require demethylase activity to allow CD8+ T cells to express IFNγ.

Among T cells responding to peptide and making IFNγ, other T cell molecules (CD5, CD9, 

CD44, CD69) associated with T cell activation and TCR signal strength were modestly 

changed when UTX was absent and normal when the UTX catalytic mutant was present 

(Figure 6J). Among the cytokine responsive cells, PD-1 showed minimal alteration in 

expression, although TIM-3 and 2B4 were underexpressed when UTX was absent and 

largely unchanged by the UTX-KI mutation (Figure 6J).
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Ly108 and CD69 co-staining can be used to distinguish Texprog1, Texprog2, Texint, and 

Texterm subsets, which differ in terms of their responsiveness to checkpoint blockade (Beltra 

et al., 2020). Utx−/− P14 cells showed a large outgrowth of Texprog1 and Texprog2 subsets 

(Figures 6K and 6L), whereas the UtxKI/KI P14 cells more closely resembled WT P14 cells 

and were predominantly Texint cells. These data suggest that UTX advances the 

differentiation of Texprog1/2 to Texint or Texterm subsets, and this process does not require its 

demethylase domain. Consistent with these data, UTX-bound enhancers correlate with 

ATAC-seq-based chromatin accessibility changes that occur across Texprog1 to Texint cellular 

subtypes (Figures 5O and 5P).

In summary, these genetic and genomic data demonstrate that UTX functions in CD8+ T cell 

gene regulation largely through demethylase-independent mechanisms, with UTX targeting 

TSSs or enhancers to induce expression. In addition to promoting effector functions and 

inhibitory receptor expression, UTX limits virus-specific T cell numbers and impacts 

whether CD8+ T cells become terminally exhausted, suggesting that interference in UTX 

levels or UTX-interacting partners could prevent-terminal exhaustion.

DISCUSSION

T cells responding to infection differentiate into distinct lineages that are sustained across 

time through epigenetic processes. Multiple enzymes are involved in stabilizing T cells so 

that the cells can express lineage-appropriate cytokines and other molecules and persist as a 

differentiated pool over time. Unlike memory T cells induced by transient vaccines or acute 

infections, virus-specific T cells subjected to persistent virus infection undergo excessive 

cell death or, depending on specificity, persist in a functionally deficient, exhausted state. 

Epigenetic mechanisms orchestrate the transcriptional changes associated with CD8+ T cell 

differentiation, although the roles of specific chromatin-modifying proteins in mediating 

these transcriptional changes are not fully understood (Henning et al., 2018; McLane et al., 

2019). In this study, we identify UTX as a critical regulator of virus-specific CD8+ T cell 

differentiation and antiviral activity during virus infection. UTX expression allowed CD8+ T 

cells to elaborate antiviral effector activity in part by improving the transcription of effector 

molecules, but UTX also increased T cell expression of inhibitory receptors and was 

associated with reduced T cell stability during the course of infection. Genes showing UTX-

dependent expression showed broad reductions in H3K27me3 levels. However, CD8+ T cells 

expressing a demethylase-dead mutant UTX were phenotypically similar to WT, suggesting 

that UTX guides gene expression through demethylase-independent mechanisms, most 

likely by binding enhancers and TSSs of actively expressed genes and promoting their 

expression. These data indicate that UTX guides the size, duration, and antiviral activity of 

virus-specific CD8+ T cells.

Multiple underlying mechanisms lead to excessive loss of virus-specific CD8+ T cells during 

protracted infection. For example, CD4+ T cells play a key role in supporting CD8+ T cell 

responses during chronic infection, including through their expression of IL-21 and 

promotion of antibody responses that reduce viral burden (Elsaesser et al., 2009; Kahan et 

al., 2015; Yi et al., 2009). Mice depleted of CD4+ T cells show exaggerated features of 

CD8+ T cell exhaustion and virus persistence. We previously showed that UTX plays a key 
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role in the generation of Tfh cells and B cell responses to limit chronic infection (Cook et 

al., 2015). We found that WT mice generated as many virus-specific CD8+ T cells as did 

UTX-TCD mice, although UTX-TCD mice had defective Tfh cells. In the present study, we 

show that when compared in the same host, WT CD8+ T cells accumulated less than Utx−/− 

CD8+ T cells, indicating that UTX functions intrinsically within CD8+ T cells to limit their 

number. Additionally, CD8+ T cell expression of inhibitory receptors is linked to increased 

senescence and apoptosis (Pauken et al., 2016). We found that UTX increases the expression 

of several inhibitory receptors (PD-1, LAG-3, TIM-3, and 2B4) (Figure 4), and UTX-

deficient T cells appear resistant to apoptosis (Figure 2), which suggests that UTX may 

potentiate cell death by increasing the cell surface expression of inhibitory receptors. There 

are subsets of T cells that vary in their ability to be rescued by checkpoint blockade during 

chronic infection (Im et al., 2016; Paley et al., 2012). PD-1hi T cells are terminally 

differentiated and cannot be rescued by PD-1-PD-L1 blockade, whereas PD-1int cells 

respond to checkpoint blockade, proliferate, and recover antiviral function. Given that Utx−/− 

CD8+ T cells express intermediate levels of PD-1, transient interference with UTX 

expression might be an approach to improve adoptive immunotherapy or to increase the 

proportion of exhausted CD8+ T cells that can be rescued by checkpoint blockade.

Following acute infection with LCMV-Armstrong, UTX-deficient CD8+ T cells formed 

more memory T cells, including IL-7RahiKLRG1− cells (Figure S5), which is consistent 

with recent evidence that UTX suppresses CD8+ T cell memory formation in mice following 

acute Listeria monocytogenes infection (Yamada et al., 2019). However, the impact of UTX 

on CD8+ T cell number and responsiveness was far more dramatic when T cells were 

subjected to chronic infection. We surmise that the fundamental trends are similar, but 

ongoing antigenic stimulation draws out these differences during chronic infection. UTX-

deficient T cells expressed reduced Thy1, CD9, and several other TCR-associated 

molecules, suggesting that the improved survival of T cells in the presence of ongoing 

infection may be linked to diminished TCR signaling and reduced activation-induced cell 

death. UTX deficiency did not reduce the functional avidity maturation of CD8+ T cells, 

suggesting that early T cell differentiation unfolds normally in its absence; however, UTX 

was needed for maximal expression of IFNγ, granzymes, and immune protection against 

disseminated infection. Thus, UTX fine-tunes CD8+ T cell responses, perhaps allowing for 

rapid immune defense at early stages of infection while countering the harmful effects of 

immune-mediated pathology after the infection has established persistence.

UTX-deficient CD8+ T cells underexpressed numerous genes. Many of these, including 

granzyme A, granzyme B, Thy1, and Cd9, accumulated H3K27me3, suggesting that UTX 

may function by demethylating these loci to enable transcription. However, H3K27me3 

accumulated across broad genic domains that failed to correlate with sites of UTX binding. 

Other loci, such as Ifng, showed reduced mRNA levels in CD8+ T cells lacking UTX but did 

not show significant changes in H3K27me3. It is plausible that these loci are partly 

demethylated by JMJD3, resulting in residual expression in UTX-deficient T cells. UTX and 

JMJD3 typically operate at distinct sites, although there can be redundancy at some loci 

(Manna et al., 2015). Interestingly, UTX promoted inhibitory receptor expression without 

significantly changing its mRNA expression, suggesting that UTX affects the post-

transcriptional regulation of these proteins. Finally, UTX can promote gene expression 
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independent of its demethylase domain by seeding pro-transcription complexes at gene 

promoters or enhancers (Miller et al., 2010; Shpargel et al., 2012; Wang et al., 2017; Yoo et 

al., 2016), which may explain why some genes show UTX-dependent increases in gene 

expression, yet show no alteration in H3K27me3 marks and can be activated by a 

catalytically dead version of UTX (Figures 5 and 6). UTX was bound to putative enhancers 

of many gene targets that failed to be expressed in the absence of UTX. As these enhancers 

become activated in P14 cells during chronic LCMV infection, UTX may guide gene 

expression patterns that drive T cells toward the exhausted phenotype.

In summary, our findings show that UTX modulates antiviral CD8+ T cell responses at 

various stages of virus infection, simultaneously promoting early antiviral activity while 

increasing inhibitory receptor expression and reducing long-term T cell survival. A better 

understanding of the epigenetic landscape in exhausted T cells and the role of specific 

chromatin-modifying proteins may lead to the development of a new class of 

immunotherapy agents that reprogram T cells for durable protection.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Jason Whitmire 

(jwhitmir@email.unc.edu).

Materials availability—UTXfl/fl and UTXKI/KI mice are available upon request, with 

standard institutional material transfer agreements and evidence of institutional approval to 

receive mice.

Data and code availability—All data are available within this article. RNA-sequencing, 

CUT&RUN-sequencing, and CUT&TAG-sequencing data have been deposited to Gene 

Expression Omnibus under Accession GSE143736. No new code was generated for this 

study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—C57BL/6 (B6), B6.Ly5a/a (CD45.1), and B6.Lck-cre mice were purchased from 

Jackson Laboratory (Bar harbor, Maine). Utxfl/fl mice were generated at UNC and 

backcrossed to C57BL/6 (Shpargel et al., 2012). UtxKI/KI mice were generated at NIDDK 

and then backcrossed 10 times to C57BL/6J in the Whitmire lab. UTX-TCD mice express 

one copy of the Lck-cre transgene and were generated by crossing Lck-cre-transgenic mice 

(Hennet et al., 1995) to Utxfl/fl mice. P14 TCR-transgenic mice contain CD8+ T cells 

specific for LCMV GP33–41 were backcrossed to B6.Ly5a/a mice and were maintained in a 

hemizygous state (P14+/0). Both Lck-cre+Utxwt/wt and Lck-Cre−Utxfl/fl mice were used as 

WT controls, as they fail to delete the Utx gene. P14+Lck-cre+Utxwt/wt mice (WT P14+) 

were generated by intercrossing P14+Lck-cre+ mice to Utxwt/wt mice. P14+Lck-cre+UTXfl/fl 

mice (Utx−/− P14+) were generated by intercrossing P14+Lck-cre+ mice to Utxfl/fl mice. 

UtxKI/KI mice were intercrossed to P14 mice to generate the P14+UtxKI/KI mice. Congenic 
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P14+ mice were either Ly5a/b, Ly5a/a, or Ly5b/b, as indicated. All experimental mice were 

female and hemizygous for both P14 and Lck-cre transgenes. Mice were bred and housed in 

a facility managed by the Division of Comparative Medicine at UNC-CH. All mouse 

experimental procedures were approved by the University of North Carolina Institutional 

Animal Care and Use Committee.

Virus—Adult mice (8-10 weeks) received 2x106 plaque-forming units (PFU) LCMV-A22 

by intravenous tail vein injection or, where indicated, 2x105 PFU LCMV-Armstrong. Stocks 

of LCMV were produced from BHK-21 cells after infection with plaque-purified isolates 

and were tested negative for mycoplasma. Virus titer in serum, liver, lung, and kidney was 

quantified by plaque assay on Vero cell monolayers (Ahmed et al., 1984).

Cell isolation and purification—Single-cell suspensions from spleens were prepared by 

physically disrupting the tissue over a 70um strainer (Corning, NY). Erythrocytes were 

removed from the spleen suspension using ACK lysing buffer. Blood leukocytes were 

isolated using heparinized capillary tubes and collected into 4% sodium citrate; cells were 

underlaid with Histopaque-1077, centrifuged, and the leukocytes removed from the resulting 

interphase. All single-cell preparations were rinsed and re-suspended in 10% RPMI media.

Cell culture—Vero cells and BHK cells were propagated in DMEM supplemented with 

5% heat-inactivated FBS, penicillin, streptomycin, and fungizone.

METHOD DETAILS

Adoptive transfers—Splenocytes were isolated from WT and Utx−/− P14 TCR transgenic 

mice, and the frequency of Vα2+Vβ8.1/2+CD8+ T cells was determined by flow cytometry. 

In some experiments, 2x103 WT or Utx−/− P14+CD8+ T cells were injected via intravenous 

tail-vein injection into separate C57BL/6 mice. In co-transfer experiments, 1x103 WT and 

1x103 Utx−/− P14s were mixed and co-transferred into the same recipients; the donor cells 

expressed different congenic markers (CD45.1 (Ly5a) versus CD45.2 (Ly5b)), allowing them 

to be distinguished from each other and host cells by surface staining and flow cytometry. 

Donor cells were allowed to engraft for 5-7 days prior to LCMV infection. In some cases, 

CD4 T cells were depleted before infection by intraperitoneal injection of 75ug GK1.5 on 

days −3 and −2.

Flow cytometry and intracellular staining—Surface staining of splenocytes and 

peripheral blood lymphocytes was performed directly ex vivo. Degranulation was assessed 

by surface expression of CD107a and CD107b. Splenocytes were incubated (37°C at 8% 

CO2) for 1 hour with LCMV peptide GP33–41 and antibody to CD107a/b followed by 

addition of Monensin and additional 4-hour incubation (Betts et al., 2003). Intracellular 

staining for Granzyme B was performed using the True-Nuclear Transcription Factor Buffer 

Set. Intracellular staining for Ki67 was performed using the FoxP3 Fix/Perm Buffer Set. 

Cytokine production was assessed by intracellular cytokine staining for IL-2, TNF, and 

IFNγ following a 5 hour stimulation with GP33–41 peptide in the presence of brefeldin A. 

Samples were analyzed by flow cytometry using a FACS-Calibur or LSR II (BD 

Biosciences), and FACS plots generated using FlowJo software.

Mitchell et al. Page 14

Cell Rep. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mixed bone marrow chimeras—Donor bone marrow was harvested from the femurs of 

WT and UTX-TCD Ly5a+ non-transgenic mice. Red blood cells were lysed using ACK 

Lysis Buffer, followed by trypan blue counting. Donor cells were mixed to obtain the desired 

WT:UTX-TCD ratio. Recipient C57BL/6 mice were exposed to 600 Rads then another dose 

of 700 Rads 4 hours later. Bone marrow cells were transferred intravenously into the 

irradiated mice immediately after the second radiation dose. Mice were allowed to 

reconstitute for 10-weeks prior to infection.

PCR genotyping—Tail DNA was isolated using a DNeasy isolation kit. Oligonucleotide 

primers were custom-synthesized by Eurofins Genomics. PCR amplification of DNA 

fragments (200- 400 bp) was performed with the specific primers and Taq DNA polymerase. 

General PCR conditions were: 95°C, 5 minutes; [95°C for 30 s; 55-60°C for 30 s; 72°C for 

90 s] x 35 cycles; 72°C for 5 minutes. PCR products were run on a 2% agarose gel and 

visualized by ethidium bromide staining.

RNA-seq, CUT&RUN, and CUT&Tag—2x103 P14+CD8+ T cells were transferred to 

separate C57BL/6 recipient mice. CD4+ T cells were depleted (75mg of GK 1.5 Ab on days 

−3, −2) in the recipients prior to LCMV-A22 infection. Spleens were harvested from 3-4 

mice at day 15 post-infection for CUT&RUN or CUT&Tag analyses or day 21 post-

infection for RNA-seq. Donor P14s were then sorted to > 97% purity using a FACSAria-II 

flow cytometer at the UNC flow cytometry core facility. RNA was extracted from ~105 

sorted cells using TRIZOL reagent, followed by mRNA purification and adaptor ligation 

using the KAPA mRNA HyperPrep Kit (KK8580). Sequencing was performed on an 

Illumina HiSeq4000 at the Duke Center for Genomic and Computational Biology. The 

Genome Analyzer Pipeline Software was used to perform the early data analysis, including 

base calling and demultiplexing of the barcodes. Reads were then aligned to the mouse 

(mm9) genome using open source TopHat 2.0.9. Genic reads were counted using HTSeq-

count. EdgeR was used to identify significant differences between datasets (FDR < 0.05) and 

generate logCPM values that were used to generate scatterplots.

CUT&RUN was performed on ~105 sorted P14 donor cells as described (Skene et al., 2018). 

Briefly, P14+ CD8+ T cells were bound to Concanavalin A beads, permeabilized with 

digitonin, and incubated with H3K27me3 antibody (Cell Signaling 9733S: used at 1:100) 

overnight at 4 degrees on a nutator. The following day, protein A fused micrococcal nuclease 

(700 ng/ml) was incubated to bind H3K27me3 sites and digestion was allowed to proceed 

for 30 minutes at 4 degrees followed by a 10 minute incubation at 37 degrees to release 

CUT&RUN fragments. DNA was purified by phenol chloroform extraction with ethanol 

precipitation and KAPA dual index adapters (KK8722) were ligated to DNA with the KAPA 

HyperPrep Kit (KK8504) for paired-end sequencing on the Nextseq 500 (Duke Center for 

Genomic and Computational Biology). CUT&RUN alignment to the mm9 genome was 

performed using Bowtie2 and H3K27me3 peaks called with MACS2 and hidden Domains 

(Starmer and Magnuson, 2016; Zhang et al., 2008). Read counts at peaks of H3K27me3 

enrichment were quantified with deepTools (Ramírez et al., 2016) and edgeR identified 

significant (FDR < 0.05) changes in H3K27me3.
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CUT&Tag was performed on ~105 sorted WT or Utx−/− P14 donor cells before recipient 

transfer (D0) or 15 days following transfer, CD4 depletion, and LCMV-A22 infection (D15). 

P14+ CD8+ T cells were bound to Concanavalin A beads, permeabilized with digitonin, and 

incubated with UTX antibody (Cell Signaling 33510S: used at 1:100). A secondary antibody 

(Guinea Pig anti-Rabbit IgG, Fisher Scientific NBP172763, 1:100) was incubated to 

increase antibody enrichment at UTX bound sites. Protein A fused Tn5 transposase (pA-

Tn5) was expressed from the 3XFlag-pA-Tn5-FI construct (Addgene plasmid 124601) and 

purified as described (Kaya-Okur et al., 2019) by the University of North Carolina Protein 

Production Core. Adapters were ligated to the pA-Tn5 as described (Kaya-Okur et al., 

2019). PA-Tn5 was incubated with the antibody bound digitonin permeabilized P14 cells 

and tagmentation was allowed to proceed for 1 hour at 37 degrees. DNA was extracted, 

purified, and dual index oligos (Buenrostro et al., 2015) amplified CUT&Tag libraries with 

NEBNext HiFi 2 × PCR Master mix (New England BioLabs: M0541L). Libraries were 

purified with KAPA Pure Beads (KK8000) for paired-end sequencing on the NovaSeq 6000 

(Duke Center for Genomic and Computational Biology). CUT&Tag alignment to the mouse 

mm9 or E. coli genome was performed using Bowtie2, mm9 UTX peaks were called with 

MACS2 broad function (Zhang et al., 2008), and peaks with RPKM > 1 were kept for 

analysis. Unique read counts at peaks of UTX enrichment were quantified with deepTools 

(Ramírez et al., 2016), normalization factors relative to E. coli read counts were generated as 

described (Kaya-Okur et al., 2019 and https://github.com/Henikoff/Cut-and-Run/blob/

master/spike_in_calibration.csh), and edgeR identified significant (FDR < 0.05) enrichment 

of D15 WT P14 reads compared to either D0 WT or D15 Utx−/− P14 samples based on the 

E. coli normalization factors.

Genomic analysis and data deposition—Significant UTX peaks (D15 WT P14 

enriched relative to D0 WT or D15 Utx−/−) and significantly elevated H3K27me3 peaks 

(D15 Utx−/− enriched relative to D15 WT) were mapped to the closest upstream or 

downstream gene using BEDTools closest (Quinlan and Hall, 2010). Genes within 20 

kilobases of UTX or H3K27me3 peaks were considered direct targets of action. BEDTools 

intersect identified peaks that overlap genic transcription start sites (TSSs, +/− 500 bases). 

Enhancers were identified based on existing ATAC-seq data (GEO: GSE149877) generated 

from P14 donor cells following 30 days of recipient infection with LCMV Clone 13 (Beltra 

et al., 2020). In these data, P14 cells were flow sorted into exhausted progenitor 1 (Texprog1: 

Ly108+ CD69+), progenitor 2 (Texprog2: Ly108+ CD69−), intermediate exhausted (Texint: 

Ly108− CD69−), and terminally exhausted (Texterm: Ly108− CD69+) states. ATAC-seq 

reads from these samples were remapped to mm9 using Bowtie2 and peaks called with 

MACS2 broad function (Zhang et al., 2008). Read counts at peaks of ATAC-seq enrichment 

were quantified with deepTools and retained with RPKM > 1. Texprog1, Texprog2, and 

merged ATAC-seq peaks were compiled, and peaks of open chromatin that do not overlap 

TSSs (+/− 500 base pairs based on BEDTools intersect) established a set of putative 

enhancers that may be utilized in early stages of chronic LCMV infection. Enhancer 

activation status was generated from existing H3K27ac ChIP-seq datasets (GSE119941) 

from progenitor (Blimp1−) or terminally exhausted (Blimp1+) P14 donor cells following 7 

days of recipient infection with LCMV Clone 13 (Yao et al., 2019). Similar to ATAC-seq 

data, H3K27ac reads were remapped to mm9 and peaks of enrichment were called with 
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MACS2 and retained with RPKM > 1. BEDTools intersect identified active enhancers as 

putative enhancers peaks that overlapped H3K27ac peaks. UTX peaks were intersected with 

these datasets to identify bound enhancers and activation status. Profiles of UTX, 

H3K27me3, ATAC-seq, and H3K27ac read coverage at UTX peaks were generated with 

deepTools computeMatrix and plotProfile functions based on BED files of UTX peaks and 

Bigwig files of read coverage (generated through deepTools bamCoverage function ignoring 

duplicate reads). The HOMER find-MotifsGenome.pl program was utilized to identify 

transcription factor sequence motif enrichment at UTX bound enhancers relative to unbound 

enhancer control regions (Heinz et al., 2010). To validate enhancers, existing H3K4me1 

ChIP-seq data obtained from P14+CD8+KLRG1+CD127lo cells at 8 days post LCMV-

Armstrong infection (GSE76029; He et al., 2016) were remapped mm9 and Bigwig tracks 

were generated for comparison to UTX peaks locations (Figure S6C). We utilized remapped 

Bigwig tracks from existing H3K4me3 ChIP-seq obtained from 

P14+CD8+KLRG1+CD127lo cells at 4 days post LCMV-Armstrong infection (GSE81887; 

Shan et al., 2017) to illustrate enrichment at TSSs (Figure S6C). All sequencing data were 

generated in this study were deposited in GEO under accession number GSE143736.

T cell apoptosis—Splenocytes were collected at day 9 post-infection and cultured directly 

ex vivo for 5 hours in RPMI supplemented with 10% heat-inactivated FBS. T cell apoptosis 

was assessed by intracellular staining for cleaved caspase3 and surface staining for annexin-

V binding.

T cell proliferation in vivo—Control and infected mice were given 2mg 

bromodeoxyuridine (BrdU) by intraperitoneal injections at days 4, 5, and 6 post-infection. 

Mice were also given BrdU in drinking water (0.8mg/ml) at days 4-7. Spleens were 

harvested at day 7 post-infection and cells stained with anti-BrdU to identify nuclear DNA 

with incorporated BrdU.

QUANTIFICATION AND STATISTICAL ANALYSIS

Parametric tests were conducted using unpaired two-tailed Student’s t test for two groups or 

one-way analysis of variance (ANOVA) with Bonferroni multiple comparison test for more 

than two groups. When data were not normally distributed, non-parametric tests were used 

(Mann-Whitney U test for two groups, Kruskal-Wallis with Dunn’s multiple comparison test 

for more than two groups). Statistical analyses were performed using Prism software 

(https://www.graphpad.com). All graphs are presented as mean data ± SEM. Statistical 

significance was determined using an unpaired Student’s t test for single transfer 

experiments or paired Student’s t test for co-transfer experiments. Differences were 

considered significant when p < 0.05 (*); < 0.01 (**); < 0.001 (***); < 0.0001 (****). 

EdgeR was used to identify significant differences between datasets (FDR < 0.05) and 

generate RPKM values for RNA-seq data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• UTX promotes CD8+ T cell-mediated antiviral defenses

• UTX increases inhibitory receptor expression and reduces T cell longevity

• UTX does not require its H3K27me3 demethylase function to promote gene 

expression
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Figure 1. UTX-deficient CD8+ T cells fail to control disseminated virus infection
(A) Approach: WT and UTX-TCD mice were depleted of CD4+ T cells followed by LCMV-

A22 infection. The contribution of UTX to CD8+ T cell-dependent immune control of 

infection was assessed at day 21 post-infection.

(B and C) Titers of infectious virus in sera (B) and in livers, lungs, and kidneys (C) at day 21 

post-infection.

(D) Dot plots show CD8+ T cell expression of CD44 and CD62L, and the graphs show the 

number of CD44hi T cells in the spleen or their percentage among CD8+ T cells at day 21.
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(E) Dot plots show examples of CD8+CD44hi T cells bound to DbGP33 tetramer, and the 

graphs show the number of DbGP33+ T cells per spleen or their percentage among splenic 

CD8+ T cells.

(F) Dot plot shows CD8+ T cells and their expression of IFNγ and TNF following ex vivo 
stimulation with GP33–41 peptide; the graphs depict the total number of IFNγ+CD8+ T cells 

per spleen or the gMFI of IFNγ among IFNγ-producing CD8+ T cells.

Data were combined from two independent experiments with 5–6 mice per group. Error bars 

display mean ± SEM. Significance was determined using an unpaired Student’s t test (*p < 

0.05, **p < 0.01).

See also Figures S1 and S2.

Mitchell et al. Page 24

Cell Rep. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. UTX limits CD8+ T cell accumulation and maintenance
(A–G) WT and UTX-deficient P14+CD8+ T cells were introduced into the same recipients, 

followed by CD4 depletion and infection with LCMV-A22.

(A) The two donor CD8+ T cell populations and host CD8+ T cells were identified by 

surface expression of Ly5a and Ly5b.

(B) Infectious virus in livers, lungs, and kidneys at day 35 post-infection.

(C) The frequency of donor cells among all CD8+ T cells in the blood at days 10, 22, and 35 

post-infection. For illustrative purposes, donor populations are graphed separately yet were 

in the same mice.

(D) The frequency and number of donor cells in the spleen at days 9, 22, and 35 post-

infection. Lines connect pairs of WT and UTX-deficient P14+ cells present in each recipient.

(B)–(D) show one representative experiment of two independent experiments (n = 3–6).

(E and F) Recipient mice were treated with 2 mg of BrdU via intraperitoneal injection on 

days 4, 5, and 6 post-infection.

(E) Illustration of the approach.

(F) The percentage of donor cells staining positive for BrdU in the blood or spleen day 7 

post-infection.

(G) The percentage of donor cells staining positive for Ki-67 in the spleen as determined by 

flow cytometry.
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(F) and (G) show one representative experiment of two independent experiments (n = 3).

(H–J) WT and UTX-deficient P14+CD8+ T cells were introduced into separate mice, 

followed by CD4 depletion and infection with LCMV-A22. Cells were isolated at day 9 

post-infection. Anti-BIM and anti-BCL2 fluorescence intensity were assessed directly ex 
vivo, and cleaved caspase-3 and annexin V staining were measured after brief culture.

(H) Representative plots display the expression of Bim and Bcl-2 in donor cells. Graphs 

show gMFI for BIM and BCL-2, as well as the ratio of BIM gMFI to BCL-2 gMFI. Data are 

from one of three independent experiments with 2–3 mice per group.

(I) Donor cells were cultured with GP33–41 peptide for 5 h followed by quantification of 

intracellular cleaved caspase-3.

(J) Surface binding of annexin V following GP33–41 stimulation.

Graphs in (I) and (J) show data compiled from three independent experiments with 6–8 mice 

per group.

Error bars display mean ± SEM. Significance was determined by a paired (C, D, F, and G) or 

unpaired (H and J) Student’s test (*p < 0.05, **p < 0.01, ***p < 0.001).

See also Figures S3 and S4.
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Figure 3. UTX supports the effector functions of virus-specific CD8+ T cells
(A and B) WT and UTX-deficient P14+ CD8+ T cells were introduced into the same 

recipient mice, followed by CD4 depletion and infection with LCMV-A22. Splenocytes 

were harvested at days 9 or 22 and were stimulated with GP33–41 peptide for 5 h followed by 

ICCS.

(A) The dot plot shows an example of IFNγ production by donor cells at day 9; the numbers 

represent the percentage of cells with the box. The graph shows cumulative data from three 

recipients and depicts the percentage of either donor that made IFNγ; the lines connect cells 

that were in the same host.

(B) The graph shows the gMFI of IFNγ among IFNγ+ donor cells. Data from three 

recipients are shown.

(C and D) WT and Utx−/− P14+CD8+ T cells were introduced into separate recipients, 

followed by CD4 depletion and infection with LCMV-A22. Splenocytes were stimulated 

with different concentrations of GP33–41 peptide followed by ICCS analysis. Data represent 

a single experiment (of two performed) with four mice per group.

(C) Percentage of donor P14s expressing IFNγ at each peptide concentration. The black and 

red lines indicate the half-maximal response.

(D) The gMFI of IFNγ among IFNγ+ donor cells; the black and red lines indicate the half-

maximal response.

(E) Using the dual transfer approach as described for (A) and (B), donor cells were analyzed 

for granzyme B expression; the lines connect donor cells that were present in the same 

infected hosts.

(F) Donor cell degranulation. Graph shows gMFI of CD107a/b gated on the indicated donor 

cells.
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(A), (B), (E), and (F) show one of two independent experiments (n = 3 recipients).

(G and H) WT and UTX-deficient P14+CD8+ T cells were introduced into separate Rag−/− 

mice, followed by infection with LCMV-A22. Analyses were performed on day 7 post-

infection.

(G) The number of donor cells per Rag−/− spleen.

(H) The viral titer in livers, lungs, and kidneys of the Rag−/− recipients.

(G) and (H) show one of two independent experiments with 3–4 Rag−/− recipients per group. 

Error bars display mean ± SEM. Significance was determined by a paired (A–F) or unpaired 

(G and H) Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001).

See also Figure S5.
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Figure 4. UTX increases inhibitory receptor expression
WT and UTX-deficient P14+CD8+ T cells were transferred into separate mice and analyzed 

for their expression of inhibitory receptors at multiple times after LCMV-A22 infection.

(A–D) Time course showing the percent of donor P14s expressing PD-1 (A), LAG-3 (B), 

TIM-3 (C), and 2B4 (D) in blood.

(E) The gMFI of inhibitory receptors on donor P14s collected from blood at day 15 post-

infection. The measurement was determined for donor cells that stained positive for the 

indicated molecule.
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(F) The viral titer in the liver at various days post-infection.

Data show one representative experiment of three independent experiments with 2–5 mice 

per group. Error bars display mean ± SEM. Significance was determined using an unpaired 

Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

See also Figure S4.
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Figure 5. UTX alters gene expression in virus-specific CD8+ T cells
(A) An illustration of the approach. WT and UTX-deficient P14+CD8+ T cells were 

introduced into the separate hosts, followed by CD4 depletion and infection with LCMV-

A22. Donor cells from 3–4 mice were isolated by FACS at day 15 for H3K27me3 

CUT&RUN or UTX CUT&Tag analyses or isolated at day 22 for RNA-seq analyses.

(B) EdgeR analysis of RNA-seq data showing genes with significantly changed expression 

(FDR < 0.05; log2 fold change > |1.0|), comparing genes significantly downregulated in Utx
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−/− donor P14+ T cells (purple) to those upregulated (green). RNA-seq data are derived from 

FACS donor cells from 3–4 recipient mice per group.

(C) GSEA of effector genes, ranked according to their relative expression in WT and Utx−/− 

cells. The genes in this gene set are known to be expressed in CTLs, but not naive cells.

(D) Genes showing significant differences in expression were subjected to GOrilla analysis 

followed by REVIGO analysis. The analysis identified several biological processes that are 

predicted to be significantly altered between WT and Utx−/− T cells based on differential 

gene expression.

(E) Isolated cells were subjected to H3K27me3 CUT&RUN analysis. The anti-H3K27me3-

bound DNA fragments were eluted, sequenced, and quantified across the genome. The graph 

depicts the relative change in Utx−/− H3K27me3 density (log2 fold change) compared to WT 

for individual genes that were grouped based on changes in Utx−/− gene expression (RNA-

seq in B). H3K27me3 changes are shown for genes having equal (black), significantly 

downregulated (purple), or significantly upregulated (green) RNA expression in Utx−/− 

P14s. The H3K27me3 CUT&RUN data are from four recipients per group.

(F) UCSC genome browser images of normalized H3K27me3 tracks at the Gzma, Thy1, 
Cd9, Crtam, Ubash3b, and Sema7a loci, showing mean values from four independent 

replicates of WT (black) or Utx−/− (red). The heavy bars depict regions with significantly 

enriched peaks of H3K27me3 in UTX-deficient P14 cells, compared to WT cells.

(G–I) UTX CUT&Tag was performed on WT CD8+ T cells at day 0 (n = 2) and day 15 post-

infection (n = 4) and at day 15 for Utx−/− (KO) cells (n = 2).

(G and H) The average profile of UTX coverage is plotted based on normalized read counts 

for all UTX peaks of enrichment that occur at transcription start sites (TSSs; G) or enhancers 

(H). Enhancers were annotated based on published ATAC-seq datasets (Beltra et al., 2020). 

Start and stop define the boundary of the UTX peaks. Line colors indicate the profile for WT 

uninfected P14 (D0; light blue), WT at day 15 of LCMV infection (dark blue), or Utx−/− at 

day 15 (black).

(I) The pie graph depicts the proportion of UTX binding at TSSs, enhancers, active 

enhancers, and other locations (neither TSS nor enhancer) that are within 20 kb of TSSs. 

Active enhancer annotation was based on published H3K27ac datasets (Yao et al., 2019).

(J) H3K27me3 CUT&RUN changes were correlated with UTX binding at day 15 post-

infection at genes showing reduced expression in Utx−/− T cells. Utx−/− misregulated genes 

were categorized as UTX bound or unbound, then contrasted for the percentage of these 

genes that experienced increased H3K27me3 in Utx−/− P14 cells.

(K and L) All H3K27me3 peaks of enrichment that failed to overlap with UTX peaks (UTX-

unbound; K) are illustrated for comparison to UTX peaks near genes with reduced 

expression in Utx−/− cells (UTX-bound; L). The average profile of H3K27me3 coverage is 

plotted based on normalized read counts for WT (red) or Utx−/− P14 (dark red) samples.

(M and N) The UTX-bound H3K27me3 profiles in (L) were further subdivided into UTX 

peaks that overlap TSSs (M) or putative enhancers (N).

(O and P) Profiles of ATAC-seq normalized reads (Beltra et al., 2020) identify the open 

chromatin status of enhancers in “progenitor exhausted„ (Texprog1; O) or intermediate 

exhausted (Texint; P) T cells. These putative enhancers were subdivided based on overlap 

with UTX peaks of enrichment (UTX-bound; light blue profile) or peaks lacking UTX 

association (unbound; black profile).
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(Q) The profile of H3K27ac ChIP-seq normalized reads (Yao et al., 2019) demonstrates 

enhancer activation status at regions that overlap with UTX binding (pink) compared to 

enhancers not bound by UTX (black).

See also Figure S6 and Tables S1, S2, S3, and S4.
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Figure 6. UTX demethylase activity is not required for effector CD8+ T cell function during 
chronic infection
WT, UTX-KI (catalytic dead knockin), and UTX-KO P14+CD8+ T cells were introduced 

into the same recipients, followed by CD4 depletion and infection with LCMV-A22. At day 

8 post-infection, splenic donor P14T cells were analyzed for surface marker expression, 

transcription factor levels, and cytokine expression.

(A) Illustration of the approach.

(B) The three donor P14 T cell populations and host CD8+ T cells were identified by surface 

expression Ly5a, Ly5b, and Thy1.1.
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(C) Frequency of each donor P14 group among all donor CD8+Ly5a+ P14 T cells in spleen. 

Lines connect pairs of WT, UTX-KI, and UTX-KO P14T cells present in each recipient.

(D) Histogram plots and gMFI for the transcription factors T-bet, Eomes, Tox, Tcf1, and 

Bcl2.

(E and F) The fraction of donor P14 T cells producing granzyme (E) and the gMFI of 

granzyme expression among granzyme-positive cells (F).

(G and H) The fraction of donor cells making IFNγ (G) and the gMFI among IFNγ-positive 

cells (H).

(I) The distribution of IFNγ+ (left) and IFNγ− (right) donor cell populations after re-

stimulation with GP33–41 peptide in an ICCS assay. The left graph shows the distribution of 

donor cells among the IFNγ+ cells; the right graphs shows the distribution of donor cells 

that failed to make IFNγ.

(J) The histograms show several activation and inhibitory receptors expressed by IFNγ+ 

donor cells.

(K) The surface expression of Ly108 and CD69 on each donor cell population was used to 

identify Texprog1, Texprog2, Texint, and Texterm subsets.

(L) Distribution of the four developmental stages of exhaustion for donor cell populations. 

Each circle represents 1% of the total population.

Data show one experiment with five recipient mice. Samples from the five recipient mice 

were concatenated to generate histograms. Significance was determined by a paired 

Student’s t test (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

See also Figure S7.

Mitchell et al. Page 35

Cell Rep. Author manuscript; available in PMC 2021 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mitchell et al. Page 36

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-BrdU, FITC, clone B44 BD Biosciences Cat#347583; RRID: AB_400327

Anti-mouse Bcl-2, PE, clone 3F11 BD Biosciences Cat#51-15025X; RRID: AB_396457

Anti-mouse Bim, PE, clone C34C5 Cell Signaling Cat#2933S; RRID: AB_1030947

Anti-mouse CD3ε, BV421, clone 145-2C11 Biolegend Cat#100335; RRID: AB_10898314

Anti-mouse CD3ε, PerCP, clone 145-2C11 Biolegend Cat#100325; RRID: AB_893319

Anti-mouse CD3ε, purified, Ultra-LEAF, clone 145-2C11 Biolegend Cat#100340; RRID: AB_11149115

Anti-mouse CD4, purified, InVivoMab, clone GK1.5 BioXcell Cat#BE0003-1; RRID: AB_1107636

Anti-mouse CD4, FITC, clone GK1.5 Biolegend Cat#100406; RRID: AB_312691

Anti-mouse CD4, PE, clone GK1.5 Biolegend Cat#100408; RRID: AB_312693

Anti-mouse CD5, APC, clone 53-7.3 Invitrogen Cat#17-0051-82; RRID: AB_469331

Anti-mouse CD8a, APC, clone 53-6.7 Biolegend Cat#100712; RRID: AB_312751

Anti-mouse CD8a, biotinylated, clone 53-6.7 Biolegend Cat#100704; RRID: AB_312743

Anti-mouse CD8a, BUV395, clone 53-6.7 BD Biosciences Cat#563786; RRID: AB_2732919

Anti-mouse CD8a, BV421, clone 53-6.7 Biolegend Cat#100737; RRID: AB_10897101

Anti-mouse CD8a, BV785, clone 53-6.7 Biolegend Cat#100750; RRID: AB_2562610

Anti-mouse CD8a, FITC, clone 53-6.7 Biolegend Cat#100706; RRID: AB_312745

Anti-mouse CD8a, PE, clone 53-6.7 Biolegend Cat#100707; RRID: AB_312746

Anti-mouse CD8a, PerCP, clone 53-6.7 Biolegend Cat#100732; RRID: AB_893427

Anti-mouse CD9, PE, clone MZ3 Biolegend Cat#124806; RRID: AB_1279325

Anti-mouse CD16/32 (TruStain fcX), purified, clone 93 Biolegend Cat#101320; RRID: AB_1574975

Anti-mouse CD28, purified, Ultra-LEAF, clone 37.51 Biolegend Cat#102116; RRID: AB_11147170

Anti-mouse CD44, AF700, clone IM7 Invitrogen Cat#56-0441-82; RRID: AB_494011

Anti-mouse CD44, FITC, clone IM7 Biolegend Cat#103006; RRID: AB_312957

Anti-mouse CD45.1 (Ly5a), APC, clone A20 Biolegend Cat#110714; RRID: AB_313503

Anti-mouse CD45.1 (Ly5a), FITC, clone A20 Biolegend Cat#110706; RRID: AB_313495

Anti-mouse CD45.1 (Ly5a), PE, clone A20 Biolegend Cat#110707; RRID: AB_313497

Anti-mouse CD45.1 (Ly5a), PE/Cy7, clone A20 Biolegend Cat#110730; RRID: AB_1134168

Anti-mouse CD45.2 (Ly5b), APC, clone 104 Biolegend Cat#109814; RRID: AB_389211

Anti-mouse CD45.2 (Ly5b), BV605, clone 104 Biolegend Cat#109841; RRID: AB_2563485

Anti-mouse CD45.2 (Ly5b), FITC, clone 104 Biolegend Cat#109806; RRID: AB_313443

Anti-mouse CD45.2 (Ly5b), PE, clone 104 Biolegend Cat#109807; RRID: AB_313444

Anti-mouse CD45.2 (Ly5b), PerCP/Cy5.5, clone 104 Biolegend Cat#109828; RRID: AB_893350

Anti-mouse CD62L, APC, clone MEL-14 Biolegend Cat#104411; RRID: AB_313098

Anti-mouse CD69, APC, clone H1.2F3 Biolegend Cat#104514; RRID: AB_492843

Anti-mouse CD69, FITC, clone H1.2F3 Biolegend Cat#104506; RRID: AB_313109

Anti-mouse CD69, PE, clone H1.2F3 Biolegend Cat#104508; RRID: AB_313111

Cell Rep. Author manuscript; available in PMC 2021 May 11.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mitchell et al. Page 37

REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-mouse CD90.1 (Thy1.1), AF700, clone OX-7 Biolegend Cat#202527; RRID: AB_1626244

Anti-mouse CD90.1 (Thy1.1), PE, clone OX-7 Biolegend Cat#202523; RRID: AB_1595635

Anti-mouse CD90.2 (Thy1.2), APC, clone 53-2.1 eBioscience Cat#17-0902-82; RRID: AB_469422

Anti-mouse CD90.2 (Thy1.2), PE, clone 30-H12 Biolegend Cat#105308; RRID: AB_313179

Anti-mouse CD107a (LAMP-1), FITC, clone 1D4B Biolegend Cat#121605; RRID: AB_572006

Anti-mouse CD107b (LAMP-2), FITC, clone eBioABL-93 eBioscience Cat#11-1072-81; RRID: AB_657579

Anti-mouse CD127 (IL-7Ra), APC, clone A7R34 Biolegend Cat#135011; RRID: AB_1937217

Anti-mouse CD223 (LAG3), APC, clone C9B7W Biolegend Cat#125209; RRID: AB_10639935

Anti-mouse CD223 (LAG3), PE, clone C9B7W Biolegend Cat#125207; RRID: AB_2133344

Anti-mouse CD244.2 (2B4), PE, clone m2B4 (B6) 458.1 Biolegend Cat#133507; RRID: AB_1626231

Anti-mouse CD279 (PD-1), BV421, clone RMP1-30 Biolegend Cat#109121; RRID: AB_2687080

Anti-mouse CD279 (PD-1), PE, clone RMP1-30 Biolegend Cat#109104; RRID: AB_313421

Anti-mouse CD366 (TIM-3), BV605, clone
RMT3-23

Biolegend Cat#119721; RRID: AB_2616907

Anti-mouse CD366 (TIM-3), PE, clone RMT3-23 Biolegend Cat#119703; RRID: AB_345377

Anti-mouse EOMES, PE, clone Dan11mag eBioscience Cat#12-4875-82; RRID: AB_1603275

Anti-mouse Granzyme B, AF647, clone GB11 Biolegend Cat#515405; RRID: AB_2294995

Anti-mouse Granzyme-B, FITC, clone GB11 Biolegend Cat#515403; RRID: AB_2114575

Anti-mouse IFN-γ, APC, clone XMG1.2 Biolegend Cat#505810; RRID: AB_315404

Anti-mouse IFN-γ, BV421, clone XMG1.2 BD Biosciences Cat#563376; RRID: AB_2738165

Anti-mouse IFN-γ, FITC, clone XMG1.2 Biolegend Cat#505806; RRID: AB_315400

Anti-mouse IFN-γ, PE/Cy7, clone XMG1.2 eBioscience Cat#25-7311-82; RRID: AB_469680

Anti-mouse IL-2, APC, clone JES6-5H4 Biolegend Cat#503810; RRID: AB_315304

Anti-mouse Ki67, FITC, clone B56 BD Biosciences Cat#556026; RRID: AB_396302

Anti-mouse KLRG1, PE, clone 2F1/KLRG1 Biolegend Cat#138407; RRID: AB_10574005

Anti-mouse Ly108, APC, clone 330-AJ Biolegend Cat#134610; RRID: AB_2728155

Anti-mouse Ly108, PE, clone 330-AJ Biolegend Cat#134606; RRID: AB_2188095

Anti-mouse TNF, APC, clone MP6-XT22 Biolegend Cat#506308; RRID: AB_315429

Anti-mouse TOX, APC, clone REA473 Miltenyi Biotec Cat#130-118-335; RRID: AB_2751485

Anti-mouse Vα2, PE, clone B20.1 Biolegend Cat#127808; RRID: AB_1134183

Anti-mouse Vβ8.1/8.2, FITC, clone KJ16-133.18 Biolegend Cat#118406; RRID: AB_1227786

Anti-rabbit IgG (H+L), F(ab’)2 fragment, AF647 Cell Signaling Cat#4414S; RRID: AB_10693544

Anti-T-bet, PE, clone 4B10 Biolegend Cat#644810; RRID: AB_2200542

Goat anti-rat IgG, AF488, clone Poly4054 Biolegend Cat#405418; RRID: AB_2563120

Guinea Pig anti-rabbit IgG, purified Fisher Cat# NBP172763

Hamster IgG isotype control, PE, clone A19-3 BD Biosciences Cat#51-66995X; RRID: AB_395172

Histone H3 XP rabbit mAb, purified, clone D1H2 Cell Signaling Cat#4499S; RRID: AB_10544537

Rabbit anti-cleaved Caspase-3, biotinylated, clone C292-605 BD Biosciences Cat#550557; RRID: AB_393750

Rabbit anti-H3K27me3 mAb, purified, clone C36B11 Cell Signaling Cat#9733s; RRID: AB_2616029

Rabbit anti-Histone H3 XP mAb, purified, clone D1H2 Cell Signaling Cat#4499S; RRID: AB_10544537
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REAGENT or RESOURCE SOURCE IDENTIFIER

Rabbit anti-TCF1 mAb, AF647, clone C63D9 Cell Signaling Cat#6709S; RRID: AB_2797631

Rabbit anti-UTX mAb, purified, clone D3Q1I Cell Signaling Cat#33510s; RRID: AB_2721244

Rabbit mAb IgG XP isotype control, purified, clone DA1E Cell Signaling Cat#4096s; RRID: AB_1642334

Bacterial and virus strains

LCMV-Armstrong Whitmire lab N/A, generated in house

LCMV-A22 Whitmire lab N/A, generated in house

LCMV-Clone13 Whitmire lab N/A, generated in house

Chemicals, peptides, and recombinant proteins

ACK Lysing Buffer Lonza Cat#10-548E

Annexin V-FITC Biolegend Cat#640906

Biotinylated DbGP33-41 Monomer NIH Tetramer core N/A

Biotinylated DbNP396-404 Monomer NIH Tetramer core N/A

Bovine Serum Albumin Sigma-Aldrich Cat#A4503

Brefeldin A Solution (1000X) Biolegend Cat#420601

Bromodeoxyuridine Sigma-Aldrich Cat#B5002

Concanavalin-A beads Polysciences Cat# 86057-3

Digitonin Millipore Cat# 300410-1GM

DNase-I Sigma-Aldrich Cat#D4527

DMEM Lonza Cat#12-61F

EMEM Sigma-Aldrich Cat#56416C

FBS GIBCO Cat#26140-079

Ficoll GE Healthcare Cat#17-1440-02

Fixation Buffer Biolegend Cat#420801

FoxP3 Fix/Perm Buffer Set Biolegend Cat#421403

Ghost Red780 Viability Dye Tonbo Biosciences Cat#13-0865

Ghost UV450 Viability Dye Tonbo Biosciences Cat#13-0868

HEPES Lonza Cat#17-737E

Histopaque-1077 N/A

Intracellular Permeabilization Buffer Biolegend Cat#421002

L-glutamine Lonza Cat#17-605L

MojoSort Buffer Biolegend Cat#480017

Monensin (1000X) Biolegend Cat#420701

NEBNext HiFi 2x PCR Master Mix NEB Cat# M0541L

OmniPur Ethidium Bromide Calbiochem Cat#18H235208

Penicillin-Streptomycin Lonza 
BioWhittaker

Cat#BW17602E

RPMI 1640 Lonza Cat#12-167F

Sodium Pyruvate Lonza Cat#13-115E

Streptavidin-Allophycocyanin Life Technologies Cat#S868

Streptavidin-PE Biolegend Cat#405203
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REAGENT or RESOURCE SOURCE IDENTIFIER

Taq DNA polymerase Invitrogen Cat#18038042

TBE Buffer, Molecular Biology Grade Calbiochem Cat#574795

TRIZOL LS Reagent Ambien Cat#10296028

True-Nuclear Transcription Factor Buffer Set Biolegend Cat#424401

UltraPure Agarose Invitrogen Cat#16500

Zombie Aqua Fixable Viability Dye Biolegend Cat#423101

Zombie Green Fixable Viability Dye Biolegend Cat#423111

2-Methylcyclohexanol Sigma-Aldrich Cat#M7522

3-x-Flag-pA-Tn5-FL Addgene Cat# 124601

7-AAD Viability Staining Solution Biolegend Cat#420403

Critical commercial assays

DNeasy Isolation Kit QIAGEN Cat#69504

KAPA dual index adapters Roche KK8722

KAPA HyperPrep Kit Roche KK8504

KAPA mRNA HyperPrep Kit Roche KK8580

KAPA Pure Beads Roche KK8000

KAPA Stranded mRNA-Seq Kit, with KAPA mRNA 
Capture Beads

Roche Cat#07962193001

MojoSort Mouse CD8 T Cell Isolation Kit Biolegend Cat#480008

MojoSort Streptavidin Nanobeads Biolegend Cat#480016

UltraComp eBeads Compensation beads ThermoFisher 
Scientific

Cat#01-2222-41

Deposited data

RNA seq: CD8+ T cells; spleen This paper GEO Accession GSE143736

CUT&RUN DNA seq: CD8+ T cells; spleen This paper GEO Accession GSE143736

CUT&Tag DNA-seq: CD8+ T cells; spleen This paper GEO Accession GSE143736

Experimental models: Cell lines

Vero-E6 Michael 
Buchmeier

The Scripps Research Institute, La 
Jolla, CA

BHK-21 American Type 
Culture Collection

Cat#CCL-10

Experimental models: Organisms/strains

Mouse: C57BL/6J Jackson 
Laboratory 
(purchased during 
last 7 years, bred 
at UNC)

Cat#000664

Mouse: B6.Ly5a (CD45.1) Jackson 
Laboratory 
(purchased during 
last 7 years, bred 
at UNC)

Cat#002014

Mouse: Lck-Cre Jackson 
Laboratory 
(purchased during 
last 7 years, bred 
at UNC)

Cat#003802
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: UTXfl/fl Backcrossed to 
B6/J in Whitmire 
lab

PMID:23028370

Mouse: UTXKI/KI Backcrossed to 
B6/J in Whitmire 
lab

PMID: 29073101

Mouse: P14+ TCR-Tg (B6.Ly5a) Backcrossed in 
Whitmire lab

PMID:2573841

Oligonucleotides

Genotyping for Lck-Cre (FW) TGCAACGAGTG
ATGAGGTTC

N/A

Genotyping for Lck-Cre (RV) ACAGCATTGCT
GTCACTTGG

N/A

Genotyping for UTX (FW1) TCCGAGAAAG
GAAATGTGAG

N/A

Genotyping for UTX (FW2) GTGGGCCAGTA
CAAAACCAC

N/A

Genotyping for UTX (RV) GATTGGTCTAA
TTTGGCACC

N/A

Genotyping for UTX-KI/KI (FW1) GCCAAGCAGCC
TATCAAAGC

N/A

Genotyping for UTX-KI/KI (RV1) GAAGTTGTTAT
TTTCTTGATG

N/A

Genotyping for UTX-KI/KI (RV2) GAAGTTGTTAT
TTGCCTGAGC

N/A

Software and algorithms

BEDTools Quinlan and Hall, 2010 (PMID: 
20110278)

Bowtie2 Johns Hopkins 
University

http://bowtie-bio.sourceforge.net/
bowtie2/index.shtml

deepTOOLs Ramírez et al., 2016 (PMID: 
27079975)

HOMER Heinz et al., 2010 (PMID: 20513432)

TopHat (2.1.1) Johns Hopkins 
University

https://ccb.jhu.edu/software/tophat/
index.shtml

MACS2 https://github.com/macs3-project/
MACS

hiddenDomains UNC-Chapel Hill http://hiddendomains.sourceforge.net/

EdgeR Walter and Eliza 
Hall Institute

http://www.bioconductor.org/packages/
release/bioc/html/edgeR.html

FlowJo Software (version 9.9.6 and 10.7.1) Tree Star https://www.flowjo.com

Gene Ontology Browser JAX http://www.informatics.jax.org

Genome Analyzer Pipeline Software Casava v1.9 https://www.illumina.com

GraphPad Prism (version 9.0.2) GraphPad https://www.graphpad.com
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