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Targeting self-renewal pathways in cancer stem cells:
clinical implications for cancer therapy
A Borah, S Raveendran, A Rochani, T Maekawa and DS Kumar

Extensive cancer research in the past few decades has identified the existence of a rare subpopulation of stem cells in the grove of
cancer cells. These cells are known as the cancer stem cells marked by the presence of surface biomarkers, multi-drug resistance
pumps and deregulated self-renewal pathways (SRPs). They have a crucial role in provoking cancer cells leading to tumorigenesis
and its progressive metastasis. Cancer stem cells (CSCs) are much alike to normal stem cells in their self-renewal mechanisms.
However, deregulations in the SRPs are seen in CSCs, making them resistant to conventional chemotherapeutic agents resulting in
the tumor recurrence. Current treatment strategies in cancer fail to detect and differentiate the CSCs from their non-tumorigenic
progenies owing to absence of specific biomarkers. Now, it has become imperative to understand complex functional biology of
CSCs, especially the signaling pathways to design improved treatment strategies to target them. It is hopeful that the SRPs in CSCs
offer a promising target to alter their survival strategies and impede their tumorigenic potential. However, there are many perils
associated with the direct targeting method by conventional therapeutic agents such as off targets, poor bioavailability and poor
cellular distribution. Recent evidences have shown an increased use of small molecule antagonists directly to target these SRPs may
lead to severe side-effects. An alternative to solve these issues could be an appropriate nanoformulation. Nanoformulations of these
molecules could provide an added advantage for the selective targeting of the pathways especially Hedgehog, Wnt, Notch and
B-cell-specific moloney murine leukemia virus integration site 1 in the CSCs while sparing the normal stem cells. Hence, to achieve
this goal a complete understanding of the molecular pathways corroborate with the use of holistic nanosystem (nanomaterial
inhibition molecule) could possibly be an encouraging direction for future cancer therapy.
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INTRODUCTION
Cancer remains one of the deadliest diseases affecting large
number of people worldwide every year. Even after profound
cancer treatments, cancer relapse and drug resistance are
reported. In the past decade, underlying cause discovered to be
associated with tumor recurrence, metastasis and chemo-
resistance are a relatively small population of stem cells inhabiting
each adult tissue called as the cancer stem cells (CSCs). These stem
cells in the long run have the opportunity to accumulate the
mutations required for malignant transformation owing to their
unlimited division potential. These cells were first identified by
Bonnet and Dick (1997)1 in acute myeloid leukemia and following
their findings many other groups have identified these cells in
various solid tumors of brain,2 breast,3 pancreas,4 prostate5,6 to
name a few. CSCs display certain properties such as high
expression of drug efflux transporters, abnormal cellular metabo-
lism, deregulated SRPs, acquisition of epithelial-mesenchymal
transition and extensive DNA-repair mechanisms.
Self-renewal is one of the important properties employed by

the CSCs to maintain the proliferating capacities. As genetic and
epigenetic changes might have a role in the unrestrained growth,
invasion and acquired resistance in cancer cells, it is implicated
that epigenesis may accord deregulation of self-renewal pathways
(SRPs) in CSCs. There are number of signaling pathways
functioning in the normal stem cells, which have assigned roles

in the early embryogenesis-like cell proliferation, cell differentia-
tion, cell fate, cell polarity and so on and are under strict
regulation. In CSCs, these SRPs when deregulated lead to
extensive cell proliferation and may be considered an early event
in the process of carcinogenesis. Extensive experimental
evidences have revealed Hedgehog (Hh), Wnt, Notch and
B-cell-specific moloney murine leukemia virus integration site 1
(BMI1) pathways to be the key players in maintaining the
proliferating capacity of CSCs and activated in most of the solid
tumors.7 Among other signaling proteins such as phosphatase
and tensin homolog,8 bone morphogenetic protein and trans-
forming growth factor beta are also of specific interest as they too
control self-renewal and cell differentiation in various tissues and
are additionally implicated in tumorigenesis. Recent investigations
of targeting the signaling pathways in CSCs have found to be of
prime interest. This review focuses on several aspects of major
SRPs, which are found to be upregulated in CSCs and certain novel
strategies to target these pathways by nanodrug-delivery plat-
forms for the prevention of tumor relapse and chemoresistance
(Figure 1).

SELF-RENEWAL PATHWAYS IN CSCS
CSCs make up a minor fraction of the tumor tissues. It acquires a
heterogeneous phenotype and can maintain tumor formation at a
high degree. Apparently, it is seen that the CSCs share common
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attributes with the normal stem cells, for instance, self-renewal
and differentiation capacity. However, there exist fine-drawn
differences between CSCs and normal stem cells for using the
same pathways. The molecular mechanisms underlying these
phenomena of CSCs hijacking the SRPs of normal stem cells for its
own maintenance though remains vague. In the following
sections, we are going to review the potential pathways, which
are implicated in the CSCs self-renewal activity and tumor
initiation through immense experimental findings.

HH PATHWAY
It is known that the Hh pathway helps in controlling cell growth,
tissue patterning, morphogenesis9 in animal development. The Hh
family of proteins has at least three Drosophila Hh gene homologs
in vertebrates: Sonic Hh (SHh), Desert Hh and Indian Hh, among
which SHh is the most widely used one. The Hh is a 400–460
amino-acid long precursor protein. The (HhN) amino-terminal
domain works as a signaling molecule, whereas the carboxy-
terminal domain (HhC) has an auto-catalyzing Hint module. The
signaling cell releases the Hh protein through a committed
transmembrane receptor called the Dispatched. This happens only

after the amino terminal of the Hh protein is being palmitoylated
by Rasp/Skinny located in endoplasmic reticulum.10 The modified
Hh protein binds to its 12 transmembrane receptor known as the
Patched (Ptc) and initiates the signaling process. In Hh pathway, a
seven-pass transmembrane receptor named Smoothened (Smo)
activation is necessary for further signaling process. In the absence
of Hh, the Ptc prevents Smo from being located to the primary
cilium and its catalytic activity. However, when Ptc is bound by Hh
ligand, the inhibitory effect of Ptc on Smo is rendered inactive.
Smo now activates the Gli family of transcription factors to carry
out the downstream signaling process. Without Smo activation,
Gli is maintained in a complex with Suppressor of Fused, which is
a negative regulator of Hh signaling. Upon Smo activation, Gli is
dissociated from Suppressor of Fused-Gli complex for nuclear
translocation to promote the transcription of Hh targeted genes
namely patched, cyclin (D/E). In mammals, there are three types of
Gli transcription factors Gli1, Gli2 and Gli3 of which Gli1 and Gli2
are activators and Gli3 acts as a repressor. The loss of Suppressor
of Fused results in the activation of Hh signaling, which indicates
its central role in the repression of the pathway.11

The Hh signal transduction pathway components tightly control
embryonic development, and also expressed in postnatal and
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Figure 1. Targeting strategies in self-renewal pathways in CSCs including their pharmacological antagonists and different nanoparticles used
for formulation. (1) Hh ligand Inhibitors (2) GLI Antagonists (3) SMO Inhibitors (4) Anti-DLL4 Antibodies (5) γ –Secretase Inhibitors (6) MAML
Inhibitors (7) Anti-FZD Antibodies (8) Wnt Ligand inhibitors (9) Wnt Transcription Complex Inhibitors (10) HDAC Inhibitors.
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adult tissues, where these components have assigned roles in the
maintenance of stem cells, tissue repair and regeneration. Hence,
defects in Hh signaling may affect at the embryonic and later
stages of life in humans.12 Many human congenital diseases
have been associated with Hh signaling defects such as
holoprosencephaly in which there is loss of one copy of SHh.13

Mutations in Ptc1 result in a rare autosomal genetic form of basal
cell carcinoma also known as the Gorlin syndrome.14,15 Increasing
evidence have widely supported the fact that dysregulated Hh
signaling is present in majority of the human cancers today, which
includes brain tumors, melanomas, leukemia’s, gastro-intestinal,
malignancies of the breast, ovary, prostate and pancreas.16

However, in most of these cancers mutation of Hh pathway
components is not the only basis for its aberrant activation, but
rather has been caused by high expression of Hh ligands.17,18

Experimental evidences in the past have confirmed the presence
of CSCs in most of the human tumors and the self-renewal
property of these cells has been attributed to Hh signaling.19–23

Hh signaling maintains the self-renewal capacity of the malignant
clone, which was demonstrated in mouse models of chronic
myeloid leukemia.20,23 Hh signaling is also under epigenetic
regulation in CSCs mainly the Gli transcription factors. As Gli1 and
Gli2 are acetylated, their deacetylation mediated by Histone
deacetylase (HDAC) complex promotes Hh pathway activation.
Downregulation of Gli1 is mediated by miR-324-5p, and sub-
sequent loss of miR-324-5p have led to neoplastic transformation
into medulloblastoma.24 Ptc and Gli1 proteins were seen to be
highly expressed in ovarian cancer patients as reported by Liao
et al.25 The authors in this study also observed that there was a
significant overexpression of SHh mRNA in the patient’s tumor
tissues. It is also affirmed that Hh signaling has an active role in the
progression of prostate cancer; however, there is paucity of the
precise mechanism involved in its abnormal signaling. Sheng
et al.26 have reported a loss-of-function mutations in Suppressor of
Fused, in most of the prostatic tumor tissues. Other independent
studies carried out by groups have presented with data that
there is a ligand-dependent paracrine or autocrine Hh signaling
in prostate tumors.27,28 Hh signaling is also found to regulate
self-renewal in normal and mammary CSCs acting in concert with
BMI pathway as investigated by Liu et al.29 in their in vitro and
in vivo studies.

NOTCH PATHWAY
Notch signaling is a developmental pathway in multicellular
organisms involved in cell fate decisions and pattern formation
during embryogenesis.30 Post-translational modifications result
in the formation of a heterodimeric NECD (notch receptor
comprising of an extracellular domain) and TM-NICD
(transmembrane-intracellular domain) inserted in the plasma
membrane of a signal-receiving cell. Once a ligand for example,
Delta (DLL1, DLL3, DLL4) and Jagged (jag1, jag2) binds
to the notch receptor, the TNF-alpha ADAM metalloprotease-
converting enzyme mediates the cleavage of NECD from TM-NICD.
The NECD-ligand complex is endocytosed/recycled in the
signal-sending cell by Mind Bomb ubiquitination, whereas in the
signal-receiving cell the γ-secretase enzyme cleaves TM-NICD
complex, releasing NICD. It further proceeds into the nucleus and
associate with the CSL (centromere-binding factor 1/Suppressor
of hairless/Lag1) transcription complex. This CSL-NICD complex
now subsequently activates the notch target genes: Hairy and
enhancer of split family, p21 and Myc.
Apart from regulating cellular communication in embryogen-

esis, it also helps in stem cell growth and differentiation. Studies
have elucidated the pathological role of notch pathway in human
malignancies going from T-cell acute lymphoblastic leukemia
(T-ALL)31 to breast cancer32,33 and others where inappropriate
activation of the pathway that led to uncontrolled proliferation,

restricted differentiation and prevents apoptosis in the cancer
cells. Of late, a mere reason of focusing on notch pathway in
recent years is due to the identification of a distinct cellular
hierarchy in human acute myeloid leukemia1 and other solid
tumors.2,3 This cellular hierarchy is the CSCs, which maintains the
tumor and recapitulates the features of normal stem cells. Notch
pathway is one of the developmental pathways active in this
subset of CSCs, which maintains the self-replication and differ-
entiation decisions. A significant evidence of the Notch pathway,
that it is related for the survival of CSCs, came from the
independent studies conducted by Farnie and Clarke;34 Sansone
et al.35 Farnie and Clarke reported the role of aberrant notch
signaling as one of the factors involved in early breast cancer.
Studies by Gustafasson et al.36 have indicated that the notch and
hypoxia response factor HIFα interacts with each other to assist
the outset of a stem cell phenotype and its survival in hypoxic
environment. Based on these findings, Sansone et al.35 carried out
various studies to report that the expression of notch-3 is being
controlled by the 66k-Da isoform of the Src homology 2 domain-
containing gene (p66Shc), which gets induced in a breast cancer
cell line when exposed to a hypoxic environment also leading to
the survival of mammary gland progenitor cells. Notch signaling
also has an oncogenic role in T-ALL where Notch 1 was identified
to be involved in t (7; 9)(q34;q34.3) chromosomal translocation to
bring out the disease outcome.37 Subsequent studies have
brought newer insights to the role of Notch in human T-ALLs,
with discovery of two types activating mutations within Notch 1.38

One mutation was in the extracellular hetero-dimerization
domain, a change in the amino-acid sequence leading to ligand-
independent metalloproteinase cleavage site S2, whereas the
second involved Notch 1 proline, glutamic acid, serine, threonine
sequence domain. These mutations were reported to be present
in 50% of human T-ALLs.38 Notch 1 is also shown to have an
elevated expression in pancreatic CSCs compared with non-
pancreatic CSCs.39 In pancreatic cancer, notch pathway maintains
the epithelial cells in a progenitor state, acquiring epithelial-
mesenchymal transition phenotype leading to tumor growth,
invasiveness and metastasis.40,41 Emerging evidences show that
the resistance of pancreatic cancers toward several chemo-
therapeutic measures is due to activated Notch signaling,
although underlying mechanism still remains elusive.41,42 These
studies provides the rationale to develop targeted therapies,
which will interfere with notch signaling in human malignancies.

WNT PATHWAY
The Wnt signaling pathway is an ancient and evolutionary
conserved developmental pathway, which controls stem cells
and determines cellular fate during development. The Wnt family
is a group of 19 glycoproteins in humans involving a complex
mechanism of signaling phenomena, with salient functional and
biological outcome.43 It may lead to much serious pleiotropic
pathology when these tightly controlled mechanisms go awry.
The Wnt ligand binds to a transmembrane receptor Frizzled and
displaces the GSK-3β (glycogen synthase kinase 3 beta) from the
adenomatous polyposis coli (APC)/Axin/GSK-3β regulatory
complex. However, the absence of Wnt ligand marks the
degradation of β-catenin a cell adhesion protein and transcription
regulator in APC/Axin/GSK-3β and casein kinase1 destruction
complex44,45 through the beta transducing repeat containing E3
ubiquitin protein ligase pathway. Once Wnt ligand binds to its
receptor the pathway is turned on and brings the co receptor
low-density lipoprotein receptor related protein 5/6 to the vicinity
of the Wnt bound Frizzled complex. This activates downstream
component Disheveled by sequential phosphorylation, polyubi-
quitination, polymerization and finally stabilizing β-catenin.46

β-catenin now translocate to the nucleus where it associates with
T-cell factor/lymphoid-enhanced factor family of transcription
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factors, and recruits other co-activators such as cAMP response
element-binding protein, p300,47,48 Bcl949 and Pygopus.50 This
ultimately leads to transcription of target Wnt genes: survivin,
cyclin D and c-myc.
The relevance of Wnt signaling in human cancers was perhaps

best well known for its role in colon cancer where the healthy
colonic epithelia accumulates mutation in specific genes such as
APC, β-catenin, K-ras and p53.51 Morin PJ et al.52 had carried out
genetic studies in four different kinds of APC mutants and
analyzed that the presence of APC mutations in colorectal cancer
also leads to defective downregulation of β-catenin and Tcf-4
transcriptional activity. There are numerous mechanisms that can
drive the aberrant Wnt/β-catenin signaling, leading to cancer
formation in a mutually exclusive manner. In certain colorectal
cancers, there is a probability of finding an exclusive catenin
(cadherin-associated protein) beta 1 mutation when APC muta-
tions are lacking.53,54 This was also supported by the conclusive
evidence, which came from the studies of Mirabelli-Primadehl
et al.55 regarding the role of β-catenin mutations in colorectal
cancers. Hepatocellular carcinoma56 and endometrial ovarian
tumors57,58 were also found to possess catenin (cadherin-
associated protein) beta 1 mutations, which led to aberrant
nuclear accumulation of β-catenin. A vast majority of the
colorectal tumors harbor APC mutations, which may lead to the
constitutive activation of β-catenin59–61 Like Hh and Notch,
Wnt/β-catenin signaling too has an important role in embryo-
genesis and regulates cell proliferation and lineage differentiation
in many tissues.62 In adults, Wnt signals are basically involved in
stem cell renewal especially in intestinal crypts,63 hair follicles64

and bone growth plate.65 As Wnt signaling has a notable role to
play in stem cell proliferation and differentiation, its disruptions
will certainly affect stem cell function with serious implications for
malignancy. Consistent findings have shed light to the fact that
β-catenin is present in a variety of CSCs settings66–68 including
colon,69 cutaneous CSC70 and also HSC.71 Among all these CSCs,
colon CSCs were found to have a very high concentration of
β-catenin, which contributes to its stemness, in part orchestrated
by the microenvironment finally giving rise to drug resistance and
also metastasis.69 Wnt signaling has been also shown to be
responsible for epithelial-mesenchymal transition72 in tumors as a
result of high concentration of β-catenin in the nucleus.73

This leads to the arrest of tumor cell division and acquiring
mesenchymal markers like fibronectin74 while retaining the self-
renewal capacity, a characteristic feature employed by the CSCs.

BMI1 PATHWAY
The BMI1 pathway is one of the proto-oncogenic signaling
pathways like Hh, Notch and Wnt involved in the differentiation
and self-renewal mechanisms of stem cells persistently.75

The BMI1 belongs to the Polycomb group of gene family,
well-known epigenetic gene silencers, targeting the p16 and
p19Arf locus76 both of which suppresses cell proliferation.
Human BMI1 gene comprises of 10 exons and is localized on
chromosome 10.77 BMI1 gene encodes a 324 amino-acid long
protein with a predominant nuclear localization comprising of a
N-terminal RING finger domain and a central helix turn helix
motif.78 BMI1 affects morphogenesis during embryonic develop-
ment and in hematopoiesis as reported by van Der Lugt et al.79

in 1994 with a pervasive expression in almost all tissues.
Extensive studies have also reported the association of BMI1 in
the initiation of various cancers where BMI1 can cooperate with
c-myc and initiate the disease.80 Its expression was found to be
highly upregulated in acute myeloid leukemia,81 cancers of the
lung,82 ovaries,83 breast84 and neuroblastoma.85 It is noted that
CSCs are highly enriched with BMI1, and seen to be co-expressive
with stem cell markers, CD133 and CD44, in most of the
tumor CSC population.86–88 Zhang et al.89 in their study asserted

that epithelial ovarian cancers arise from a population of
tumor-initiating cells with the CD44- and CD117-positive marker
phenotype along with the expression of BMI1 and others
such as Notch 1, ATP-binding cassette sub-family G member 2,
Nanog, Nestin and Oct-4. The expression of these markers led
to chemoresistance and exacerbated the disease condition.
Cui H et al.85 reported BMI1 to be overexpressed in human
neuroblastoma primary tumors and cell lines, cooperating with
MYCN gene in transforming the benign S-type neuroblastoma
cells. Prostate cancer cells too have a heightened expression of
BMI1 in tumors with Gleason scores of 8 or higher.90 Glinsky and
colleagues91 carried out a microarray analysis in 11 different types
of cancer specimens and indicated that the conserved BMI1
driven pathway is engaged in a metastatic behavior of human
malignancies along with a stem cell-like expression profile
ultimately leading to disease recurrence after therapy. These
studies indicate that the overexpression of BMI1 is critical for the
maintenance of CSCs in most of the human tumors.

TARGETING STRATEGIES TO INHIBIT SELF-RENEWAL
PATHWAYS IN CSCS
Conventional cancer treatment of chemotherapy and radio-
therapy can target only the bulk of sensitive tumor cells, which
are in rapidly dividing phase. This therapeutic intervention induces
many tumor cells to undergo apoptosis and die, whereas the CSCs
survive this process by remaining in G0 phase and give rise to
'second-line tumors' with acquired resistance.92–94 Henceforth,
current cancer research is focused toward targeting these CSCs
and it has become essential to develop novel therapeutic
approaches to prevent cancer recurrence and emergence of drug
resistance. Even though tremendous research has been carried
out to eliminate the CSCs, but efficient modalities to target the
SRPs in CSCs have been gaining prime focus in recent years.
During and after the treatment period CSCs maintain their self-
renewal and differentiation capacities by activating the embryonic
signaling pathways. The Hh, Notch, Wnt and BMI1 maintains the
proper functionality in normal stem cells but a deregulated
behavior in these pathways, owing to some alterations in the
genes encoding the signaling molecules is observed in CSCs and
also have been found in human tumor samples clearly stating
their role in tumor development and maintenance.95,96 As normal
stem cells and CSCs share similarities in the signaling pathways,
it would be extremely important while designing drugs to
understand the complex biology of these pathways to destroy
the CSCs and selectively sparing the normal stem cells.

DRUGS TARGETING SELF-RENEWAL PATHWAYS
Cyclopamine, a plant derived teratogen binds and deactivate Smo
which is otherwise being suppressed by Ptc. Targeting the Hh
pathway using cyclopamine was shown by Taipale et al.97 where
they suggested that Hh pathway related tumors associated with
Ptc mutations might respond well to treatment with cyclopamine.
As cyclopamine is a steroidal compound, it affects the activity of
Ptc by blocking its sterol-sensing domain.98,99 Bar EE et al.100

conducted a study on cyclopamine-mediated inhibition of Hh
pathway in glioblastoma CSCs, and observed a significant 40–60%
decrease in growth of adherent glioma cell lines with high Gli1
expression and no new neurospheres formed. Apart from
cyclopamine, another synthetic small molecule inhibitors of
Smo, GDC-0449 identified by Genentech was shown to inhibit
the Hh pathway activity in metastatic basal cell carcinoma
(ClinicalTrials.govnumber, NCT00607724).101 Oral administration
of GDC-0449 was given to 33 patients with advanced basal cell
carcinoma for a median duration of 9.8 months and reported two
complete responses and 16 partial responses.101 GDC-0449 was
also shown to have its inhibitory effect in medulloblastoma,
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pancreatic cancer but its effect is more prominent in advanced
basal cell carcinoma. Several other small molecule Smo
antagonists, which are investigated clinically include
IPI-926,102 BMS-833923 (Clinical trials.govnumber, NCT00884546),
PF-04449913 (Clinical trials.govnumber, NCT00953758),
LDE-225.103,104 However, there may be resistance to these
molecules over a period of time due to point mutations in Smo.
Hence, targeting the SHh ligand and the downstream components
such as Gli transcription factors by small molecules namely
Robotnikinin105 and HPIs 1-4,106 GANT58,107 GANT61,107 respec-
tively, is a promising approach to prevent tumor relapse and
metastasis. In addition to chemical compounds used for the
treatment of human cancer, researchers have also considered the
use of dietary chemopreventive agents known as nutraceuticals
for targeting the Hh signaling such as Resveratrol,108 Curcumin109

and epigallocatechin-3-gallate,110 which have been experimen-
tally shown to inhibit Hh signaling in prostate cancer,
medulloblastoma and chondrosarcoma, respectively.
Most of the agents that have been developed to inhibit notch

signaling are designed to target notch ligands, notch receptors,
ligand receptor binding, γ-secretase-mediated cleavage and
transcriptional nuclear complex. γ-secretase inhibitors are small
molecule agents, which are widely studied, as notch activation
largely depends on γ-secretase activity and is a promising target.
A number of clinical trials on γ-secretase inhibitors is well
indicated to inhibit notch signaling in many cancers, for example,
T-ALL, central nervous system malignancies,111 breast cancer.112

MK0752, one of the potent γ-secretase inhibitors in clinical
development was shown to inhibit notch signaling in majority of
human T-ALL.113 Another γ-secretase inhibitor PF-03084014 was
shown to inhibit Notch activity in T-ALL cell lines by Wei P et al.114

Apart from targeting the γ-secretase activity, notch ligand-
inhibiting agents specially DLL4 monoclonal antibodies, for
example, OMP-21M18 are in clinical development, designed for
patients diagnosed with colon cancer, pancreatic cancer and small
cell lung cancer.115 DLL4, specific notch ligand for embryonic
vascular development and arteriogenesis116,117 when blocked by a
selective antibody-impeded tumor growth in several solid tumor
models.118 Other agents that inhibit notch signaling in cancer
include mastermind-like peptide inhibitors, which interferes
with the notch nuclear co-activator mastermind-like protein,
a part of the Notch transcriptional complex119 and notch soluble
receptor decoys.120 Also, the use of natural compounds such as
genistein,121 sulforaphane,122 quercetin123 owing to their relative
low toxicity was seen to inhibit notch activity in tumor cells or
in CSCs.
Agents that can inhibit Wnt signaling, currently under

investigations, employ strategies to target receptor/ligand inter-
actions, cytosolic and nuclear signaling components. One of the
approaches to inhibit receptor ligand interactions is to target the
Frizzled family of receptors by using antibodies. Studies have been
carried out using a humanized antibody against Frizzled 10 for
patients with synovial sarcoma.124 In vitro studies revealed that
synovial sarcoma cells were suppressed by the polyclonal
antibody in mediating antibody dependent cell-mediated cyto-
toxicity against the Frizzled 10 receptor overexpressed cells.124

Monoclonal antibodies targeting the Wnt (1–2) ligands have also
disclosed the inhibition of Wnt signaling in colon cancer125 and
human melanoma.126 Disheveled protein is one of the key
cytosolic signaling components in the Wnt pathway that
associates extracellular signals to its downstream components.
Disheveled could be a therapeutic intervention in inhibiting the
Wnt pathway for cancer therapy. Compounds that have been
preclinically tested in this direction include FJ9127 and
NSC668036.128 One of the critical steps in the activation of Wnt
signaling is the interaction of β-catenin with the T-cell factor/
lymphoid-enhanced factor transcription factors, and recruits a
myriad of co-activators such as cAMP response element-binding

protein, p300 to name a few.47 These co-activators represent
potential targets to interfere with the β-catenin/transcription
factor stabilization complex. ICG-001 a small molecule
inhibitor129,130 (Institute for chemical genomics) was developed
in this direction to target these co-activators.
BMI1 has no enzymatic function hence traditional drug

discovery approaches to target this protein remains a challenge.
However, the use of HDAC inhibitors to suppress the expression of
BMI1 and its downstream components was recently shown by
Bommi et al.131 in human breast cancer. The HDAC inhibitors such
as sodium butyrate and valproic acid were investigated in the
study where the compounds seem to inhibit BMI1 activity through
a transcriptional mechanism repressing the polycomb complexes.
Another drug artemisinin and its derivatives having antimalarial
activity were shown to have inhibition on cancer cell growth and
angiogenesis. This drug was investigated to check its inhibitory
role in regulating BMI1 expression both in protein and transcript
levels in nasopharyngeal carcinoma cells.132 To date, no small
molecules have been reported to inhibit BMI1 with competent
specificities, although experimental evidences cited above using
HDAC inhibitors and artemisinin bring a rationale to develop more
agents for therapeutic targeting of BMI 1.

PROSPECTS OF NANODRUG TARGETING
In current cancer treatment strategies, targeted drug delivery is
one of the safest ways to target the tumor. To address this issue,
nanoparticles have had an important role in delivery of drugs
specifically at the designated site at the required concentration,
evading immune response without having any off targets within
the safety margins. Nanoparticles in the past have received quite
unprecedented success as drug-delivery vectors in cancer therapy
and diagnosis because of their biophysiological properties and the
ability to interact with cells due to the similarity of their size with
cellular components.133–135 They can carry multiple payloads
owing to their large surface area, multi-functionalized with
targeting moieties and controlled drug release.136,137 Taking into
account about the multiple advantages of nanoparticles, they can
be harnessed to the best of their ability to target the drug-
resistant CSCs. Independent studies conducted by researchers
have applied nanoparticles to target CSCs in diverse overlapping
areas. Lee et al.138 and Swaminathan et al.139 in their distinctive
studies have made use of nanoparticles as 'beacons' to label CSCs
as a diagnostic measure. Nanoparticles were also successfully used
to deliver non-druggable anticancer agents to kill the drug-
resistant CSCs.140 Moreover, nanoparticles in the form of stealthy
liposomes were used as therapeutic intervention by Liu et al.141 to
wipe out CSCs and non CSCs selectively. Many groups have
recently targeted the CSCs effectively through the use of
combination therapy of antibodies and conventional chemo-
therapeutic drugs against the CSC surface markers CD133+142 and
drug efflux transporters.143 Yu et al.144 in their study eliminated
CD133+ osteosarcoma CSCs through salinomycin delivery via
CD133 aptamer-conjugated PEGylated PLGA nanoparticles.
These approaches though have received encouraging results,
but still leave plenty of room for improvement. Another approach
to target the CSCs, which is the main focus of this review, and
have received a lot of attention over the years is the targeting of
the SRPs, which are implicated to maintain the self-renewal
capacity of the CSCs and involved in tumorigenesis. Till date, SRPs
as discussed in the above sections are being targeted directly
by the use of small molecule inhibitors, monoclonal antibodies
and natural compounds. Although these agents have shown
promising results in inhibiting the deregulated pathways in
CSCs145,46 there have been certain drawbacks associated such as
toxicity, poor water solubility and poor specificity. Hence,
nanoformulation of these compounds along with the combination
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of conventional chemotherapeutic drugs is a holistic approach to
inhibit the SRPs in CSCSs.
Chenna et al.147 recently have engineered a polymeric

nanoparticle encapsulating a small molecule inhibitor, HPI-1
(Hh pathway inhibitor), which was shown to bypass the secondary
mutational resistance toward Smoothened antagonists. Hh
signaling is seen to be aberrantly active in most of the human
cancers, and Smo secondary mutation abrogates the binding of
most of the Hh inhibitors. The group addressed this issue by
nanoformulating HPI-1 (NanoHHI) that is a potent antagonist of
Gli1 and reported that NanoHHI markedly inhibits the growth of
mouse medulloblastoma allografts, which harbor a SmoD477G-

binding site mutation, accompanied by significant down-
regulation of Gli1 mRNA. Nanoformulation of HPI-1 improved its
aqueous solubility and also systemic bioavailability.147 The same
group further confirmed their studies by using NanoHHI to check
the inhibition of Hh signaling in hepatocellular carcinoma (HCC) in
an orthotopic model. NanoHHI markedly reduced systemic
metastases in HCC cell lines both in vitro and in vivo settings.
Moreover, it also decreased the population of CD133+-expressing
HCC cells, considered to be the tumor-initiating cells.148 Lim K
et al. revealed that polymeric nanoparticle formulation of
curcumin suppressed the growth of multiple brain tumor cell
lines. The authors observed that NanoCurc when administered to

Figure 2. (a) Schematic illustration of study design. Radioactive polymeric micelles containing 177Lu were injected intratumorally, and
CPA-loaded lipid nanoparticles were injected intravenously. (b) Transmission electron microscopy images of CPA- LLP (negative staining).
(Reproduced with permission from You J et al. 2015). (c–f) Effect of GDC-0449 and miR-let7b on cell viability in human pancreatic cancer cell
line by micelles. HPAF-II, Capan-1, T3M4 and MIAPaCa-2 cells (5000/well) were treated with micelles containing (blue bars) GDC-0449 (0, 1, 5
and 10 μM), (green bars) GDC-0449 and scrambled miRNA, (red bars) GDC-0449 and miR-let7b (10 pmol), (peach bars) miR-let7b alone, and
(purple bars) blank for 48 h. Cell viability was measured by MTT assay at the end of incubation period. (Reproduced with permission from
Kumar V et al. 2015).
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brain tumor cell lines in a dose-dependent manner, it led to
programmed cell death in addition to depleting CSCs. In their
study, microarray analyses disclosed that when medulloblastoma
DAOY cells treated with 20 μM curcumin showed 2.4-fold down-
regulation of Gli1 expression, which is a key effector in Hh
signaling. However, notch activity was not seen to be much
affected by curcumin treatment in DAOY cells.149 A liquid–lipid
nanoparticle delivery system has been harnessed in a recent study

by You et al.150 to deliver the Smo antagonist CPA-LLP
(cyclopamine) in 4T1 murine breast cancer and Miapaca-2 human
pancreatic carcinoma models (Figures 2a and b). The group used a
combination strategy of CPA-LLP and core-cross-linked polymeric
micelles bound lutetium-177 in the carcinoma models and
reported slow tumor growth. Pancreatic ductal adenocarcinoma
is characterized with desmoplasia, aberrant Hh signaling and
downregulation of tumor suppressor miR-let7b. Desmoplastic
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Figure 3. Mesoporous silica nanoparticles (MsnPs) accumulate in the tumors, are biocompatible biodegradable and eliminated through renal
excretion. (a) In vivo imaging of mice injected peritumoral with PEI-MSNPs or folate (FA)-MSNPs. Images of the abdominal area demonstrate
accumulation of fluorescence in the bladder, and imaging of the dorsal area show accumulation of fluorescence in the tumors. Time lapse
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FA-MSNPs. Mice were killed 196 h after injection (n= 4). Please note the occasional signal from brain tissue, which most likely represents
background fluorescence, as it is present also in untreated control animals. (c) Histological analysis of the brain, kidney, spleen, liver and lungs
of untreated mice and FA-MSNPs-treated mice showed no morphological changes. Mice were killed 192 h after i.v.injection. (Reproduced with
permission from Mamaeva V et al. 2011.)
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environment provides the niche for CSCs. Mahato et al.151 carried
out synergistic treatment of pancreatic ductal adenocarcinoma
through co-delivery of Hh inhibitor GDC-0449 and miRNA
(miR-let7b) into micelles using methoxy poly (ethylene glycol)-
block-poly (2-methyl- 2-carboxyl-propylenecarbonate-graft-dode-
canol-graft-tetraethylene-pentamine) (mPEG-b-PCC-g-DC-g-TEPA).
It was observed that the combination therapy of GDC-0449 and
miR-let7b micelles led to reduced cell viability in the different
pancreatic cell lines (HPAF-II, Capan-I, T3M4, MIA-PaCa-I) even at
low dose concentration of the formulation (Figures 2c–f).
Notch signaling is mostly targeted by the use of gamma-

secretase inhibitors but its clinical use is hindered by acute
after-effects and hence the need for an alternative strategy.
A novel approach of delivering the gamma-secretase inhibitors to
block Notch signaling was presented by Mamaeva and colleagues
using imagable mesoporous silica nanoparticles, which were
found to be biocompatible, biodegradable and delivered
gamma-secretase inhibitors without any toxic side-effects
(Figures 3a–c). The group designed a drug-loaded mesoporous
silica nanoparticles of average size centered ~ 200–350 nm and
surface modified with folate (FA) to the outer polyethylenimine
layer of the particles. In vitro analyses were screened using
different breast cancer cell lines (MCF7 (FR-positive), MDA-MB-231,
T47D, SK-BR-3, MDA-MB-468). The study revealed the mesoporous
silica nanoparticles-mediated delivery of gamma-secretase
inhibitors was specific toward the cells and also inhibited Notch
signaling. MCF7 cells were reported to have the highest
FA-mediated endocytosis due to its surface functionalization.
Moreover, in vivo studies also supported that targeted gamma-
secretase inhibitors delivery-enhanced tumor penetration and
retainment at the tumor site as compared with free drug.152

Recently Lo et al. have designed a small interfering RNA-delivery
approach against the enhancer of zeste homolog 2 and Oct-4
genes upregulated in head and neck squamous cell carcinoma
using polyurethane-short branch polyethylenimine. The small
interfering RNA polyethylenimine constructs used was able to
repress epithelial-mesenchymal transition and radioresistance in
aldehyde dehydrogenase 1+/CD44+ CSC-like cells, in addition to
inhibiting Wnt signaling, which may be involved in the CSCs.153

Although these experimental findings are encouraging to target
the SRPs through nanoparticle-mediated delivery. However,
it is imperative to extend more research in combining the
SRPs-targeting therapeutics with nanotechnology-based platforms
for a robust cancer treatment strategy for clinical applications.

CONCLUSION AND FUTURE DIRECTION
In this review, we have tried to render a picture of the
heterogeneous CSCs being implicated to be a cause of
cancer relapse, chemo and radioresistance in recent times.
Understanding the complex biology behind the survival mechan-
ism of CSCs in solid tumors, deregulation in the SRPs is seen to be
one of the prominent reasons for their inevitable existence even
after treatment. Despite the availability of small molecule
inhibitors used to target the SRPs, a small fraction of them only
has been put to clinical application owing to their non-specific
toxicity and solubility issues. This could be solved by nanoformu-
lating these compounds, which will overcome their barriers and
specifically deliver these molecules to the designated sites.
Nanoparticles as mentioned above have been used in recent
times to target the CSCs in solid tumors; hence, nanotechnology
could also be extended to target the SRPs active in CSCs. As there
occurs crosstalks between the different signaling pathways in
cancer development and progression, inhibition of one could lead
to the downregulation of the others. Nanoparticles could provide
a platform to carry multiple pathway inhibitors along with a
conventional chemotherapeutic to target the pathways. Although
there have been very few reports cited in literature in this

direction, comprehending the biology of the pathways combined
with the use of wide range of nanoparticles in dispose is a
challenging area of research and leaves a futuristic hope for
cancer treatment in killing the CSCs.
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