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Summary

Senescence of alveolar type 2 (ATII) cells, progenitors of the

alveolar epithelium, is implicated in the pathogeneses of

idiopathic pulmonary fibrosis (IPF), an aging-related progressive

fatal lung disorder with unknown etiology. The mechanism

underlying ATII cell senescence in fibrotic lung diseases, how-

ever, remains poorly understood. In this study, we report that

ATII cells in IPF lungs express higher levels of serpine 1, also

known as plasminogen activator inhibitor 1 (PAI-1), and cell

senescence markers p21 and p16, compared to ATII cells in

control lungs. Silencing PAI-1 or inhibition of PAI-1 activity in

cultured rat ATII (L2) cells leads to decreases in p53 serine 18

phosphorylation (p53S18P), p53 and p21 protein expressions; an

increase in retinoblastoma protein phosphorylation (ppRb); and

a reduction in the sensitivity to bleomycin- and doxorubicin-

induced senescence. Silencing p53, on the other hand, abrogates

PAI-1 protein-stimulated p21 expression and cell senescence. In

vivo studies, using ATII cell-specific PAI-1 conditional knockout

mouse model generated recently in this laboratory, further

support the role of PAI-1 in the activation of p53-p21-Rb cell

cycle repression pathway, ATII cell senescence, and lung fibrosis

induced by bleomycin. This study reveals a novel function of

PAI-1 in regulation of cell cycle and suggests that elevation of

PAI-1 contributes importantly to ATII cell senescence in fibrotic

lung diseases.
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Introduction

Cellular senescence, a state of permanent inhibition of cell growth,

has been linked to aging and aging-related diseases (Akram et al.,

2014). The mechanisms underlying cellular senescence under either

physiological or pathological conditions, however, remain poorly

understood. Alveolar type II (ATII) cells can self-renew and also

differentiate into type I alveolar epithelial cells and therefore are

considered as alveolar progenitor cells (Aoshiba et al., 2003, 2013).

ATII cell senescence is evident in fibrotic lung diseases, including IPF

(Buckbinder et al., 1995; Chang et al., 2010; Bhandary et al., 2013;

Barkauskas & Noble, 2014), and in experimental fibrosis models

(Chao, 2015; Childs et al., 2015). A current disease paradigm is that

lung fibrosis develops as a result of unremitting insults plus genetic

and aging-related risk factors, leading to alveolar epithelial cell injuries,

which is followed by activation of myofibroblasts and replacement of

injured alveolar epithelium with fibrotic tissue, due to a decreased

reparative capacity of alveolar epithelium. Elucidation of the mecha-

nisms underlying ATII cell senescence, therefore, may be a key to our

understanding of the disease pathogenesis and thus development of

effective therapeutics.

Plasminogen activator inhibitor 1 (PAI-1), also known as serpine 1, is a

primary inhibitor of tissue type and urokinase type plasminogen

activators (tPA and uPA, respectively), which convert plasminogen into

plasmin, a serine proteinase playing a major role in fibrinolysis. Besides

suppression of fibrinolysis, PAI-1 has many other functions, including

modulation of cell adhesion, migration, and proliferation, dependent or

independent of its protease inhibitory activity (Chilosi et al., 2013).

Studies from this laboratory and from others have shown that PAI-1

plays a critical role in the development of lung fibrosis, although the

mechanism whereby PAI-1 promotes lung fibrosis remains elusive (El-

Deiry et al., 1992; Dimri et al., 1995; Citrin et al., 2013; Disayabutr

et al., 2016). Importantly, PAI-1 expression is increased in senescent cells

(Elzi et al., 2012) and emerging evidence suggests that PAI-1 is not

merely a marker but also a mediator of cell senescence (Fernandez Perez

et al., 2010; Eren et al., 2014a,b; Ghosh et al., 2016). Nonetheless,

whether increased PAI-1 expression is responsible for ATII cell senes-

cence in fibrotic lung diseases and, most importantly, how PAI-1

promotes cell senescence remain unclear.

Using IPF lung tissues, cultured ATII cells, and a tamoxifen-inducible,

ATII cell-specific PAI-1 conditional knockout mouse model generated

recently in this laboratory, we show, in this study, that PAI-1 induces

p53, activates p53-p21-Rb cell cycle repression pathway, and mediates

bleomycin- and doxorubicin-induced ATII cell senescence both in vitro

and in vivo. Suppression of ATII senescence by knocking out the PAI-1

gene is associated with an attenuation of lung fibrosis. These results

reveal a novel mechanism whereby PAI-1 regulates cell cycle and suggest

that elevated PAI-1 contributes to ATII cell senescence in fibrotic lung

diseases.

Results

ATII cells in IPF lungs express higher level of PAI-1 and cell

senescence markers p21 and p16

ATII cell senescence is evident in IPF lung. As PAI-1 plays a critical role

in cell senescence and in the development of lung fibrosis, we first

examined whether senescent ATII cells in IPF lung express higher level

of PAI-1. Our results confirm that, compared to ATII cells in control

lungs, ATII cells in IPF lungs express higher levels of PAI-1 (Hogan

et al., 2014) as well as p21 and p16 (Chang et al., 2010; Barkauskas

& Noble, 2014), two-cell senescence mediators. These results suggest

that increased PAI-1 expression may contribute to ATII cell senescence

in IPF.
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Silencing PAI-1 with PAI-1 siRNA/shRNA reduces p53 and p21

expressions, increases Rb protein phosphorylation, and

attenuates bleomycin-induced ATII cell senescence

Although PAI-1 expression is increased in ATII cells in IPF lung, whether

increased PAI-1 is responsible for, and how PAI-1 induces, ATII cell

senescence are unknown. p53 is a master cell cycle regulator, which

induces cell cycle arrest or senescence mainly through inducing p21, a

cyclin-dependent kinase inhibitor. p53 expression is increased in ATII cells

in IPF lung (Buckbinder et al., 1995; Barkauskas & Noble, 2014). To

determine whether increased PAI-1 expression is responsible for ATII cell

senescence in fibrotic lungs and whether PAI-1 induces ATII cell

senescence through increasing p53, rat ATII (L2) cells were treated with

bleomycin. The results show that treatment of L2 cells with bleomycin

significantly increases the protein levels of PAI-1, p53, and p21 as well as

the activity of senescence associated beta-galactosidase (SA-b-gal), a

marker of cell senescence (Fig. 1A,B). Silencing PAI-1 with PAI-1 siRNA,

on the other hand, dramatically reduces the basal levels of p53 and p21

proteins in L2 cells (Fig. 1C). These results indicate that PAI-1 positively

regulates p53 and p21 expression and may mediate bleomycin-induced

ATII cell senescence through activating p53-p21 pathway.

To further delineate the role of PAI-1 in ATII cell senescence, L2 cells

were stably transfected with PAI-1 shRNA or nontarget shRNA (NT

shRNA, control) and then treated with bleomycin. Western blotting

results show that silencing PAI-1 with PAI-1 shRNA significantly increases

the basal level of phosphorylated retinoblastoma protein (ppRb),

attenuates bleomycin-mediated increases in p53 serine 18 phosphory-

lation (p53S18P), p53 and p21 protein expression, and partially restores

bleomycin-mediated suppression of ppRb (Fig. 1D,J). The ratio of

p53S18P to p53 is significant increased with bleomycin treatment;

silencing PAI-1, however, attenuates bleomycin-stimulated increase in

the ratio (Fig. 2D,H), suggesting that PAI-1 stimulates p53 phosphory-

lation at serine 18, a critical phosphorylation site for the stability of p53

protein (Huang et al., 2012, 2015), independence of its effect on p53

protein abundance. Associated with inhibition of p53 and p21 expres-

sion as well as stimulation of Rb phosphorylation, PAI-1 shRNA

ameliorates bleomycin-mediated suppression of proliferating cell nuclear

antigen (PCNA) expression (Fig. 1K,L) and increase in SA-b-gal activity
(Fig. 1M,N). Together, the results suggest that PAI-1 plays an important

role in bleomycin-induced ATII cell senescence and that PAI-1 promotes

ATII cell senescence at least in part by increasing p53 and thus p21,

leading to a suppression of Rb protein phosphorylation.

Inhibition of PAI-1 activity with a small molecular PAI-1

inhibitor TM5275 attenuates bleomycin-induced p53

expression and L2 cell senescence

TM5275 is a small molecule PAI-1 inhibitor, which, we have shown

previously, blocks lung fibrosis in a bleomycin-induced lung injury model

(Disayabutr et al., 2016). To determine whether inhibition of PAI-1

activity with TM5275 also protects ATII cells from bleomycin-induced

senescence, L2 cells were treated with 50 mU of bleomycin in the

presence or absence of TM5275 (25 lM) for 24 h and then cultured in

bleomycin-free medium for additional 72 h. The results show that

treatment of L2 cells with TM5275 significantly reduces bleomycin-

stimulated p53S18 phosphorylation, p53 and p21 expressions, as well as

SA-b-gal activity (Fig. 2A–G). Our data also show that TM5275 reduces

bleomycin-stimulation increase in the ratios of p53S18P to p53

(Fig. 2C,2F), further supporting the notion that PAI-1 stimulates p53

serine 18 phosphorylation.

Silencing PAI-1 with PAI-1 shRNA suppresses doxorubicin-

induced L2 cell senescence

Doxorubicin (Dox) is another anticancer drug which induces senescence

in different types of cells (Ghosh et al., 2016). Although the major

toxicity of doxorubicin is in cardiovascular system, several studies have

shown that doxorubicin therapy causes interstitial pneumonia and

fibrosis in patients (Junqueira et al., 1979; Kunz et al., 1995; Kortlever

et al., 2006). To determine whether doxorubicin induces ATII cell

senescence and the role of PAI-1 in this process, L2 cells that have been

stably transfected with PAI-1 shRNA or NT shRNA were treated with

doxorubicin or saline. Similar to PAI-1 siRNA (Fig. 1C), silencing PAI-1

with PAI-1 shRNA decreases the basal levels of p53 protein in L2 cells

(Fig. 3A,C). Silencing PAI-1 also diminishes doxorubicin-induced p53 and

p21 expressions (Fig. 3A–D) as well as SA-b-gal activity (Fig. 3E,F). The

results suggest that doxorubicin induces ATII cell senescence and that

PAI-1 mediates doxorubicin-induced ATII cell senescence at least in part

by increasing p53.

Silencing p53 abrogates PAI-1 protein-induced L2 cell

senescence

To further delineate the cause–effect relation between PAI-1 and p53

in ATII cell senescence, L2 cells were transfected with p53 siRNA or

nontarget siRNA and then treated with active human PAI-1 protein

(hPAI-1, Molecular Innovation). The results show that treatment of L2

cells with hPAI-1 increases PAI-1 mRNA (Fig. 4A) as well as p53 and

p21 proteins, which is associated with an suppression of Rb protein

phosphorylation (Fig. 4B) and an increase in SA-b-gal activity (Fig. 4C,

D). These data confirm that PAI-1 activates p53-p21-Rb pathway and

induces ATII cell senescence. The results also suggest that PAI-1

induces the expression of its own gene (autocrine function). Silencing

p53 with p53 siRNA, on the other hand, reduces the basal level of

PAI-1 protein and increases the basal level of Rb phosphorylation

(Fig. 4E–I). These results suggest that p53 positively regulates PAI-1

expression in ATII cells and that there is a feedforward relation

between p53 and PAI-1. Importantly, silencing p53 significantly

reduces hPAI-1-mediated increases in p21 protein expression (Fig. 4E,

H) and completely blocks hPAI-1-induced SA-b-gal activity (Fig. 4C,D).

These results indicate that p53 functions as a downstream effector in

PAI-1-induced ATII cell senescence, although it also regulates PAI-1

expression.

Deletion of PAI-1 specifically in ATII cells in mice protects ATII

cells from bleomycin-induced senescence in vivo

To determine whether increased PAI-1 is responsible for ATII cell

senescence in fibrotic lung disease in vivo, a tamoxifen (Tmx) inducible,

ATII cell-specific PAI-1 conditional knockout (Sftpc-CreER:PAI-1fl/fl; CKO)

mouse model has been generated by gene targeting technique as

deciphered in Fig. S1 (Supporting information). PCR results show that

Tmx injection induces a deletion of the exons 4&5 in the PAI-1 gene

specifically in CKO mice (Fig. S2A, Supporting information). Immunoflu-

orescence and Western analyses further confirm that Tmx injection

almost completely knocks out PAI-1 protein in ATII cells in CKO mice

(Fig. S2B,C, Supporting information). The results suggest that we have

successfully generated tamoxifen-inducible, ATII cell-specific PAI-1 con-

ditional knockout mouse model.

To test whether deletion of PAI-1 specifically in ATII cells in mice will

protect ATII cells from bleomycin-induced senescence in vivo (Leung
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et al., 2015), CKO and wild-type (PAI-1 fl/f) mice were intraperitoneally

injected with tamoxifen and then challenged with 2 U/kg bleomycin.

Mice were euthanized 14 days after challenge, lung tissue collected, and

ATII cells isolated. Double-immunofluorescence staining and X-gal

staining results show that bleomycin challenge significantly increases

the numbers of ATII cells positive for PAI-1 and p53 (Fig. 5A,B), for p21

(Fig. 5C,D), or for SA-b-gal activity (Fig. 5E,F) in wild-type (PAI-1fl/fl)

mice. Deletion of PAI-1 specifically in ATII cells in mice, on the other
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Fig. 1 Knockdown of PAI-1 with PAI-1 siRNA/shRNA reduces p53 and p21 protein levels, increases Rb phosphorylation, and attenuates bleomycin-induced L2 cell

senescence. Rat ATII (L2) cells were treated with 50 mU/mL bleomycin for 24 h (A & B) and then cultured in bleomycin-free medium for additional 72 h (B). (C) L2 cell was

transfected with PAI-1 siRNA or nontarget siRNA (NT siRNA). D-N) PAI-1 shRNA or NT shRNA stably transfected L2 cells were treated with bleomycin for 24 h and then

cultured in bleomycin-free medium for additional 24 (D–L) or 72 (M and N) hours. PAI-1, serine-18 phosphorylated p53 (p53S�18P), p53, p21, and phosphorylated Rb (ppRb)

proteins were determined by Westerns. b-Actin is used as loading control. D, representative Western blotting pictures; E-J, semi-quantified band intensities normalized by b-
actin. (K and L) Immunostaining and quantification of proliferating cell nuclear antigen (PCNA). (M and N) SA-b-gal activity revealed by X-gal staining. a, Significantly
different from corresponding saline-treated cells; b, significantly different from bleomycin-treated NT shRNA-transfected cells; f, significantly different from corresponding

NT shRNA-transfected cells (P < 0.05, n = 3–5).
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hand, significantly reduces bleomycin-stimulated increases in PAI-1/p53-,

p21-, or SA-b-gal-positive ATII cells (Fig. 5A–F). Western analyses with

isolated ATII cells further show that deletion of PAI-1 specifically in ATII

cells in mice attenuates bleomycin-stimulated increases in p53S18

phosphorylation (Fig. 5G,I) as well as the expression of p53 and p21

proteins (Fig. 5G,J,L). The ratios of p53S18P to p53 is significantly

increased following bleomycin treatment and returned to control level

with deletion of PAI-1 (Fig. 5G,K), suggesting that PAI-1 stimulates

p53S18 phosphorylation in vivo as well. Consistent with the results from

cultured L2 cells, deletion of PAI-1 alone increases Rb phosphorylation in

ATII cells in mice (Fig. 5G,M). The effects of PAI-1 deletion on bleomycin-

induced p53 and p21 expressions in ATII cells are also confirmed by

double immunostaining of mouse lung tissues (Fig. 5N–S). These results

provide strong evidence, for the first time, that increased PAI-1 mediates

bleomycin-induced p53 expression and ATII cell senescence in lung

fibrosis in vivo.

Deletion of PAI-1 specifically in ATII cells in mice reduces PAI-1

protein in BAL fluid and attenuates bleomycin-induced lung

fibrosis

ATII cells have been shown to play a central role in the development of lung

fibrosis (Lijnen, 2005; Chao, 2015; Li & Kurokawa, 2015). To determine

whether deletion of PAI-1 specifically in ATII cells protects mice from

bleomycin-induced lungfibrosis, 8- to10-week-oldCKOandwild-type (PAI-

1fl/fl)micewere injectedwith tamoxifen, challengedwith 2 U/kgbleomycin,

and euthanized 14 days after bleomycin instillation. The results show that

specifically knocking out the PAI-1 gene in ATII cells in mice attenuates

bleomycin-induced body weight loss (Fig. 6A) and PAI-1 accumulation in

bronchoalveolar lavage fluid (BALF) (Fig. 6B), although it has no significant

effect on the body weight and BALF PAI-1 level of unchallenged mice.

Deletion of PAI-1 specifically in ATII cells in mice also attenuates bleomycin-

stimulated increases in collagen deposition (Fig. 6C,D), hydroxyproline

accumulation (Fig. 6E), and expression of procollagen 1a2 and procollagen

1a1 as well as alpha-smooth muscle actin (a-SMA) (Fig. 6F–I) in mouse

lungs. Together, the results suggest thatATII cells are an important sourceof

BALF PAI-1 in fibrotic lung and that ATII cell senescence contributes

importantly to the development of lung fibrosis.

Discussion

Fibrosis is a commonpathological feature ofmany lung diseases, including

IPF, an aging-related progressive fatal lung disorder with unknown

etiology (Maclaine & Hupp, 2011; Mark & Thurlimann, 2012). There is no

cure for these fibrotic diseases due to incomplete understanding of the

pathogenesis. ATII cells are progenitor cells of the alveolar epithelium; ATII

cell senescence is evident in IPF and in experimental lung fibrosis models

(Buckbinder et al., 1995; Chang et al., 2010; Bhandary et al., 2013;

Barkauskas & Noble, 2014; Chao, 2015; Childs et al., 2015). The

mechanism underlying ATII cell senescence in fibrotic lung diseases,

however, is unknown. Using IPF lung tissues, cultured ATII (L2) cells, and a

PAI-1 conditional knockout mouse model, we show, for the first time in

this study, that PAI-1 induces and mediates bleomycin- and doxorubicin-

induced ATII cell senescence in vitro and in vivo. Our data also show that

suppression of bleomycin-induced ATII cell senescence in mice by

specifically knocking out the PAI-1 gene in these cells is associated with

attenuation of lung fibrosis. These results suggest that elevation of PAI-1

contributes importantly to ATII cell senescence in fibrotic lung diseases.

Although PAI-1 has been shown to induce cell senescence in different

types of cells (Fernandez Perez et al., 2010; Eren et al., 2014a,b; Ghosh

et al., 2016), the molecular mechanism whereby PAI-1 promotes cell

senescence remains poorly understood. p53 plays a central role in the

induction of cellular senescence (Marudamuthu et al., 2015), mainly

through inducing p21, an inhibitor of cyclin-dependent kinases (CDKs),

leading to dephosphorylation and activation of cell cycle repressor

retinoblastoma (Rb). In this study, we show, for the first time, that PAI-1

protein increases, whereas PAI-1 siRNA/shRNA and PAI-1 inhibitor

TM5275 suppress bleomycin- and/or doxorubicin-induced, p53 and

p21 expressions as well as SA-b-gal activity in cultured ATII (L2) cells and

in mouse lung ATII cells in vivo. This is associated with a decrease (by PAI-
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1 protein or bleomycin) and an increase (by PAI-1 siRNA/shRNA) in Rb

phosphorylation, respectively. Silencing p53 in L2 cells, on the other

hand, dramatically reduces PAI-1 protein-induced p21 expression and L2

cell senescence. Our data strongly suggest that PAI-1 induces ATII cell

senescence, at least in part, through increasing p53 expression and

activating p53-p21-Rb cell cycle repression pathway. This is first report
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showing that PAI-1 positively regulates p53 expression in epithelial cells.

We want to stress that the effects of PAI-1 on p53 expression seem to be

cell type specific (Disayabutr et al., 2016; Ghosh et al., 2016). We

showed in a previous study that a small molecule PAI-1 inhibitor TM5275

induced p53 in fibroblasts (Disayabutr et al., 2016). A recent study from

a different laboratory demonstrated, on the other hand, that PAI-1

inhibitor TM5441 suppressed doxorubicin-induced p53 expression in

endothelial cells (Ghosh et al., 2016). The results from this study further

confirm the complexity of cell type-dependent regulation of p53

expression by PAI-1.

The mechanism whereby PAI-1 increases p53 protein in ATII cells is

currently unknown. Posttranslational modifications, including phospho-

rylation and ubiquitination, play a critical role in p53 protein stability and

transactivation function (Huang et al., 2012; Marzec et al., 2015).

Phosphorylation of p53 at serine 15 and serine 20 (serine 18 and serine-

23 in rodents) prevents the binding of p53 to murine double minute 2

(MDM2), a major E3 ubiquitin ligase involved in p53 degradation, and

thereby stabilizes p53 protein (Huang et al., 2012, 2015). Our studies

show that treatment of rat ATII (L2) cells with PAI-1 protein increases,

whereas silencing PAI-1 with PAI-1 shRNA or inhibition of PAI-1 activity

with a small molecule PAI-1 inhibitor TM5275 decreases, p53 phospho-

rylation at serine-18 residue, suggesting that PAI-1 increases p53 protein

probably by increasing p53 serine 15 and/or serine 20 phosphorylation

and thereby suppressing its degradation. More studies are needed to

determine the molecular mechanism whereby PAI-1 suppresses p53

phosphorylation and potentially degradation in these cells.

It should be stressed that p53 has been shown to regulate PAI-1

expression in different types of cells (Osterholzer et al., 2011; Nevadun-

sky et al., 2013; Mohapatra et al., 2016). It has also be reported that

PAI-1 functions downstream of p53 in replicative senescence of cultured

fibroblasts (Eren et al., 2014a). In this study, we show that silencing p53

with p53 siRNA reduces the basal level of PAI-1 and attenuates PAI-1

protein-induced PAI-1 expression in L2 cells (Fig. 4), further supporting

the notion that p53 regulates PAI-1 expression. However, using both

pharmacological and genetic approaches, we show in this study that

PAI-1 induces p53 and activates p53/p21/Rb pathways in ATII cells
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in vitro and in vivo. Silencing p53 almost completely abolishes PAI-1

protein-induced p21 expression and L2 cell senescence. These data

strongly suggest that PAI-1 induces p53 and that p53 functions

downstream of PAI-1 in the induction of ATII cell senescence. We also

want to mention that, besides inducing senescence, PAI-1 also plays a

role in apoptosis. Although increased PAI-1 has been shown in almost all

types of senescent cells studied, effects of PAI-1 on apoptosis sensitivity

are cell type-dependent. It has been reported that increased PAI-1

expression is associated with increased sensitivity of ATII cells to

apoptosis (Osterholzer et al., 2011; Hogan et al., 2014; Schafer et al.,

2017) but increased apoptosis resistance in fibroblasts (El-Deiry

et al., 1992; Serrano-Mollar et al., 2007; Citrin et al., 2013; Disayabutr

et al., 2016). More studies are needed to understand the mechanism

whereby PAI-1 differentially regulates p53 expression and apoptosis

sensitivity in different types of cells.

Insulin-like growth factor binding protein 3 (IGFBP3) is a major insulin

growth factor (IGF) binding protein, which binds to IGF and inhibits its

signaling. IGFBP3 expression is increased in senescent cells and is believed

to mediate cell senescence in different types of cells (Fernandez Perez

et al., 2010; Eren et al., 2014b; Ghosh et al., 2016). Interestingly, it has

been reported that PAI-1 promotes senescence in MCF-7 breast cancer

cells by inhibiting tPA-mediated proteolysis of IGFBP3 (Eren et al., 2014b).

Increased PAI-1 expression has also been shown to be responsible for the

increase in IGFBP3 expression, cell senescence, and lifespan shortening in

Klotho-deficient (kl/kl) mice, a murine aging model (Fernandez Perez

et al., 2010). Consensus sites for p53 binding have been identified in

intronic regions of the IGFBP3 gene and wild-type p53 increases IGFBP3

expression in response to DNA damage (Shetty et al., 2008, 2012; Sisson

et al., 2010). These results suggest that IGFBP3 may functions down-

stream of PAI-1 and p53 in the induction of senescence. Whether PAI-1

induces IGFBP3 in ATII cells andwhether PAI-1 induces ATII cell senescence

by increasing p53 and thereby IGFBP3 remains to be determined.

PAI-1 expression is increased in lung fibrotic diseases including IPF and

in experimental lung fibrosis models (El-Deiry et al., 1992; Dimri et al.,

1995; Citrin et al., 2013; Disayabutr et al., 2016). Which types of cells

are the major contributors of PAI-1 in fibrotic lungs and how PAI-1

promotes lung fibrosis, however, remain to be determined. It has been

reported that, in diphtheria toxin (DT)-induced ATII cell injury and fibrosis

model, ATII cells and macrophages are the major contributors of PAI-1 in

the alveolar compartment (Zappa et al., 2009). Increased PAI-1 expres-

sion contributed to DT-induced ATII cell injury and lung fibrosis as

knockout of the PAI-1 gene attenuated DT-induced ATII cell injury and

lung fibrosis (Zappa et al., 2009). Using tamoxifen-inducible ATII cell-

specific PAI-1 knockout mouse model, we show, in this study, that

knockout of the PAI-1 gene specifically in ATII cells in mice significantly

attenuates bleomycin-stimulated increase in BALF PAI-1 protein,

although it has no significant effect on the basal level of PAI-1 in BALF.

Our results also show that deletion of the PAI-1 gene in ATII cells alone

significantly reduces bleomycin-induced accumulation of collagen and

hydroxyproline in mouse lung. These data suggest that ATII cells are

important source of BALF PAI-1 in fibrotic lung, although they are not

the major contributors of BALF PAI-1 under unchallenged/normal

condition. These data also suggest that ATII cell PAI-1 plays a pivotal

role in the development of lung fibrosis and that PAI-1 promotes lung

fibrosis in part by inducing ATII cell senescence. Further studies are

warranted to determine how senescent ATII cells contribute to the

development of lung fibrosis and the role of PAI-1 in this process.

In summary, we demonstrate here, for the first time, that PAI-1

induces p53, activates p53-p21-Rb cell cycle repression pathway, and

promotes senescence in ATII cells in vitro and in vivo. These findings may

have a significant impact on the research beyond lung fibrosis as PAI-1

expression is increased with age and in many aging-related pathological

conditions.

Experimental procedures

Generation of PAI-1 conditional knockout mice

See supplementary material (Fig. S1, Supporting information) for the

details. Western blotting and immunofluorescence staining techniques

were used to confirm Tmx-inducible PAI-1 conditional knockout pheno-

type in isolated ATII cells after mice were injected with tamoxifen or oil

(Fig. S2, Supporting information). All procedures involving animals were

approved by the Institutional Animal Care and Use Committees at the

University of Alabama at Birmingham and conducted at the UAB animal

facilities under specific pathogen-free conditions.

Cell culture and treatment

L2 cells, originally derived from type II pneumocytes of adult rat lungs,

were obtained from the American Type Culture Collection (Rockville,

MD) and cultured with Ham’s F-12 medium supplemented with 10%

fetal bovine serum, 100 units/mL penicillin, and 100 lg/mL streptomycin

at 5% CO2 and 37 °C.

Establishment of PAI-1 knockdown ATII cell line

L2 cells were stably transduced with nontarget shRNA retrovirus or PAI-1

shRNA retrovirus (Origene, Cat No TR30013 and TF709263, respectively)

according to the manufacturer’s instructions. Briefly, retrovirus vector

pGFP-V-RS-Control shRNA or pGFP-V-RS-rat PAI-1 shRNA was trans-

fected into Phoenix-AMPHO retrovirus package cells. The supernatant

containing the viruses was harvested 48 h posttransfection to infect L2

cells. At 24 h postinfection, transduced cells were selected with 1 lg/mL

puromycin for 1 week. PAI-1 protein was determined by Western

blotting to confirm the knockdown phenotype.

Induction of lung fibrosis and collection of samples

Eight- to 10-week-old male PAI-1fl/fl (WT control) and Sftpc-CreER:PAI-

1fl/fl mice were intraperitoneally injected with 100 mg/kg Tmx for 7 days

and then challenged with 2 U/kg of bleomycin (dissolved in saline) or

saline alone through oropharyngeal instillation. Mice were euthanized

14 days after challenge. Bronchoalveolar lavage (BAL) was performed

and pulmonary artery vascular beds perfused as we have described

previously (El-Deiry et al., 1992; Disayabutr et al., 2016). Left lung was

then fixed with 10% PBS-buffered formalin and the rest of the lung

frozen immediately in liquid nitrogen for biochemistry analyses as we

have described previously (Disayabutr et al., 2016).

Isolation of ATII cells from mouse lung

Mouse lung ATII cells were isolated following the protocol described

previously (Zhang et al., 2012) with a few modifications. Briefly, mouse

lungs were instilled with 2 mL protease solution (300 U/mL collagenase

type I, 4 U/mL elastase, 5 U/mL dispase, and 100 lg/mL DNase I in HBSS),

minced by razor, and incubated at 37 °C for 25min. Digestion was

stopped with 50% DMEM/50% F12 containing 3% fetal bovine serum

and suspension washed in HBSS and then incubated with 2 mL HBSS

containing 0.1% trypsin–EDTA, 100 lg/mL DNase I for 20 min at 37 °C.
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Following tissue dissociation, cell suspensions were filtered through a 40-

lm nylon mesh, washed, and treated with ACK (150 mM NH4Cl, 10 mM

KHCO3, 0.1 mM EDTA) solution to lyse red blood cells and then suspended

in DMEM/F12 medium containing 1% fetal bovine serum. Macrophages

and lymphocytes were removed by incubation with biotinylated rat anti-

mouse CD45 and rat anti-mouse CD16/32. (BD Biosciences). The cells

were then cultured in DMEM/F-12 medium containing 10% FBS in 100-

mm culture dishes at 37°C for 2 h to remove lung fibroblasts. The

suspended ATII cells were harvested for further analysis. Immunostaining

with anti-SPC antibody confirms that >90% cells are ATII cells.

Immunofluorescence staining

To reveal PAI-1, p53, and p21 proteins in mouse lung tissue, double

immunostaining was conducted using formalin-fixed, paraffin-

embedded tissue slides with antibodies to mouse PAI-1 (Molecular

Innovations, Cat No MA-33H1F7), p53 (Ancell, Cat No 227-020), or p21

(Santa Cruz, Cat No SC-6246) and rabbit polyclonal anti-mouse proSP-C

antibody (Millipore, Cat No AB3786), following the protocol as we have

described previously (El-Deiry et al., 1992). More than 300 ATII cells

were counted in nine different areas per mouse lung; PAI-1-, p53-, or

p21-positive ATII cells are expressed as percentage of total ATII cells.

For immunofluorescence staining of primary mouse ATII cells, 2 9 105

isolatedATII cellswereseededonto35-mmculturedishwithglass cover slip

coated with rat collagen I for 24 h. Cells were fixed by 4% paraformalde-

hyde and incubated with anti-PAI-1 and p53 antibodies or anti-p21 and

anti-SPC antibodies following the similar protocol as described above.

More than 300 ATII cells were counted per mouse and p21-positive ATII

cells (SPC positive) as well as PAI-1 and p53 double-positive cells were

expressed as % of total ATII cells. To reveal cell proliferation, 2 9 105 L2

cells, cells were fixed, permeabilized, and then incubated with rabbit

polyclonal antiproliferating cell nuclear antigen (PCNA, Cell Signaling,

Beverly, MA, USA Cat No 13110S) followed by fluorescein-conjugated

anti-rabbit antibody (Vector Lab, Burlingame, CA, USA Cat No FI-1000,

green color). The nuclei were visualized by DAPI staining.

Measurement of the activity of senescence associated beta-

galactosidase (SA-b-gal)

The activity of SA-b-gal in cultured L2 cells and in freshly isolated mouse

ATII cells was determined using 5-bromo-4-chloro-3-indolyl P3-D-

galactoside (X-gal), following the protocol described previously (Zhang

et al., 2013). For mouse ATII cells, freshly isolated cells were span onto

slides using a Statspin Cytofuge, fixed, and stained with X-gal imme-

diately after isolation. SA-b-gal-positive cells (blue color) were counted

under microscope and expressed as % of total cells.

Western blot analysis

Cells were lysed in cell lysis buffer, and lung tissues were homogenized in

0.25 M sucrose buffer containing protease inhibitor (Sigma, St. Louis, MO,

USA P8340) and phosphatase inhibitor cocktails (Sigma, P5726) and

centrifuged at 3000 g, 4°C, for 10 min and then in 100 000 g for 60 min.

Westerns were conducted with supernatants as we have described

previously (El-Deiry et al., 1992; Disayabutr et al., 2016) with the following

antibodies: PAI-1 (Molecular Innovation, Novi, MI, USA ASMPAI-GF,

ASRPAI-GF), a-SMA (Biocare, CM001B), p53 (Santa Cruz, SC-6243), p21

(Santa Cruz, Dallas, TX, USA SC-397), procollagen 1a1 (Santa Cruz, SC-

8784-R), procollagen 1a2 (Santa Cruz, SC-8788), and b-actin (Sigma,

A5441). The protein bands were visualized using the ECL detection system

(Amersham, Piscataway, NY, USA), semi-quantified using ImageJ software,

and normalized by b-actin band intensity.

ELISA of PAI-1 protein in bronchoalveolar lavage fluid (BALF)

PAI-1 protein in mouse BALF was determined by ELISA as we have

described previously (Disayabutr et al., 2016).

Trichrome and Sirius red staining of collagens in mouse lung

tissue

Trichrome staining was conducted as we have described previously

(Disayabutr et al., 2016), whereas Sirius red staining performed follow-

ing the protocol described by others (Zuckerman et al., 2009).

Hydroxyproline measurement

Hydroxyproline content in the right lungs of mice was measured using

the Hydroxyproline Assay Kit from Chondrex, Inc (catalog number:

6017), according to the protocol provided by the manufactory. The

results were calculated based on the standard curves derived from 4-

hydroxy-L-proline.

Statistical analysis

Data were evaluated by one-way ANOVA. Statistical significance was

determined post hoc by Tukey’s test.
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