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Abstract10

A major obstacle hindering the broad adoption of polygenic scores (PGS) is their lack of11

“portability” to people that differ—in genetic ancestry or other characteristics—from the12

GWAS samples in which genetic effects were estimated. Here, we use the UK Biobank to13

measure the change in PGS prediction accuracy as a continuous function of individuals’14

genome-wide genetic dissimilarity to the GWAS sample (“genetic distance”). Our results15

highlight three gaps in our understanding of PGS portability. First, prediction accuracy16

is extremely noisy at the individual level and not well predicted by genetic distance. In17

fact, variance in prediction accuracy is explained comparably well by socioeconomic mea-18

sures. Second, trends of portability vary across traits. For several immunity-related traits,19

prediction accuracy drops near zero quickly even at intermediate levels of genetic distance.20

This quick drop may reflect GWAS associations being more ancestry-specific in immunity-21

related traits than in other traits. Third, we show that even qualitative trends of portability22

can depend on the measure of prediction accuracy used. For instance, for white blood cell23

count, a measure of prediction accuracy at the individual level (reduction in mean squared24

error) increases with genetic distance. Together, our results show that portability cannot25

be understood through global ancestry groupings alone. There are other, understudied fac-26

tors influencing portability, such as the specifics of the evolution of the trait and its genetic27

architecture, social context, and the construction of the polygenic score. Addressing these28

gaps can aid in the development and application of PGS and inform more equitable genomic29

research.30
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Introduction31

Polygenic scores (PGS), genetic predictors of complex traits based on genome-wide associa-32

tion studies (GWAS), are gaining traction among researchers and practitioners13,15,25. Yet a33

major problem hindering their broad application is their highly variable performance across34

prediction samples19,6,10,14. Often, prediction accuracy appears to decline in groups unlike the35

GWAS sample—in genetic ancestry, social context or environmental exposures17,19,10,32,42,30,36

restricting the contexts in which PGS can be used reliably.37

This so-called “portability” problem is a subject of intense study. Typically, portability38

is evaluated through variation in the within-group phenotypic variance explained by a PGS39

(i.e., the coefficient of determination, R2) among genetic ancestry groups. Indeed, population40

genetics theory gives clear predictions for the relationship between genetic dissimilarity to41

the GWAS sample and PGS prediction accuracy under some models (neutral evolution27,44,3,42

directional23, or stabilizing selection44,23), all else being equal (including, e.g., assumptions43

about environmental effects).44

However, inference based on empirical variation in R2 can be misleading for various45

reasons. For one, it can be arbitrarily low even when the model fitted to the data is correct.46

It also cannot be compared across transformations of the data. R2 is not comparable across47

datasets, because, for instance, it depends on the extent of variation in the independent48

variable39,16,34. In the context of inference about the causes of PGS portability, these issues49

can manifest in different ways. For example, heterogeneity in within-group genetic variance50

and environmental variance can each greatly affect group differences in R2.51

A related issue is that the impacts of environmental and social factors on portability are52

not well understood, despite evidence illustrating these impacts can be substantial19,10,43,20.53

To complicate matters, such factors may be confounded with genetic ancestry, limiting our54

ability to make inferences based on the typical decay of R2 between PGS and trait value in55

ancestries less represented in GWAS samples19,25,10,43.56

With these limitations of R2, and the possible confounding with environmental and social57
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factors, it remains unclear how well genetic ancestry would predict the applicability of PGS58

for individuals. Recent work implied that individual-level prediction accuracy should be59

largely explained by genome-wide genetic dissimilarity to the GWAS sample (see figure 360

in [7] and figure 5 in [38]). However, we note that this work focused on the relationship61

between genetic distance and the prediction interval, i.e. expected uncertainty in prediction62

under an assumed model, rather than the relationship with the realized prediction accuracy.63

Understanding the drivers of variation in prediction accuracy is especially pertinent for64

personalized clinical risk predictions and decisions regarding their reporting to patients15,12.65

This motivated us to empirically study PGS prediction accuracy at the individual level.66

In what follows, we highlight three puzzling observations that also point to three gaps in our67

understanding of the portability problem: (1) Genetic dissimilarity to the GWAS sample68

poorly predicts portability at the individual level, (2) portability trends (with respect to69

genetic distance) can be trait-specific; and (3) portability trends depend on the measure of70

prediction accuracy. Informed by our results, we suggest avenues of future research that can71

help bridge these gaps.72

Results73

Portability and individual-level genetic distance from the GWAS sample. We ex-74

amined PGS portability as a function of genetic distance from the GWAS sample in the UK75

Biobank (UKB). For each of 15 continuous physiological traits, we performed a GWAS in76

a sample of 350,000 individuals. For 129,279 individuals not included in the GWAS sample77

(henceforth referred to as “prediction sample”), we predicted the trait value using the PGS78

and covariates. Using a Principal Component Analysis (PCA) of the genotype matrix of79

the entire sample, we quantify each individual’s genetic distance from the GWAS sample as80

distance from the centroid of GWAS individuals’ coordinates in PCA space (Fig. 1A). This81

measure is quicker to compute, yet highly correlated with Fst between the GWAS sample and82

single individuals in the prediction sample (r > 0.98), albeit noticeably less reflective of Fst83

at intermediate genetic distances (Fig. 1B). The imperfect correlation may be a result of our84
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Figure 1: Measuring “genetic distance” from the GWAS sample. A. Across 350,000 individuals in the
GWAS sample and 129,279 individuals in the prediction set, we measure “genetic distance” from the GWAS
sample as the weighted Euclidean distance from the centroid of GWAS individuals in PCA space, with each
PC weighted by its respective eigenvalue. B. Across 10,000 individuals from the prediction set, genetic
distance to the GWAS sample (calculated with 40 PCs) is highly correlated with Fst between the GWAS
sample and the individual (Fig. S1). Under a theoretical model where portability is driven by genetic
ancestry alone and the trait evolves neutrally, Fst should perfectly predict variation in prediction accuracy.
We note that genetic distance is less reflective of Fst for intermediate genetic distances. C. The distribution
of genetic distance. For reference, we show the mean genetic distances for subsets of the 1000 Genomes
dataset2: CEU, Utah residents of primarily Northern and Western European descent; CHB, Han Chinese in
Beijing, China; YRI, Yoruba in Ibadan, Nigeria. The dashed line represents the 95th percentile of genetic
distance from among GWAS sample individuals. In what follows, our reports are based on individuals with
genetic distances larger than this value. The inset is a zoomed-in view of a smaller range and on a log-scale,
to better visualize the distribution within the prediction sample.

use of only the top 40 PCs24,27. Under some theoretical conditions (such as neutral evolu-85

tion, additive contribution of genotype and environment, fixed environmental variance)—Fst86

should perfectly predict variation in prediction accuracy due to genetic ancestry26,27,3. We87

standardized genetic distance such that its mean is 1 across GWAS sample individuals.88

In the prediction sample, we observed a continuum of genetic distance from the GWAS89

sample with several clear modes, the main one at short distances: 96,457 individuals have90
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a genetic distance of up to 10 and the remaining 32,822 individuals at distances between91

10-197.6 (Fig. 1B, C). To ground our expectations, we estimated the mean genetic distance92

for three 1000 Genomes2 subsamples: Utah residents of primarily Northern and Western93

European descent (CEU) average at 0.6, Han Chinese in Beijing, China (CHB) average at94

98.4, and Yoruba in Ibadan, Nigeria (YRI) average at 190.0 (Fig. 1C).95

For each of the 15 continuous physiological traits, we measure the prediction accuracy96

at the group and individual level with slightly different prediction models (Methods). In97

both cases, we fit a prediction model regressing the trait to the polygenic score and other98

covariates. To evaluate group-level accuracy, we split individuals into 500 bins of genetic99

distance comprising of 258-259 individuals each. Within each bin we measure the partial R2
100

of the polygenic score and the trait value. To evaluate individual-level accuracy, we measure101

the squared difference between the PGS-predicted value and the trait, after residualizing the102

trait for covariates.103

Prediction accuracy is weakly predicted by genetic distance. For some traits,104

such as height, group-level prediction accuracy decayed monotonically with genetic distance105

from the GWAS sample, as expected and reported previously (Fig. 2A)40,27,7. A major106

factor driving this decay appears to be an associated decay in heterozygosity in the PGS107

marker SNPs (Figs. 4B,S22; see [23, 40]). Lower heterozygosity in PGS markers impacts the108

genetic variance a polygenic score can capture because it makes for a less variable predictor.109

The impact of genetic distance on LD with causal variation is less straightforward40.110

Previous work implied that variation in individual-level prediction accuracy should be111

largely explained by genetic distance7,38. However, that was not the case in our analysis.112

While individual-level accuracy generally decayed with distance for most traits, this corre-113

lation was weak (Figs. 2B,S2). Even a flexible cubic spline fit of genetic distance explains114

little of the variance in prediction accuracy (R2 = 0.31%).115

In fact, individual-level prediction accuracy is explained comparably well by socioeco-116

nomic measures (Fig. S18-S21). For example, we observed a steady mean increase in117

squared prediction error across quantiles of Townsend Deprivation Index37 for 9/15 of the118
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Figure 2: Trends of portability vary across traits and measures. At the group level (left panels), we
measured prediction accuracy with the squared partial correlation between the PGS and the trait value
in 500 bins of 258-259 individuals each. At the individual level (right panels), we measured the squared
prediction error. Curves show cubic spline fits, with 8 knots placed based on the density of data points. A,
B. For height, prediction accuracy decays nearly monotonically with genetic distance at both the group (A)
and individual (B) levels. C, D. For weight, prediction accuracy does not monotonically decay with genetic
distance. E, F. For white blood cell count, at the group level, prediction accuracy drops near zero at a short
genetic distance from the GWAS sample (E); yet at the individual level, it increases (F). See Fig. S2-S5
for other traits and Fig. S6-S9 for plots showing the full ranges of individual-level prediction accuracy.

traits examined, suggesting poorer prediction in individuals of lower socioeconomic status119

(Figs. 3A,S14,S17,S16; the four exceptions being white blood cell-related traits, Fig. S15;120

see also similar reports in [19, 10]). Like genetic distance, the Townsend Deprivation Index121

only explains between 0.02% and 0.53% of the variance in squared prediction error across122

traits with a cubic spline. Notably, however, for the majority of traits, more variance is123

explained by this measure of socioeconomic status than by genetic distance (Fig. 3B).124
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A. Mean trends in individual-level prediction accuracy B. Deprivation index and genetic distance explain portability
comparably well
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Figure 3: Genetic distance and socioeconomic factors explain individual-level prediction accuracy compa-
rably well. A. Data points confer to mean (±SE) squared prediction errors of individuals in the prediction
sample (divided by a constant, the mean squared prediction error in a reference group), binned into 5 equidis-
tant strata. The x-axis shows the median measure value for each stratum. “Household income” refers to
average yearly total household income before tax. See Fig. S14-S17 for other traits. B. We compared
the variance in squared prediction error explained by a cubic spline fit to genetic distance to the variance
explained by a cubic spline fit to the Townsend deprivation index. MCV: mean corpuscular volume. MCH:
mean corpuscular hemoglobin. RBC: red blood cell count. Body fat perc: body fat percentage. WBC: white
blood cell count. LDL: LDL cholesterol level. See Fig. S18-S21 for the variance explained by other genetic
and socioeconomic measures.

Trends of portability vary across traits. Previous reports suggested that the re-125

lationship between genetic distance and prediction accuracy is similar across traits17,27,7.126

However, we observed variation in this relationship among traits. Unlike the case of height,127

the prediction accuracy for many other traits did not decay monotonically with genetic dis-128

tance. Weight, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and129

body fat percentage peaked in accuracy at intermediate genetic distances (Fig. 2D, Fig. S2,130

S4).131

In other traits we examined, in particular white blood cell-related traits, group-level pre-132

diction accuracy dropped near zero even at a short genetic distance (Fig. 2E,S3). There133

are multiple possible drivers of trait-specific portability trends. We considered, in partic-134

ular, variable selective pressures on the immune system across time and geography. We135
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hypothesized that these would lead to less portable genetic associations (across ancestry)136

compared to other traits. To test this prediction, we re-estimated the effects of index SNPs137

(SNPs included in the PGS, ascertained in the original GWAS sample) in two subsets of the138

prediction sample, one closer and another farther (in terms of genetic distance) from the139

GWAS sample. The prediction sample based allelic effect estimates were least consistent140

with the original GWAS for lymphocyte count, compared, e.g., to triglyceride levels, a trait141

of similar SNP heritability (Fig. 4A). To further illustrate this point, 30.8% of index SNPs142

for lymphocyte count had a different sign when estimated in the original GWAS and in the143

“closer” GWAS, compared to 3.1% for triglyceride levels.144

The rapid turnover of allelic effects may also interact with statistical biases. Consider, for145

example, “winners curse”, whereby effect estimates are inflated due to the ascertainment of146

index SNPs and the estimation of their effects in the same sample18. Winners curse would be147

most severe in large effect PGS index SNPs: These SNPs are typically at lower frequencies148

in the GWAS sample than small effect index SNPs, because GWAS power scales with the149

product of squared allelic effect and heterozygosity35,22,23. If causal effects on lymphocyte150

count change rapidly, then large effect index SNPs may be under weaker selective constraint151

in the prediction sample than in the GWAS sample, and segregate at high allele frequencies.152

Indeed, for lymphocyte count, the heterozygosity of large effect variants increases with ge-153

netic distance from the GWAS sample (Fig. 4B; see Fig. S22 for other traits). As a result154

of the trends of heterozygosity, the variance in the polygenic score (a sum over index SNP155

heterozygosity multiplied by their squared effect estimates) quickly increases with genetic156

distance for white blood cell count, lymphocyte count, and monocyte count, despite decreas-157

ing for the remaining 12 traits we have examined (Fig. 4C). And so, taken together, the158

PGS variance increases quickly and allelic effect estimates become non-predictive even close159

to the GWAS sample (Fig. S24). Together, this may drive the immediate drop in prediction160

accuracy of white blood-cell related traits.161

The measure of predictive performance can alter our view of portability. Fi-162

nally, the qualitative trends of portability can even depend on the measure of prediction163
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Figure 4: Lymphocyte count as an example of trait-dependent factors influencing portability. A. We
re-estimated the allelic effects of PGS index SNPs in subsamples of the prediction set: “close” (genetic
distance ≤ 10, with 96,457 individuals), and “far” (genetic distance > 10, with 32,822 individuals). For
each index SNP of each PGS, we computed the allelic effect estimate relative to the effect estimate in the
original GWAS sample. Shown are means ± standard deviations across PGS index SNPs for three traits,
highlighting the poorer agreement between allelic effect estimates for lymphocyte count. B. We compared
the mean heterozygosity of index SNPs for height, triglycerides, and lymphocyte count. For each trait, SNPs
are stratified into three equally-sized bins of squared allelic effect estimate (Fig. S23). Each data point is the
mean heterozygosity of a stratum in a bin of genetic distance. Unlike other traits, the heterozygosity of large
effect variants for lymphocyte count increases with genetic distance from the GWAS sample. See Fig. S22
for other traits. C. We compared the variance of PGS, in each bin, relative to the variance of PGS in the
reference group, across traits. Among the 15 traits we have examined, only for lymphocyte count, monocyte
count, and white blood cell count (WBC) the PGS variance increased with genetic distance. Green points
show the PGS variance for lymphocyte count in genetic ancestry bins. Lines show the ordinary least squares
linear fit to the respective bin-level data for each trait.

accuracy. For triglyceride levels, lymphocyte count, and white blood cell count, group-level164

prediction accuracy is near zero far from the GWAS sample (Figs. 2E,S3) whereas at the165

individual level, prediction accuracy increases (Figs. 2F,S3,S11,S13).166
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Discussion167

Through an examination of empirical trends of portability at the individual level, we high-168

lighted three gaps in our current understanding of the portability problem. Below, we discuss169

possible avenues towards filling these gaps.170

The driver of portability that has been extensively discussed in the literature is ancestral171

similarity to the GWAS sample17,27,40,3,15,7. Yet our results show that, at the individual172

level, prediction accuracy is poorly predicted by genome-wide genetic ancestry. We note173

that our measure of genetic distance (also similar to that used in other studies27,7,10,9) is174

plausibly sub-optimal, as suggested, for example, by the noisiness of its relationship with Fst175

at intermediate genetic distances (Fig. 2B). Therefore, one path forward is to ask whether176

refined measures of genetic distance from the GWAS sample, in particular ones that capture177

local ancestry11,31 (e.g., in the genomic regions containing the PGS index SNPs), better178

explain portability. Another direction is in quantifying how environmental and social context,179

such as access to healthcare, affect portability (See [10] for a recent method in this vein).180

The relative importance of these factors will also inform the efforts to diversify participation181

in GWAS.182

Second, we observed some trait-specific trends in portability, and hypothesize that they183

reflect the specifics of natural selection and evolutionary history of genetic variants affecting184

the trait. While previous work considered the impact of directional3,8,5,23 and stabilizing se-185

lection44,40,23 on portability, the trait-specific (and PGS-specific) impact—notably for disease186

prediction—is yet to be studied empirically. Evolutionary perspectives on genetic architec-187

tures and other facets of GWAS data have been transformative33. This may also prove to188

be the case for understanding PGS portability.189

Third, we show that individual-level measures, which are arguably the most relevant to190

eventual applications of PGS, can yield different results to group level measures that are191

widely used. PGS research has been focused on coefficient of determination (R2) analyzed192

at the group level17,19,40,7,27,44,3. More generally, different applications and questions call193

11

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608703
http://creativecommons.org/licenses/by-nd/4.0/


for different measures of prediction accuracy, for instance when considering the utility of194

a public health intervention applied to communities, as opposed to asking about the cost-195

effectiveness of an expensive drug for an individual patient (see [1] for related discussion).196

Therefore, future research of predictive performance could benefit from more focus on the197

metrics most relevant to the intended application.198

Addressing these gaps in our understanding of PGS portability will be key for evaluating199

the utility of a PGS, and for its equitable application in the clinic and beyond.200
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Methods211

Data212

Data overview. All analyses were conducted with data from the UK Biobank, a large-scale213

biomedical database with a sample size of 502,490 individuals36. In this study, we considered214

479,406 individuals who passed quality control (QC) checks, which included the removal of215

651 samples identified by the UK Biobank as having sex chromosome aneuploidy (data field216

22019), and an additional 14,433 individuals whose self-reported biological sex (data field 31)217
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differed from sex determined from that implied by their sex chromosome karyotype (data218

field 22001). We removed 963 individuals who are outliers in heterozygosity or genotype219

missingness (data field 22027) and 6,854 individuals with genotype missingness greater than220

2% (data field 22005). To prevent biased estimations of the effect sizes of SNPs, we excluded221

183 individuals with 10 or more 3rd-degree relatives (data field 22021).222

Genotype data. We started with 765,067 biallelic variants out of a total of 784,256223

genotyped variants on the autosomes. We first removed 10,543 SNPs within the major224

histocompatibility complex (MHC) and extended region in strong LD with it (chromosome225

6, positions 26,477,797-35,448,354 in the GRCh37 genome build). We excluded variants with226

a Hardy-Weinberg equilibrium p-value (--hwe) lower than 1 × 10−10 among White British227

(WB) individuals (see in Section GWAS below), removing another 46,854 variants. We228

also removed an additional 39,939 variants by setting the minor allele frequency threshold229

(--maf) among WB to > 0.01%. After filtering, we had 667,731 variants which we analyzed230

going forward.231

Phenotype data. We analyzed 15 highly heritable traits, as determined based on232

Neale Lab SNP heritability estimates21 (Table S1). These included both physiological233

measurements to biomarkers: standing height (data field 50), cystatin C level (data field234

30720), platelet count (data field 30080), mean corpuscular volume (MCV, data field 30040),235

weight (data field 21002), mean corpuscular hemoglobin (MCH, data field 30050), body236

mass index (BMI, data field 21001), red blood cell count (RBC, data field 30010), body fat237

percentage (data field 23099), monocyte count (UKB data field 30130), triglyceride level238

(data field 30870), lymphocyte count (data field 30120), white blood cell count (WBC, data239

field 30000), eosinophil count (data field 30150), and LDL cholesterol level (data field 30780)240

(Table S1). For all analyses, we removed individuals with missing trait data.241

Genetic distance calculations242

The fixation index (Fst) is a natural metric, a single number, to measure the divergence be-243

tween two sets of chromosomes and we considered using it to measure the distance between244
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the pair of chromosomes of an individual and chromosomes in the GWAS sample. However,245

calculating Fst was computationally costly. Since previous work27 showed it is tightly corre-246

lated with Euclidean distance in the PC space in the UKB, we used Euclidean distance as a247

single number proxying genetic distance from the GWAS sample. We used the pre-computed248

PCA provided by the UK Biobank (data field 22009). To calculate individual-level scores on249

each PC, we used the genotype matrix of the full post-filtering sample of individuals (data250

field 22009).251

The genetic distance is the weighted PC distance between an individual coordinates252

vector in PCA subsapce of the first K PCs, x, and the centroid of M individuals {xm}Mm=1253

in the GWAS sample, C =
∑M

m=1 x
m

M
, is254

√√√√ K∑
k=1

wk (xk − ck)
2

with weights

wk =
λk∑40
n=1 λn

,

where λk is the k’th eigenvalue.255

To identifyK, the number of PCs we used and to confirm the approximation is reasonable256

for our data, we examined the correlation of genetic distance with Fst as a function of K on257

a small subset of the prediction sample.258

We randomly selected 10,000 prediction sample individuals with a weighted PC distance259

greater than the weighted PC distance of 95% of the GWAS set (based on weighted PC260

distance calculated from the K = 10). For those individuals, we estimated their Fst and261

weighted PC distance to the GWAS centroid for K ∈ 1, ..., 40. We estimated Fst in this262

subsample with the Weir and Cockerham method41 using the --fst flag in PLINK 1.9 28,4
263

Since the PC distance calculated from using K = 40 correlated most strongly with Fst264

(r = 0.98) (Fig. S1), we used this number of PC to estimate the genetic distance for265

all test individuals (Fig. 1B-C). We note that genetic distance is less reflective of Fst for266

intermediate genetic distances (Fig. 1B).267
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We divided the raw genetic distances by the (raw) mean genetic distance among GWAS268

sample individuals. To gain intuition about these standardized units of genetic distance, we269

wished to estimate where on this scale we would find individuals from three subsamples from270

the 1000 Genomes Phase 3 dataset2: CEU, Utah residents (CEPH) from primarily Northern271

and Western European descent; CHB, Han Chinese in Beijing, China; and YRI, Yoruba in272

Ibadan, Nigeria. To this end, we ran a PCA with a dataset that includes both the UKB273

individuals and the CEU, CHB, and YRI individuals. We identified the UKB individuals274

with the shortest weighted Euclidean distance to the centroid of each of the three 1000275

Genomes populations, and used the genetic distance of those three UKB individuals in our276

PCA of only UKB individuals as a proxy of where the three 1000 Genomes subsamples fall277

on the scale of our genetic distance measurement (Fig. 1C).278

The distribution of genetic distance is heavily right-skewed, with most individuals falling279

close to the GWAS centroid. Since we wanted to focus on the individuals far away from the280

GWAS set, we only analyzed data for individuals with a genetic distance greater than the281

95th percentile of genetic distance from among GWAS sample individuals (Fig. 1C), with282

the exception of the analyses behind Fig. 3 and Fig. S14-S21.283

For group level analyses, we binned the prediction samples by genetic distance using 500284

equally-sized bins, with 258-259 individuals per bin.285

PGS and evaluating PGS prediction accuracy286

GWAS. In the selection of the GWAS sample, we used the WB classification as provided287

by the UKB. This classification includes two criteria: an individual must self-identified as288

White British (data field 21000) and Caucasian (data field 22006). All other individuals289

are “Non-White British” (NWB). We randomly selected 350,000 WB as the GWAS sample.290

We considered the remaining 52,281 WB all (77,125, after filtering) NWB as the prediction291

sample. Next, for each trait, we used the --glm flag from PLINK 2.0 29,4 to run GWAS on the292

GWAS set. We used the following covariates: the first 20 PCs from UKB (data field 22009,293

age (data field 21022), age2, sex (data field 31), age*sex, and age2*sex, where the asterisk294
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(*) denotes the product of two variables, referring to an interaction term. We clumped the295

SNPs with the --clump flag from PLINK 1.9 28,4, setting the association p-value threshold296

for clumping to 0.01, LD r2 threshold to 0.2, and window size to 250 kb.297

PGS construction. After clumping and thresholding the SNPs with marginal asso-298

ciation p < 1 × 10−5, we calculated PGS for each individual for every phenotype. The299

calculations were carried out with the --score flag in PLINK 2.0 29,4.300

PGS prediction accuracy at the group level. To evaluate prediction accuracy at301

the group level, we linearly regressed the phenotype on the covariates (array type (data302

field 22000), age, age2, sex, age*sex, and age2*sex) and PGS within each genetic distance303

bin (phenotype ∼ covariates + PGS), which is the full model. We then performed another304

linear regression of the phenotype on the covariates, excluding the PGS, within each bin305

(phenotype ∼ covariates), which is the reduced model. Using these two squared correlations,306

we calculated partial R2 for the PGS with the sum of squared errors (SSE) of these two307

models as308

R2
partial =

SSE (reduced model)− SSE (full model)

SSE (reduced model)
,

which represents the prediction accuracy of PGS for each bin.309

As a baseline prediction accuracy, we identified the 50 bins (of 269 individuals each)310

with the median genetic distance most similar to the mean genetic distance for GWAS311

individuals; This reference group represents individuals from the prediction set that are312

most similar to “typical” GWAS individuals in terms of genetic distance. The mean PGS313

prediction accuracy across these 50 bins served as the baseline value. Throughout the paper,314

we report the prediction accuracy at the group level as a bin’s squared partial correlation315

between the PGS and the trait divided by this baseline value.316

Prediction error at the individual level. For the individual-level prediction error, we317

first derived phenotypic values adjusted for covariates Z in two steps, involving residualizing318

some covariates in each genetic ancestry bin independently and some covariates globally.319
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First, we regress raw phenotype values Y independently in each bin on covariates,320

Y ∼ array type + age2 + sex + age*sex + age2*sex.

In bins in which only a single individual was genotyped with a particular array type, we did321

not include array type as a covariate. We then regress the residual X (where X = Y − Ŷ322

and Ŷ is the fitted value from the first step) globally on covariates,323

X ∼ genetic distance polynomial + sex + sex ∗ genetic distance,

where genetic distance polynomial is a 20-degree polynomial in genetic distance. Finally,324

we regress the residual of this second regression, Z = X − X̂ onto the PGS in a simple325

(univariate) linear regression. We refer to the squared residual of this regression,326

(
Z − Ẑ

)2

,

as the unstandardized squared prediction error. Similar to the group-level analysis, we327

computed the the mean unstandardized squared prediction error in the 50 reference bins328

as a baseline values (Table S1 detailes the baseline values across traits). The squared329

prediction error, the measure of individual-level prediction accuracy we refer to throughout,330

is the unstandardized squared prediction error divided by the baseline value.331

Spline fits. For both the individual-level and group-level analysis, Fig. 2, Fig. S2-S9332

show cubic spline fits. We fitted these splines using 8 knots. The knot positions were chosen333

based on the density of the individual genetic distances, such that there is an equal number334

of samples between any two knots. This resulted in knots at genetic distances of 1.91, 2.25,335

3.12, 5.02, 9.39, 18.74, 43.11, 61.96, and 160.82.336

Mean trends in individual-level prediction accuracy. In the Results section337

of the main text, we discuss various individual predictors of squared prediction error. In338

addition to genetic distance, we considered 2 measures of individual-level prediction error:339

The Townsend Deprivation Index (data field 189) and average yearly total household income340
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before tax (data field 738). For genetic distance and the Townsend Deprivation Index, we341

considered five uniformly-spaced bins, and computed the mean squared prediction error and342

the standard error of this mean (Fig. 3A,Fig. S14-S17). For household income, which343

the UK Biobank provides as categorical data conferring to ranges in British Pounds, we344

converted the categories into an ordinal variable coded as 1,2,3,4 and 5, and computed the345

mean squared prediction error, and standard error of the mean, in each. This also allowed us346

to use the income categories directly as measures in the regression models used for comparison347

of variance in prediction error explained that we discuss below.348

Comparison of variance in prediction accuracy explained across measures.349

For this analysis, we used all the individuals in the prediction set and did not filter for350

the individuals with a genetic distance greater than 95th percentile of genetic distance from351

among GWAS sample individuals. We compared the variance in squared prediction error352

explained for 8 raw measures: genetic distance, Townsend Deprivation Index (data field 189),353

average yearly total household income before tax (data field 738), educational attainment354

(data field 6138), which we converted into years of education, minor allele counts for SNPs355

with different with different magnitudes of effects (three equally-sized bins of small, medium,356

and large squared effect sizes, see Fig. S23), and minor allele counts of all SNPs. “Minor”357

here is with respect to the GWAS sample, and the count is the total sum of minor alleles358

across index SNPs of the magnitude category. Namely, for each measure, we independently359

fit three different models:360

– A linear predictor, fit using Ordinary Least Squares (OLS).361

– A discretized predictor, using one predicted value per each of the 5 bins where all five362

bins had identical widths.363

– A cubic spline. 16 knots were placed based on the density of data points, such that364

there was an equal number of data points between each pair of consecutive knots.365

After fitting the models, we calculated the R2 values to determine the variance explained by366

each measure-method combination. We then computed 95% central confidence intervals for367
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these R2 values to assess the reliability of the estimates (Fig. 3B,Fig. S18-S21).368

Additional analyses on lymphocyte count369

Comparing allelic estimates across three GWASs. To test whether allelic effect es-370

timates are similar across genetic ancestry, we performed two additional GWASs for each371

trait in two subsets of the prediction sample: “close” group (genetic distance ≤ 10, with372

96,457 individuals) and “far” (genetic distance > 10, with 32,822 individuals). For both373

groups, we adjusted for 20 PCs of the genotype matrix of the respective set of individuals,374

using the --pca approx 20 flag in PLINK 2.0 29,4. After running GWAS independently375

in the two groups, for each index SNP of the original PGS, we divided allelic effect esti-376

mates in the original GWAS / close / far set by the allelic effect estimate in the original377

GWAS.Fig. 4A shows the mean ± standard deviation across PGS index SNPs for each of378

three traits, highlighting the poorer agreement of the allelic effect estimates for lymphocyte379

count.380

Heterozygosity at index SNPs as a function of genetic distance. For each PGS,381

we calculated the heterozygosity of each index SNP in each bin from allele counts using the382

--freq flag from PLINK 1.9 28,4. We stratified index SNPs into three equally-sized bins383

based on their squared effect sizes (Fig. S23). Figs. 4B,S22 show the mean heterozygosity384

(across stratum SNPs) for each stratum of in each genetic distance bin.385

Variance of PGS as a function of genetic distance. For each phenotype, we386

calculated the variance of PGS in each bin relative to the mean of the variance of PGS in387

the 50 bins close to the GWAS set. In Figs. 4C,we plotted the values in each bin as well as388

a linear fit for lymphocyte count. For other traits, we only plotted the linear fit.389

Heritability associated with each index SNP. We estimated the heritability ex-390

plained by each index SNP as391

ĥ2
index = 2p(1− p)β̂2,

where β̂ is the estimated allelic effect and p is the allele frequency. In Fig. S24, we compared392

the distribution of index SNP heritability across traits and with allelic effect estimates and393
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heterozygosities calculated both in the original GWAS sample, the “close” prediction sample394

and the “far” prediction sample. For each trait, the SNPs used are also stratified into three395

equal-sized strata (small, medium, and large) based on their squared effect sizes, as discussed396

above.397

Code availability398

The scripts for the analyses and figures are available at https://github.com/harpak-lab/399

Portability_Questions.400
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Phenotype SNP h2

Mean squared
prediction

error
(MSE)

Variance of
residualized
phenotype
(V ar[Z])

1− MSE
V ar[Z]

Prediction
accuracy
(partial

R2)
Height 0.4852 30.2588 39.5079 0.2341 0.2417

Cystatin C level 0.3214 0.0241 0.0255 0.0533 0.0686
Platelet count 0.3079 2828.9020 3290.2100 0.1402 0.1527

Mean corpuscular
volume

0.2667 15.8315 18.2524 0.1326 0.1380

Weight 0.2654 182.9963 195.4927 0.0639 0.0654
Mean corpuscular

hemoglobin
0.2530 2.5789 2.9190 0.1165 0.1269

BMI 0.2482 21.1426 22.1774 0.0467 0.0482
Red blood cell

count
0.2337 0.1066 0.1177 0.0941 0.0959

Body fat
percentage

0.0472 37.6601 39.4749 0.0460 0.0585

Monocyte count 0.2305 0.0521 0.0539 0.0335 0.0928
Triglyceride level 0.2182 0.8744 0.9382 0.0680 0.0724
Lymphocyte count 0.2103 1.4708 1.4775 0.0045 0.0264
White blood cell

count
0.1910 3.9834 4.1347 0.0366 0.0563

Eosinophil count 0.1840 0.0163 0.0172 0.0517 0.0561
LDL cholesterol

level
0.0825 0.6659 0.7201 0.0753 0.0781

Table S1: Characteristics of traits and PGS analyzed. SNP heritabilities (SNP h2) are taken from the
Neale Lab’s UKB analysis21. For the 50 bins with a genetic distance most similar to the mean genetic
distance of the GWAS group, we calculated the group-level prediction accuracy (partial genetic correlation
of the PGS and the trait value), mean individual prediction error (squared prediction error), the variance of
residualized phenotype, and the ratio between the two subtracted from one, as another measure of phenotype
variance explained by the PGS close to the GWAS sample.
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Figure S1: Correlation between PC distance and Fst. This figure presents the correlation between PC
distance and Fst, calculated using different numbers of UKB PCs, from 1 to 40. Using 40 PCs produces the
highest correlation between PC distance and Fst (red dot, r = 0.98).
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A. BMI (group level) B. BMI (individual level)
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C. Body fat percentage (group level) D. Body fat percentage (individual level)
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Genetic distance from the GWAS sample

Figure S2: Trends of portability vary across traits and measures, for anthropometric measurements. This
figure presents the same analysis as Fig. 2 in the main text, but for other anthropometric traits. At the
group level (left panels), we measured prediction accuracy with the squared partial correlation between the
PGS and the trait value in 500 bins of 258-259 individuals each. At the individual level (right panels), we
measured the squared prediction error. Curves show cubic spline fits, with 8 knots placed based on the
density of data points.
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A. Monocyte count (group level) B. Monocyte count (individual level)
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C. Lymphocyte count (group level) D. Lymphocyte count (individual level)
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E. Eosinophil count (group level) F. Eosinophil count (individual level)
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Figure S3: Trends of portability vary across traits and measures, for white blood-cell related traits. This
figure presents the same analysis as Fig. 2 in the main text, but shows other white blood cell-related traits.
At the group level (left panels), we measured prediction accuracy with the squared partial correlation between
the PGS and the trait value in 500 bins of 258-259 individuals each. At the individual level (right panels),
we measured the squared prediction error. Curves show cubic spline fits, with 8 knots placed based on the
density of data points.
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A. Mean corpuscular volume (group level) B. Mean corpuscular volume (individual level)
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C. Mean corpuscular hemoglobin (group level) D. Mean corpuscular hemoglobin (individual level)
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E. Red blood cell count (group level) F. Red blood cell count (individual level)
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Figure S4: Trends of portability vary across traits and measures, for red blood-cell related traits. This
figure presents the same analysis as Fig. 2 in the main text, but shows red blood cell-related traits. At
the group level (left panels), we measured prediction accuracy with the squared partial correlation between
the PGS and the trait value in 500 bins of 258-259 individuals each. At the individual level (right panels),
we measured the squared prediction error. Curves show cubic spline fits, with 8 knots placed based on the
density of data points.
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A. Cystatic C level (group level) B. Cystatic C level (individual level)
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C. Platelet count (group level) D. Platelet count (individual level)
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E. Triglyceride level (group level) F. Triglyceride level (individual level)
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G. LDL cholesterol level (group level) H. LDL cholesterol level (individual level)

0.0

1.0

2.0

3.0

20 40 60 80 100 120 140 160 180

Pr
ed

ict
io

n 
ac

cu
ra

cy
 (p

ar
tia

l  R
2 )

0.50

1.00

2.00
20 40 60 80 100 120 140 160 180

Sq
ua

re
d 

pr
ed

ict
io

n 
er

ro
r

Genetic distance from the GWAS sample

Figure S5: Trends of portability vary across traits and measures, for other biomarkers. This figure presents
the same analysis as Fig. 2 in the main text, but shows other biomarker-related traits. At the group level
(left panels), we measured prediction accuracy with the squared partial correlation between the PGS and
the trait value in 500 bins of 258-259 individuals each. At the individual level (right panels), we measured
the squared prediction error. Curves show cubic spline fits, with 8 knots placed based on the density of data
points.
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C. BMI D. Body fat percentage
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Figure S6: Full range of individual level prediction error for anthropometric measurements. This figure
presents the same analysis as Fig. 2 in the main text, but shows the full range of prediction error for other
anthropometric traits. At the individual level, we measured the squared prediction error. Curves show cubic
spline fits, with 8 knots placed based on the density of data points.
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Figure S7: Full range of individual level prediction error for white blood cell-related traits. This figure
presents the same analysis as Fig. 2 in the main text, but shows the full range of prediction error for white
blood cell-related traits. At the individual level, we measured the squared prediction error. Curves show
cubic spline fits, with 8 knots placed based on the density of data points.
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Figure S8: Full range of individual level prediction error for red blood cell-related traits. This figure
presents the same analysis as Fig. 2 in the main text, but shows the full range of prediction error for red
blood cell-related traits. At the individual level, we measured the squared prediction error. Curves show
cubic spline fits, with 8 knots placed based on the density of data points.
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C. Triglyceride level D. LDL cholesterol level
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Figure S9: Full range of individual level prediction error for other biomarkers. This figure presents the
same analysis as Fig. 2 in the main text, but shows the full range of prediction error for other biomarkers.
At the individual level, we measured the squared prediction error. Curves show cubic spline fits, with 8
knots placed based on the density of data points.
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Figure S10: Divergence of group- and individual-level prediction accuracy for anthropometric measure-
ments. The squared prediction error is with respect to the PGS as a predictor of a phenotypic value
residualized for covariates (Z). Its mean (MSE) and the variation of residualized phenotype (V ar[Z]) in
each bin are shown in the middle and right column, respecitvely. In the left column, we show measures of the
variance explained in bin of about 260 individuals, binned by genetic distance. “Group” level refers to the
unstandardized partial R2 between PGS and phenotype. “Individual” level refers to 1− MSE

V ar[Z] . Horizontal

lines show mean values across the 50 bins with a genetic distance closest to the mean genetic distance of the
GWAS sample individuals (reference bins). The values of the 50 reference bins in all panels can be found in
Table S1.

39

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2024. ; https://doi.org/10.1101/2024.08.20.608703doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.20.608703
http://creativecommons.org/licenses/by-nd/4.0/


A. Monocyte count

-0.4

-0.2

0.0

0.2

40 80 120 160

Tr
ai

t v
ar

ia
nc

e 
in

 b
in

 e
xp

la
in

ed
by

 P
G

S
Level

Group
Individual

0.1

0.2

0.3

40 80 120 160M
ea

n 
sq

ua
re

d 
pr

ed
ict

io
n 

er
ro

r (
M

SE
)

0.1

0.2

0.3

40 80 120 160

Va
ria

nc
e 

of
 re

sid
ua

liz
ed

ph
en

ot
yp

e 
(V

ar
[Z

])

B. Lymphocyte count

-0.03

0.00

0.03

0.06

0.09

40 80 120 160

Tr
ai

t v
ar

ia
nc

e 
in

 b
in

 e
xp

la
in

ed
by

 P
G

S

Level
Group
Individual

1

2

3

4

5

40 80 120 160M
ea

n 
sq

ua
re

d 
pr

ed
ict

io
n 

er
ro

r (
M

SE
)

1

2

3

4

5

40 80 120 160

Va
ria

nc
e 

of
 re

sid
ua

liz
ed

ph
en

ot
yp

e 
(V

ar
[Z

])

C. White blood cell count

-0.1

0.0

0.1

40 80 120 160

Tr
ai

t v
ar

ia
nc

e 
in

 b
in

 e
xp

la
in

ed
by

 P
G

S

Level
Group
Individual

4

8

12

40 80 120 160M
ea

n 
sq

ua
re

d 
pr

ed
ict

io
n 

er
ro

r (
M

SE
)

4

8

12

40 80 120 160

Va
ria

nc
e 

of
 re

sid
ua

liz
ed

ph
en

ot
yp

e 
(V

ar
[Z

])

D. Eosinophil count

0.00

0.05

0.10

0.15

40 80 120 160

Tr
ai

t v
ar

ia
nc

e 
in

 b
in

 e
xp

la
in

ed
by

 P
G

S

Level
Group
Individual

0.02

0.04

0.06

0.08

40 80 120 160M
ea

n 
sq

ua
re

d 
pr

ed
ict

io
n 

er
ro

r (
M

SE
)

0.02

0.04

0.06

0.08

40 80 120 160

Va
ria

nc
e 

of
 re

sid
ua

liz
ed

ph
en

ot
yp

e 
(V

ar
[Z

])

Genetic distance from the GWAS sample

Figure S11: Divergence of group- and individual-level prediction accuracy for white blood cell-related traits.
The squared prediction error is with respect to the PGS as a predictor of a phenotypic value residualized for
covariates (Z). Its mean (MSE) and the variation of residualized phenotype (V ar[Z]) in each bin are shown
in the middle and right column, respecitvely. In the left column, we show measures of the variance explained
in bin of about 260 individuals, binned by genetic distance. “Group” level refers to the unstandardized
partial R2 between PGS and phenotype. “Individual” level refers to 1− MSE

V ar[Z] . Horizontal lines show mean

values across the 50 bins with a genetic distance closest to the mean genetic distance of the GWAS sample
individuals (reference bins). The values of the 50 reference bins in all panels can be found in Table S1.
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Figure S12: Divergence of group- and individual-level prediction accuracy for red blood cell-related traits.
The squared prediction error is with respect to the PGS as a predictor of a phenotypic value residualized for
covariates (Z). Its mean (MSE) and the variation of residualized phenotype (V ar[Z]) in each bin are shown
in the middle and right column, respecitvely. In the left column, we show measures of the variance explained
in bin of about 260 individuals, binned by genetic distance. “Group” level refers to the unstandardized
partial R2 between PGS and phenotype. “Individual” level refers to 1− MSE

V ar[Z] . Horizontal lines show mean

values across the 50 bins with a genetic distance closest to the mean genetic distance of the GWAS sample
individuals (reference bins). The values of the 50 reference bins in all panels can be found in Table S1.
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Figure S13: Divergence of group- and individual-level prediction accuracy for other biomarkers. The
squared prediction error is with respect to the PGS as a predictor of a phenotypic value residualized for
covariates (Z). Its mean (MSE) and the variation of residualized phenotype (V ar[Z]) in each bin are shown
in the middle and right column, respecitvely. In the left column, we show measures of the variance explained
in bin of about 260 individuals, binned by genetic distance. “Group” level refers to the unstandardized
partial R2 between PGS and phenotype. “Individual” level refers to 1− MSE

V ar[Z] . Horizontal lines show mean

values across the 50 bins with a genetic distance closest to the mean genetic distance of the GWAS sample
individuals (reference bins). The values of the 50 reference bins in all panels can be found in Table S1.
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Figure S14: Mean trends in individual-level prediction accuracy by different measures for anthropometric
measurements. This figure presents the same analysis as Fig. 3A in the main text, but shows other an-
thropometric traits: body mass index and body fat percentage. Data points confer to mean (±SE) squared
prediction errors of individuals in the prediction sample, binned into 5 equidistant strata. The x-axis shows
the median measure value for each stratum. “Household income” refers to average yearly total household
income before tax.
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Figure S15: Mean trends in individual-level prediction accuracy by different measures for white blood
cell-related traits. This figure presents the same analysis as Fig. 3A in the main text, but shows the mean
trends for white blood cell-related traits. Data points confer to mean (±SE) squared prediction errors of
individuals in the prediction sample, binned into 5 equidistant strata. The x-axis shows the median measure
value for each stratum. “Household income” refers to average yearly total household income before tax.
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Figure S16: Mean trends in individual-level prediction accuracy by different measures for red blood cell-
related traits. This figure presents the same analysis as Fig. 3A in the main text, but shows different traits:
mean corpuscular volume, mean corpuscular hemoglobin, and red blood cell count. Data points confer to
mean (±SE) squared prediction errors of individuals in the prediction sample, binned into 5 equidistant
strata. The x-axis shows the median measure value for each stratum. “Household income” refers to average
yearly total household income before tax.
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Figure S17: Mean trends in individual-level prediction accuracy by different measures for other biomarkers.
This figure presents the same analysis as Fig. 3A in the main text, but shows different traits: cystatin C
level, platelet count, and triglyceride level. Data points confer to mean (±SE) squared prediction errors of
individuals in the prediction sample, binned into 5 equidistant strata. The x-axis shows the median measure
value for each stratum. “Household income” refers to average yearly total household income before tax.
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Figure S18: Individual-level prediction error explained by different measures for anthropometric measure-
ments. This figure presents the same analysis as Fig. 3B in the main text, but shows more measures and
methods for fitting the measures, and focusing on anthropometric traits. “Minor allele” refers to the minor
allele with respect to the GWAS sample. For each measure, we independently fit three different models.
“Discretized (uniform)” refers to a discretized predictor, using one predicted value per each of the 5 bins
where all 5 bins had identical widths. “Linear” refers to a linear predictor, fit using Ordinary Least Squares
(OLS). “Spline” refers to a cubic spline, for which 16 knots were placed based on the density of data points,
such that there was an equal number of data points between each pair of consecutive knots.
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Figure S19: Individual-level prediction error explained by different measures for white blood cell-related
traits. This figure presents the same analysis as Fig. 3B in the main text, but shows more measures and
methods for fitting the measures. “Minor allele” refers to the minor allele with respect to the GWAS sample.
For each measure, we independently fit three different models. “Discretized (uniform)” refers to a discretized
predictor, using one predicted value per each of the 5 bins where all 5 bins had identical widths. “Linear”
refers to a linear predictor, fit using Ordinary Least Squares (OLS). “Spline” refers to a cubic spline, for
which 16 knots were placed based on the density of data points, such that there was an equal number of
data points between each pair of consecutive knots.
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Figure S20: Individual-level prediction error explained by different measures for red blood cell-related
traits. This figure presents the same analysis as Fig. 3B in the main text, but shows more measures and
methods for fitting the measures. “Minor allele” refers to the minor allele with respect to the GWAS sample.
For each measure, we independently fit three different models. “Discretized (uniform)” refers to a discretized
predictor, using one predicted value per each of the 5 bins where all 5 bins had identical widths. “Linear”
refers to a linear predictor, fit using Ordinary Least Squares (OLS). “Spline” refers to a cubic spline, for
which 16 knots were placed based on the density of data points, such that there was an equal number of
data points between each pair of consecutive knots.
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Figure S21: Individual-level prediction error explained by different measures for other biomarkers. This
figure presents the same analysis as Fig. 3B in the main text, but shows more measures and methods
for fitting the measures. “Minor allele” refers to the minor allele with respect to the GWAS sample. For
each measure, we independently fit three different models. “Discretized (uniform)” refers to a discretized
predictor, using one predicted value per each of the 5 bins where all 5 bins had identical widths. “Linear”
refers to a linear predictor, fit using Ordinary Least Squares (OLS). “Spline” refers to a cubic spline, for
which 16 knots were placed based on the density of data points, such that there was an equal number of
data points between each pair of consecutive knots.
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Figure S22: Mean heterozygosity of SNPs, stratified by effect size. This figure presents the same analysis
as Fig. 4B in the main text, but for the 12 phenotypes not included there. For each trait, SNPs are stratified
into three equal-sized strata (small, medium, and large) based on squared effect sizes (Fig. S23). Each data
point is the mean heterozygosity of a stratum in a bin of genetic distance.
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Figure S23: Squared allelic effect estimate. For each trait, the index SNPs of the respective PGS are
stratified into three equal-sized strata (small, medium, and large) based on squared effect sizes. The x-axis
represents the squared effect sizes in units of trait variance in the GWAS set. SNP heritabilities (h2) are taken
from the Neale Lab’s UKB analysis21. Each data point represents a SNP. MCV: mean corpuscular volume.
MCH: mean corpuscular hemoglobin. RBC: red blood cell count. Body fat perc: body fat percentage. WBC:
white blood cell count. LDL: LDL cholesterol level.
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Figure S24: Heritability explained by index SNPs. For each trait, index SNPs of the respective PGS are
stratified by their squared effect sizes. Data points confer to index SNPs. In each of the GWAS sample, the
“close” subset of the prediction sample (genetic distance ≤ 10 in the prediction set, with 96,457 individuals)
and the “far” subsample of the prediction sample (genetic distance > 10, with 32,822 individuals), we
estimate the allelic effect of each SNP (in units of trait standard deviations) and its heterozygosity. The
product of the two is the estimated heritability. SNP heritability estimates (h2) on the y-axis are taken from
the Neale Lab’s UKB analysis21.
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