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Abstract: Mitochondrial dysfunction may be a principal underlying event in aging, 

including age-associated brain degeneration. Mitochondria provide energy for basic 
metabolic processes. Their decay with age impairs cellular metabolism and leads to a 
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decline of cellular function. Alzheimer disease (AD) and cerebrovascular accidents 

(CVAs) are two leading causes of age-related dementia. Increasing evidence strongly 
supports the theory that oxidative stress, largely due to reactive oxygen species (ROS), 

induces mitochondrial damage, which arises from chronic hypoperfusion and is primarily 

responsible for the pathogenesis that underlies both disease processes. Mitochondrial 
membrane potential, respiratory control ratios and cellular oxygen consumption decline 

with age and correlate with increased oxidant production. The sustained hypoperfusion and 

oxidative stress in brain tissues can stimulate the expression of nitric oxide synthases 
(NOSs) and brain endothelium probably increase the accumulation of oxidative stress 

products, which therefore contributes to blood brain barrier (BBB) breakdown and brain 

parenchymal cell damage. Determining the mechanisms behind these imbalances may 
provide crucial information in the development of new, more effective therapies for stroke 

and AD patients in the near future.  

Keywords: oxidative stress; Alzheimer disease; antioxidants; hypometabolism; 

mitochondria; metabolism; neurodegeneration 

 

1. Introduction 

Alzheimer disease (AD) and cerebrovascular accidents (CVAs) are two leading causes of age-

related dementia. Increasing evidence supports the notion that chronic hypoperfusion is primarily 

responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion 

appears to induce oxidative stress, which is largely due to the formation of reactive oxygen species. 

Oxidative imbalance is also associated with other age-related degenerative disorders such as 

atherosclerosis, ischemia/reperfusion, and rheumatic disorders.  

We have found that a chronic injury stimulus induces the hypoperfusion seen in the 

microcirculation of vulnerable brain regions. This leads to energy failure, which is manifested by 

damaged mitochondrial ultrastructure, the formation of a large number of non-mature or “young” 

electron dense “hypoxic” mitochondria and by the overproduction of mitochondrial DNA (mtDNA) 

deletions. Moreover, these mitochondrial abnormalities coexist with increased redox metal activity, 

lipid peroxidation and RNA oxidation. This oxidative stress occurs within various cellular 

compartments, in various parenchymal cells in the brain and most notably in the vascular endothelium, 

and in mitochondria found therein, which is associated with atherosclerotic damage. Further, the 
associated pathology is accompanied by neuronal and glial damage, known to be a part of the 

development of AD pathology. In addition, vascular wall cell pathology in the AD brain correlates 

linearly with the degree of neuronal and glial cell damage. Mitochondrial lesions in all of these cellular 
compartments show the same pattern, namely DNA deletions, the overexpression of oxidative stress 

and appears strongly to be the central target for brain damage in AD, due to high energy demand and 

susceptibility to oxidation. The result is manifested as energy failure and results in cognitive 
impairment and memory decline. In this review we outline recent evidence, as well as our own 
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experimental data, indicating that chronic injury–stimulus induces hypoperfusion in the 

microcirculation of vulnerable brain regions, which leads to energy failure.  

2. Vascular Changes and Their Influence in the Pathology Seen in AD 

Recent findings demonstrate that there is a similarity between the ultrastructural features of both 

vascular lesions and mitochondria in brain vascular wall cells from human AD brain biopsies, human 
short postmortem brain tissues, yeast artificial chromosome (YAC R140) and C57B6/SJL Tg+ mice 

overexpressing Aß precursor protein (PP) [1,2]. Performing in situ hybridization using mtDNA probes 

for human wild type, 5kb deleted and mouse mtDNA, and immunocytochemistry using antibodies 
against APP, 8-hydroxyl-2’-guanosine (8OHG) and cytochrome c oxidase subunit 1 (COX) provide 

congruent ultrastructural localization [1,2]. A higher degree of amyloid deposition in the vascular 

walls of the human AD, YAC and C57B6/SJL Tg (+) mice exists compared to age-matched 
controls [1]. Severely damaged vessels exhibit immunopositive staining for APP. More mitochondrial 

abnormalities are present in human AD, YAC and C57B6/SJL Tg (+) mouse microvessels where 

lesions occur [1,2]. Undamaged regions of human AD tissues, YAC and C57B6/SJL Tg (+) mouse 

tissues and in age-matched control subjects lack these features, while damaged vessels manifest cells 

possessing clusters of wild and deleted mtDNA–containing positive probes [1,2]. Our observations 

demonstrate that vascular wall cells, especially their mitochondria, appear to be central targets for 

oxidative stress-induced damage before the development of AD pathology [1,2]. On the other hand, 

the positive correlation between AD and cholesterol levels suggests that antioxidant therapy and 

cholesterol–lowering drugs could delay the occurrence of AD [1]. However, despite their frequencies, 

the pathophysiological and morphological changes in brain microcirculation that accompany AD 

remain poorly understood, and the specific factors controlling vascular tone in AD remain 

unknown [2].  

3. Features That Influence the Development and Prognosis of AD during the Interactions 
between Cerebrovascular Diseases and Dementia 

The role of tobacco smoking in the pathogenesis of AD is still unclear and controversial. ROS are 

generated at sites of injury and/or inflammation. The vascular endothelium, which regulates the 

passage of macromolecules and circulating cells from blood to tissue, is a major target of oxidant 

stress and plays a critical role in the pathophysiology of several vascular diseases. In addition, the 

vascular endothelium, neurons, and glia can synthesize, store, and release ROS and vasoactive 

substances in response to certain stimuli, especially to chronic hypoxia/hypoperfusion. Their 

contribution to the pathophysiology of stroke, cerebrovascular disease and AD is extremely important. 

Moreover, the role of hypoperfusion as a key factor for vascular lesions that causes oxidative stress, 

appears to be widely accepted as an initiator of AD [1,2]. This idea is based on a positive correlation 

between AD and cardiovascular diseases [1,3–6]. 
Specifically, accumulated oxidative stress increases vascular endothelial permeability and promotes 

leukocyte adhesions, which is coupled with alterations in endothelial signal transduction and redox–

regulated transcription factors [for the references and review see: [1,3,4]]. We hypothesize that the 
cellular and molecular mechanisms by which Hypoperfusion-induced ROS accumulation results in the 
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development of AD is through impairing endothelial barrier function, promoting leukocyte adhesion 

and altering normal vascular function. The sustained hypoperfusion and oxidative stress of brain 
tissues also could stimulate the secondary overexpression of iNOS and nNOS and endothelin–1 (ET-1) 

in brain cells [7]. It is likely that the increased accumulation of oxidative stress products probably 

contributes to damage to brain parenchymal cells and the decompensation of the blood brain barrier 
(BBB), which normally prevents permeability of large molecules from passing to the cerebrospinal 

fluid. Therefore, determining the mechanisms behind these disturbances in experimental animals may 

provide crucial information in the development of new, more effective therapies for the treatment of 
cerebrovascular and neurodegenerative diseases, including AD. 

Many common underlying risk factors play key roles in the development of cardiovascular, 

cerebrovascular and neurodegenerative diseases [4,8–10]. Cigarette smoking causes chronic hypoxic 
conditions and the formation of a large amount of free oxygen radicals that appear to be key factors in 

the development of these diseases. Latest evidence indicates that continuous exposure to free oxygen 

radicals induce cellular damage and decreases antioxidant defenses [11]. 
Several recent studies indicate that cigarette smoking is a cofactor in the initiation of AD via its 

effect on the vasculature, as previously discussed. Nicotine via nicotinic receptor activation may 

counter these effects in part. Vascular insufficiency/hypoperfusion has been considered as a 

pathogenetic factor in the development of AD, and the positive relationship between cerebrovascular 

diseases such as stroke and especially cerebrovascular atherosclerosis indicates the latter may also be 

linked to the pathogenesis of AD [4]. 

4. The Influence of Oxidative Stress on the Function of Brain Microvessels in AD  

ROS can function as signaling intermediates at low levels and regulate fundamental cell activities 

including growth and adaptive responses [11]. However, at higher concentrations, ROS can cause cell 

injury and death. Vascular endothelium modulates the passage of macromolecules and circulating cells 

from blood to tissue and is a major target of oxidant stress [12]. Specifically, oxidative stress increases 

vascular endothelial permeability and promotes leukocyte adhesions, which are coupled with 

alterations in endothelial signal transduction and redox-regulated transcription factors [12]. Based on 

these recent findings, we hypothesize that impairing endothelial barrier function and promoting 

leukocyte adhesion also induce alterations in normal vascular endothelial cell (EC) function, resulting 

in AD progression [12]. 

Compared to other organs or tissues, the brain is more vulnerable to ROS-induced damage due to its 

high rate of oxygen consumption, high polyunsaturated lipid content, and relative paucity of classic 

antioxidant enzymes [13]. The AD brain contains increased regional levels of oxidative stress 

indicators [14–20]. Studies demonstrate a decline in polyunsaturated fatty acids (PUFA) [21–23], 

increased levels of lipid peroxidation markers [19,21], as well as protein oxidation [24,25], DNA 
oxidation [26–28] and RNA oxidation [1,29–31] during AD. Additionally, the presence of advanced 

glycation end products (AGE), glycoxidative end products such as N–ε–carboxy–methyl–lysine and 

lipid peroxidation adducts are present in both neurofibrillary tangles (NFT) and senile plaques (SP) in 
AD [1,15,18,19,24,25,29,30,31–34] as well as in post–ischemic tissues [35–39]. 

Vascular aging correlates with both structural and functional changes that can take place at the level 

of the endothelium, vascular smooth muscle cells (vSMC) and the extracellular matrix of blood 
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vessels. In the endothelium, reduced vasodilatation in response to agonists occurs in large conduit 

arteries, as well as in resistance arteries as a result of aging [40]. Furthermore, enhanced oxidative 
stress by hypoperfusion contributes significantly to the deleterious effects of aging on the endothelium 

by means of NO breakdown due to ROS. The relative contribution of the above phenomenon to age-

related endothelial dysfunction is highly dependent on the species and the type of vascular bed 
involved [9,40–42]. 

Cortical, subcortical, meningeal gray matter and blood vessels (congophilic angiopathy) all contain 

Aβ deposits and are prominent features of AD [5,6,9,40–42]. In vitro experimental evidence shows 
that these Aβ deposits induce cerebrovascular dysfunction in the rat brain [43], and that the beta 

amyloid (Aβ) peptide produces endothelial dysfunction in cerebral microvessels via ROS. This occurs 

when the ROS superoxide–scavenging enzyme, superoxide dismutase, prevents acetylcholine–induced 
endothelium–dependent vasodilation [43]. In addition, accumulating evidence supports the idea that 

the Aß peptide is responsible for the cerebrovascular effects of the upstream molecule beta amyloid 

precursor protein (AßPP) and its overexpression [44,45]. 
A study by Iadecola and coworkers shows how transgenic (Tg) mice overexpressing AßPP have a 

profound and selective impairment in endothelium–dependent regulation of neocortical 

microcirculation [39]. Moreover, peptides derived from AßPP processing may contribute to the 

alterations in cerebral blood flow (CBF) and neuronal dysfunction during AD [44]. The study 

confirmed that Aß1-40 did not influence the increasing CBF produced by the endothelium–

independent vasodilators [40]. In contrast, Aß1-42 did not reduce resting CBF or the increasing CBF 

produced by endothelium–dependent vasodilators. The superoxide scavengers, SOD and MnTBAP, 

reversed the cerebrovascular effects of Aß1-40 [40–41]. These data strongly suggests that soluble 

amyloid beta protein (Aß1-40), but not amyloid aggregate (Aß1-42), produces the cerebrovascular 

alterations seen in transgenic AßPP mouse, and thus, Aß1-40 could play a role in the cerebrovascular 

alterations observed in AD [6,45]. This study supports recent evidence that microvessels isolated from 

the AD brain kill neurons in vitro [46]. 

The growing body of evidence suggests that AD shares many common underlying etiologies with 

other neurodegenerative disorders. For example, multiple sclerosis (MS) is a relatively common 

disease with no cure. It is the leading cause of neurological disability in young adults, affecting over 
two million people worldwide (reviewed in reference [47]). Traditionally, MS has been considered a 

chronic, inflammatory disorder of the central white matter in which ensuing demyelination results in 

physical disability. Recently, MS has become increasingly viewed as a neurodegenerative disorder in 
which axonal injury, neuronal loss, and atrophy of the central nervous system leads to permanent 

neurological and clinical disability. The latest developments on MS research, includes etiology, 

pathology, genetic association, EAE animal models, mechanisms of neuronal injury and axonal 
transport, and therapeutics [47]. Moreover, the mechanisms of mitochondrial dysfunction that are 

involved in MS, including mitochondrial DNA defects and mitochondrial structural/functional changes 

that accompanies this devastative disease have been able to open new and much more effective 

treatment strategies [47]. However, despite all the research on the effects of unknown etiology as well 

as Aß, the source of the potential ROS in vivo and its link to mitochondrial dependent hypoperfusion is 

not completely understood. 



Pharmaceuticals 2010, 3 
 

 

163 

 

5. The Role of Mitochondrial Abnormalities during the Development of AD  

In aerobic cells 90–95% of the total amount of adenosine triphosphate (ATP) production requires 
oxygen. The synthesis of ATP via the mitochondrial respiratory chain is the result of electron transport 

across the electron transport chain coupled to oxidative phosphorylation [48]. The main radical 

produced by mitochondria is superoxide anion. Intramitochondrial antioxidant systems scavenge this 
radical to avoid oxidative damage, which can lead to impaired ATP production [49–52]. During aging 

and some neurodegenerative diseases, including AD, damaged mitochondria are unable to maintain the 

energy demands of the cell [53,54]. This can lead to an increased production of free radicals, inducing 
the interruption of oxidative phosphorylation, and resulting in decreased levels of ATP [51]. Both 

processes, defective ATP production and increased oxygen radicals, may induce mitochondria–

dependent cell death [51]. 
Animal studies using mitochondrial toxins provide the association between neurodegeneration with 

mitochondrial dysfunction and oxidative damage [2,51]. These consequences are implicated in the 

pathogenesis of human as well as animal models of neurodegenerative diseases [55–58] and in 

particular AD [1,49,50,53,59–62]. After long–term ischemia/reperfusion the mitochondria ultra-

structure disintegrates in vivo and in vitro [9,38,39]. Apoptosis of degenerating neurons occurs in 

association with the accumulation of perikaryal mitochondria and oxidative damage to the 

nucleus [63]. This same pattern of mitochondrial lesions is observed in human AD brain biopsy 

samples [53,59]. The reduced expression of both mtDNA and nuclear DNA encoded genes is 

consistent with a physiological down–regulation of the mitochondria respiratory chain in response to 

declining neuronal activity [49–58,61,62,64]. However, the role of somatic cells and mtDNA 

mutations in the pathogenesis of mitochondria failure during AD is still controversial [50, 58, 61, 62].  

The deleted mtDNA increases at least 3-fold in AD cases as compared to controls in humans [53]. 

Moreover, mtDNA isolated from the brains of AD patients includes oxidative modifications containing 

8-hydroxy-2’-deoxyguanosine (8OHdG) [26–28]. Studies using in situ markers for 8OHdG and 8OHG 

showed that RNA oxidation is a prominent feature of damaged neurons in AD [29–31]. Quantitative 
analysis revealed a strong positive correlation between mtDNA deletions and 8OHG (r = 0.934) [53]. 

However, given that mtDNA (even DNA containing the 5kb deletion) is spared relative to 8OHG, we 

suspect that mitochondrial abnormalities correlate, but do not directly produce ROS. Therefore, it is 
important to recognize that 8OHG is formed by the direct attack of OHo. These OHo radicals have 

only a 2 nm sphere of diffusion and thus are unable to diffuse through the mitochondrial 

membrane [53].  
More recently polarographic studies by Cormier and coworkers describe the effects of nicotine on 

respiratory chain in rat brain mitochondria [65]. The measurements of oxygen consumption show 

significant concentration–dependent inhibition by nicotine. Nicotine binds to complex I of the 
respiratory chain, inhibits NADH-Ubiquinone reductase activity and competes with NADH for 

complex I [65]. Furthermore, nornicotine, but not cotinine, the main nicotine metabolite, inhibits 

mitochondrial respiration. Complex I generates superoxide anion, nicotine, and was able to inhibit this 
ROS generation [65]. This may explain a part of the beneficial and protective effects of nicotine in a 

few neurodegenerative diseases, as suggested by many epidemiological studies [65]. However, future 

studies should focus on elucidating the effect of nicotine on the mitochondria functions as well as 
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DNA overexpression and/or deletion during the development of neurodegenerative disorders including 

AD. The exact cellular mechanisms behind vascular lesions and their relation to oxidative stress 
markers identified by RNA oxidation, lipid peroxidation, or mtDNA deletion remain unknown [66]. 

Future studies comparing the spectrum of oxidative stress-induced damage during reperfusion injury 

or, more importantly, during hypoxia/hypoperfusion, with AD damage are warranted [67]. 

6. Co–Factors for Oxidative Stress-Induced Cerebrovascular Lesions 

6.1. Hypoperfusion-Induced Oxidative Stress as a Key Factor for the Development of AD 

Hypoperfusion-induced oxidative stress in vascular abnormalities coincides with the pathogenesis 

of AD [62]. Several studies conclude that chronic cerebral hypoperfusion in AD is secondary to 
oxygen reduction [10,68–71]. However, recent evidence reveals that a greater fraction of oxygen is 

removed from the vasculature in AD patients as compared to non–AD controls [72]. This suggests that 

low vascular blood flow is a prominent feature of the brain during chronic hypoxia/hypoperfusion and 
may be a main initiating factor during the development of AD [4,73,74]. An impairment of energy 

metabolism characterizes the AD brain [60]. Positron emission tomography (PET) reveals a decline in 

the cerebral metabolic rate of the parietal and temporal lobes during AD [25,75]. These metabolic 

defects are present before AD symptoms develop in ApoE ε4 homozygote patients [25]. De la 

Torre [73,76] proposes that advanced aging with a comorbid condition, such as a vascular risk factor 

that further decreases cerebral perfusion, promotes a critically attained threshold of cerebral 

hypoperfusion (CATCH). With time, CATCH induces brain capillary degeneration and suboptimal 

delivery of energy substrates to neuronal tissue [73,76]. Because glucose is the main fuel of brain cells, 

its impaired delivery, together with a deficient delivery of oxygen, compromise neuronal stability 

because the substrates for aerobic glycolysis fail to meet brain tissue demand. The outcome of CATCH 

is a metabolic cascade that involves, among other things, mitochondrial dysfunction, oxidative stress, 

decreased ATP production and increased calcium entry, abnormal protein synthesis, cell ionic pump 

deficiency, signal transduction defects, and neurotransmission failure. These events contribute to the 

characteristic progressive cognitive decline of patients with AD, as well as regional anatomic 

pathology, consisting of synaptic loss, SP, NFT, tissue atrophy, and neurodegeneration. CATCH 

characterizes the clinical heterogenic pattern of AD and provides compelling evidence that a multitude 

of etiopathophysiologic vascular risk factors, in the presence of advanced aging, can lead to AD  

[2–4,10,73,76–79]. Therefore, we hypothesize that taken together with vascular EC and SMC atrophy, 

hypoperfusion is a key factor in the development of AD. 

6.2. Cerebrovascular Lesions Observed During Ischemia/Reperfusion Induced Oxidative Stress 

The risk for Alzheimer dementia and stroke are known to increase at comparable rates with age. 

Recent advances suggest that vascular risk factors linked to cerebrovascular disease and stroke in the 
elderly significantly increase this risk [6]. Although some vascular lesions such as cerebral amyloid 

angiopathy, endothelial degeneration, and periventricular white matter lesions are evident in most AD 

cases, one third will exhibit cerebral infarction. Longitudinal clinical studies suggest that stroke and 
AD occur in tandem more often than randomly [80]. Strokes often occur in patients with AD and have 

been linked to the pathogenesis of dementia [6]. Nevertheless, the nature of this relationship remains 
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unexplored. Cerebral ischemia is a possible causal factor for AD. Irrespective of the ultimate 

pathogenic mechanism, these findings suggest that managing vascular disease is important in the 
treatment and prevention of AD [8,10] or mixed dementia [6]. 

Chronic hypoxia can alter cerebral microvessels ultrastructure, but this effect is heterogeneous and 

in some cases capillaries can respond to hypoxia independently of the arteriole [81]. Exposure to three 
weeks of hypobaric hypoxia results in increased capillary density in rat models [82]. Capillary segment 

elongation plays a role in this increase in the deeper layers of the cerebral cortex [82]. Therefore, 

prolonged hypoxia results in structural and functional adaptive responses that improve tissue oxygen 
delivery [83]. Mitochondria of brain capillary EC maintain normal density in hypoxia, but the number 

of mitochondria in the surrounding neuropil decreases significantly about 30% [84]. Moreover, 

exposure to hypobaric hypoxia yields an increase in basic fibroblastic growth factor (bFGF) mRNA in 
brain tissue [85]. During moderate hypobaric hypoxia, increased brain vasculature is associated with 

increased density of the brain capillary glucose transporter (Glut-1). However, this change is reversible 

and dependent on hypoxia exposure time [86]. This same pattern has been observed in the 
microvascular system of the human AD brain [1,87–89]. Based on these findings, the relationship 

between oxidative stress markers and extracellular matrix binding ligands in the hypoxic brain during 

stroke and AD deserves further investigation. In addition, the injury induced by reperfusion after 

chronic hypoxia is important to note because the oxidative products that accumulate during hypoxia 

induce more tissue and cellular damage than the hypoxia itself.  

Ischemia/reperfusion is a systemic process affecting the whole organ or tissue. Different types of 

blood cells may contribute to the pathogenesis of ischemia/reperfusion, including platelets, monocytes, 

neutrophils and others [35]. According to Bednar and coworkers [90] neutrophils might be important 

contributors to ischemia–induced brain injury whereas the role of platelets is more nebulous. In fact, 

systemic depletion of neutrophils reduced the volume of cerebral infarct after transient middle cerebral 

artery occlusion in the rat [91]. EC affected by ischemia during the early stages is completely 

reversible and dependent upon reperfusion. Eventually, however, injured tissue passes a “point of no–

return” and the damage becomes irreversible [92]. Initially, cells strive to increase their surface area 

for gas and nutrient exchange by expressing cytoplasmic microvilli [9,35,36,38,39] or by extending 

membrane protrusions into the vessel lumen [9,35,36,38,39,93]. The appearance of these micro-
vascular changes corresponds to the duration of the ischemia and may be an adaptive EC response to 

altered hemodynamic conditions [9,93]. The functional significance of microvilli, microblebs and 

other morphological changes is not clear, but they may have a role in the production of delayed, post–
ischemic hypoperfusion by increasing vascular resistance [9,93]. The extent of EC injury depends on 

the duration of ischemia and on the metabolic needs of the affected vascular system. The duration of 

experimental ischemia or acute anoxia required to cause damage varies for different organs. It takes 
approximately 10–15 minutes for irreversible damage to occur in brain [93–95]. After long–term 

ischemia and the following reperfusion, the decreased number of active capillary vessels is 

proportional to the ultrastructural lesions in ischemic vessels and underlying tissues and 

cells [9,35,36,38,39]. Cada and coworkers demonstrate that decreased CBF in aging rats produces 

deficits in visuospatial behavior after permanent surgical occlusion of both carotid arteries [96]. This 

deficit is coupled with metabolic abnormalities of the brain as visualized by quantitative COX 

histochemical mapping [96]. These results suggest that deficits in visuospatial learning are not 
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exclusively the result of hippocampal dysfunction, but may be directly involved with altered oxidative 

energy metabolism in other integrative visuomotor regions identified in this study. They also suggest 
that chronic cerebrovascular ischemia in this aged rat model produces neurometabolic and behavioral 

alterations that may be relevant risk factors for the development of AD [96].  

7. The Potential Role of Vasoactive Substances in the Endothelial Content during Ischemia/ 
Reperfusion 

The synthesis and release of vasoactive substances, such as the endothelium–derived vasodilator 

NO and vasoconstrictor ET-1, regulate EC’s role in controlling vascular tone [65,97–99]. Aside from 
vascular tone NO regulates platelet aggregation, leukocyte adhesion, SMC proliferation, synaptic 

neurotransmission and cytotoxic/cytostatic actions of macrophages [84,99–106]. This labile molecule 

may carry out important biological roles both within the cell in which it is synthesized, and by 
interacting with nearby cells and molecules [107,108]. Three distinct isoforms of NOS derived from 

different genes generate NO: nNOS, iNOS, and endothelial NOS (eNOS) [97–111]. These isoforms 

are similar in structure and function [97,108,110,111]. eNOS was first purified and cloned from 

vascular endothelium, but is found in cardiac myocytes, blood platelets, brain 

cells [98,99,104,106,110,112] and in cellular compartments such as mitochondria [113,114]. The 

activity of eNOS is a major determinant of vascular tone and blood pressure. It is altered in diseases 

such as hypertension, diabetes, atherosclerosis, ischemia/reperfusion [41,87,104,105,115] and 

AD [73,89]. 
Excess NO is produced during excitotoxicity, inflammation and ischemia/reperfusion injury [116], 

and the oxidation products of NO, namely peroxynitrite and peroxynitrate. Also, ONOO
–
 can generate 

the highly reactive hydroxyl
 
radical, a more powerful oxidant than NO itself [17,102,116]. The 

increased nitrotyrosine immunoreactivity in AD is present in the neuronal cytoplasm of the cerebral 

cortex within regions of neurodegeneration, yet it is undetectable in corresponding control 

regions [17]. This distribution is essentially identical to that of free carbonyls [15]. The widespread 
occurrence of nitrotyrosine immunoreactivity in neurons [17] suggests that chronic oxidative damage 

is not restricted to long–lived polymers such as NFTs, but instead, reflects a generalized oxidative 

stress contributing to the pathogenesis of AD. 
NOS positive neurons are present in subgroups throughout many regions of the brain [102]. 

Immunostaining for reduced NADPH-diaphorase, as well as nNOS and eNOS, reveals their presence 

in dendritic and axonal terminals that closely interact with the middle cerebral artery and cerebral 
microvessels [101–103,115]. The presence of L–arginine in astrocytes in vivo suggests that glia may 

store this chemical for NO production in brain [101,115,117]. Moreover, glial cells exhibit an 

inflammatory response during infection or ischemic disease. They also release pro–inflammatory 

cytokines and synthesize and release NO [117]. The large amount of NO that is released from glial 

cells via the expression of iNOS after their stimulation is neurotoxic, because it induces oxidative 

stress, mitochondrial dysfunction and excitotoxicity [101,106,118]. Hypoxic brain injury (acute or 
chronic) is associated with the formation of both NO [102,117,119,120–122] and the superoxide anion, 

which may react to form free radicals [17,106] and cause neurotoxicity [101–103,106, 

119,120,123,124]. Further investigations into determining the exact ultrastructural localization of the 
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different NOS isoforms in the brain vascular tree, neurons and glia in post–hypoxic and AD brain  

are warranted. 

7.1. eNOS Involvement in the Cerebrovascular Tone 

A dynamic balance of relaxing and constricting factors regulates cerebrovascular tone. 

Constitutively produced NO normally influences basal cerebral vascular tone, and mediates vascular 
responses to diverse stimuli [125] and cerebral vasodilation [117]. Vasorelaxation of brain 

microvessels is a feature of some diseases including chronic hypertension, diabetes, 

hypercholesterolemia, subarachnoid hemorrhage (SAH), and ischemia [41,117,125]. NO is also 
involved in regulating the cerebral circulation during hypercapnia [126,127] and focal [115,128-130] 

or global brain ischemia [127,131-135]. Furthermore, arginine–derived NO mediates the powerful 

effects of CO2 on cerebral circulation. NO synthesized by the action of nNOS participates in regulating 
basal CBF and is the major contributor to the hypercapnic CBF response [136]. Chronic inhibition of 

constitutive NO production increases EC permeability during various vascular 

diseases [8,87,95,98,99,110]. Due to its vascular effect, NO might improve tissue perfusion and exert a 

protective action. Overproduction, either by activation of nNOS by excitatory amino acids [137], or by 

induction of iNOS in glial, vascular, or blood cells [132–134] during the ischemic episodes, might be 

deleterious. Mice with eNOS gene knockout exhibit a decrease in vascular relaxation. Thus, NO 

synthesized by eNOS protects against ischemic damage by increasing CBF, whereas NO produced by 

nNOS contributes to lesions [138,139]. The inhibition of NO synthesis by EC leads to increased 

intracellular oxidative stress, which induces neutrophils-EC interactions [9,37] and may promote the 

development and progression of vascular diseases such as atherosclerosis [41,105] and 

ischemia/reperfusion injury [6,9,35,117,125,140]. 

7.2. nNOS Expression and Regulation 

Modification of nNOS expression in the entorhinal cortex and hippocampus occurs during 

AD [141]. Tissues containing the constitutive forms of NOS, like brain, kidney, and endothelium 

express dimethylargininase [142–144]. It regulates NO production by hydrolyzing free methylated 

arginine derivatives (effective endogenous inhibitors of NOS) [145]. The expression of 

dimethylargininase dramatically increases during AD [20]. Dimethylargininase abnormalities in the 

AD are the result of elevated levels of nitration from effective oxidants peroxynitrite or 

peroxynitrate [17,119,146]. However, the ultrastructural localization of dimethylargininase 

immunoreactivity in different cellular compartments of the AD brain or in Tg animal models of AD 

has yet to be described. 

7.3. iNOS as a Mediator of Oxidation During AD 

A variety of cells express iNOS in response to lipopolysaccharides, certain cytokines and ROS 

generators [8,97,99,101–104,112,115,117]. iNOS may be an important mediator of cytotoxicity in the 

brain because it produces much greater amounts of NO than either eNOS or nNOS [107]. Thorns and 

collaborators suggest that iNOS plays a role in the formation of NFT [141]. Iadecola and coworkers 

propose that iNOS contributes to ischemic brain damage [133]. The catalytic activities of iNOS 
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enzymes or mRNA expression are evident in brain tissue after 2 hours of transient focal ischemia or 

1–2 days after permanent focal ischemia [132,134].  

8. Subcellular Mechanisms Involved in the Development and Maturation of Human AD 

Ultrastructural features of the brain biopsy from the age-matched control (Figure 1A) and AD 

(Figures 1B–D) patients are characterized by heterogeneous morphology. The EC in intact 
microvessels did not show visible changes. Mitochondria in EC are intact (Figure 1A).  

Contrary to this observation, short–post–mortem (<2 h) brain tissues, from AD patients, show 

microvessels with severe damage, which characterizes the presence of clusters of mitochondria derived 
lysosomes and necrotic changes in their ultrastructure (Figure 1B). The capillary endothelium shows 

the presence of a cluster of damaged mitochondria containing positive mitochondrial DNA (mtDNA) 

signals visualized by using in situ hybridization following indirect 17 nm colloidal gold decoration 
(Figure 1C). In addition, in AD brain microvessels EC occupied only the small part of the vessel wall. 

Perivascular cells show the presence of large mitochondria derived vacuoles in their matrix. Adhesion 

of the activated platelets (PLT) to damaged endothelium appeared to be hallmark of these microvessels 

(Figure 1D). However, undamaged microvessel endothelium did not show any particular changes in 

their ultrastructure. Mitochondria also were intact (Figure 2A). However, the perivascular spaces 

contained large vacuolar structures (see Figure 2A). At the same time often the microvessel EC shows 

the presence of degenerative mitochondria (Figure 2B). The presence of electron-dense hypoxic 

mitochondria coexists with the formation of mitochondria derived lysosomal structure in the 

cytoplasmic matrix of EC and perivascular cells (Figure 2C). The mitochondria abnormality appeared 

to be a permanent feature of vascular endothelium and perivascular cells where damage became visible 

which characterizes the presence of a hypoxic and completely damaged mitochondria (Figure 2D).  

We demonstrate in recent work that cortical neurons from AD brain biopsies have selective 

localization of mitochondria abnormalities in the cell body [1,3,53,59,87,89]. The majority of the 

neurons, which closely associate with the lesioned vessels, possess differing degrees of ultrastructural 

abnormality. The ultrastructural characteristics of neuronal mitochondria damage from AD brain 
biopsies show the presence of neurons with differing degrees of ultrastructural lesions (Figure 3). In 

the neuronal cell body partially and completely damaged mitochondria appeared to be hallmark of 

these neurons (Figures 3A and 3C). The lesioned mitochondria appeared to be a major substrate for the 
lipofuscin formation. The electron dense hypoxic mitochondria are seen throughout the cell body and 

characterize the abnormal mitochondrial cristae (in Figures 3B and 3D). 
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Figure 1. Ultrastructural features of the brain biopsy from the age-matched control (A) and 

AD (B–D) patients are characterized by heterogeneous morphology: A. An intact 
microvessel shows the absence of any particular abnormalities in the ultrastructure of 

endothelial cells (EC) and perivascular cells. Mitochondria in EC are intact. Original 

magnification: X 13,900. B. Short-post-mortem (<2 h) brain tissue from AD patients shows 
microvessels with severe damage such as the presence of clusters of mitochondria–derived 

lysosomes (single arrow) and necrotic changes in the ultrastructure of the EC and 

perivascular cells. Original magnification: X 8,300. C. Capillary endothelium (from  
Figure 1–B), under higher magnification, shows the presence of a cluster of damaged 

mitochondria (single arrows) containing positive mitochondrial DNA (mtDNA) signals 

visualized by using in situ hybridization following indirect colloidal gold decoration  
(17 nm gold particles). Original magnification: X 46,000. D. AD brain biopsy. EC 

occupied only the small part of the vessel wall. Perivascular cells show the presence of 

large mitochondria derived vacuoles in their matrix. Adhesion of the activated platelets 
(PLT) to damaged endothelium. Original magnification: 8,300. Abbreviations used in 

figures: EC–Endothelial cells; ER–Erythrocyte; PLT–Platelets; VL–Vessel lumen 

(reprinted from [172] with permission). 
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Figure 2. Ultrastructural features of brain microvessels from AD brains characterized by 

heterogeneous morphology. mitochondria abnormality appeared A. Undamaged 
microvessel endothelium did not show any particular changes in their ultrastructure. 

Mitochondria also were intact (single arrows). However, the perivascular spaces contained 

large vacuolar structures (double arrow). Original magnification X 13,000. B. Vascular EC 
shows the presence of degenerative mitochondria (double arrow). Original magnification X 

6,600. C. The presence of electron-dense hypoxic mitochondria (single arrows) coexists 

with the formation of mitochondria derived lysosomal structure in the cytoplasmic matrix 
of EC and perivascular cells (indicated by double arrow). Original magnification X 20,000. 

D. To be a permanent feature of vascular endothelium and perivascular cells where damage 

became visible (single and double arrows indicate hypoxic and completely damaged 
mitochondria, respectively). Original magnification X 20,000. Abbreviations used in 

figures: BM–basal membrane of endothelium; EC–endothelial cell; ER–erythrocyte; VL–

vessel lumen (reprinted from [87] with permission). 
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Figure 3. The ultrastructural characteristics of neuronal mitochondria damage from AD 

brain biopsy. Neurons with different degree of ultrastructural lesions. In the neuronal cell 
body partially and completely damaged mitochondria (indicated by single arrows and 

double asterisk respectively in A and C). The lesioned mitochondria appeared to be a major 

substrate for the lipofuscin formation (double arrow). The electron dense hypoxic 
mitochondria are seen throughout the cell body and characterize the abnormal 

mitochondrial cristae. Original magnification: A and B X20,000 respectively. C and D X 

16,000 respectively (reprinted from [172] with permission). 
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Figure 4. The ultrastructural characteristics of the neuronal mitochondria from AD brain 

biopsy. A. Neurons with different degrees of ultrastructural lesions. Partially and 
completely damaged mitochondria are mostly located in the neuronal cell body and coexist 

with lipofuscin formation. Original magnification X 5,000. B. Large numbers of electron-

dense hypoxic mitochondria (indicated by single arrows) were present throughout the cell 
body and characterized the abnormal mitochondrial cristae. Original magnification:  

X 20,000. C. Partially (indicated by single arrow) and completely damaged (double arrow) 

mitochondria. Original magnification X 20,000. D. The neuronal cell body shows the 
presence of hypoxic mitochondria (indicated by single arrows) close to lipofuscin (double 

asterisk). Original magnification X 20,000. Abbreviations used in figure: N– neuronal 

nucleus (reprinted from [87] with permission). 

 

Neurons with different degrees of ultrastructural lesions were seen throughout cortex (Figure 4A). 
Partially and completely damaged mitochondria are mostly located in the neuronal cell body and 

coexist with lipofuscin formation (Figure 4A). Moreover, another feature of these neurons appears to 

be the presence of large numbers of electron-dense hypoxic mitochondria, which were present 

throughout the cell body and characterized the abnormal mitochondrial cristae (Figure 4B). In 

addition, these abnormalities coexist with the presence of clusters of the partially and completely 

damaged mitochondria (Figure 4C). The neuronal cell body always shows the presence of hypoxic 

mitochondria close to lipofuscin (Figure 4D). 

The features of wild type mitochondrial DNA (mtDNA) and 8-OHG staining in the hippocampus of 

short post–mortem (<2 h) human AD brain shows that wild type mtDNA (17 nm gold) is associated 
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with severely damaged mitochondria and mitochondria derived lysosomes (Figure 5A). However, the 

area containing lipofuscin did not show any mtDNA containing positive gold particles (Figure 5A). 
Features of 8-OHG staining in post–mortem AD brain shows that the 8-OHG containing positive 

signals (17 nm gold particles) was seen throughout neuronal cell body and within in the matrix of 

damaged mitochondria (Figures 5B–D). However, non–damaged mitochondria (in Figure 5C) and 
lipofuscin (in Figures 5B and 5D) do not contain 8-OHG positive gold particles. 

Figure 5. The features of wild type (A) mitochondrial DNA (mtDNA) and 8-OHG (B–D) 

staining in the hippocampus of short post–mortem (<2 h) human AD brain. Post–mortem 
AD hippocampus shows that wild type mtDNA (17 nm gold) is associated with severely 

damaged mitochondria and mitochondria derived lysosomes (double asterisk). Any area 

containing lipofuscin did not show mtDNA containing positive gold particles. Original 
magnification X 26,000. B–D: Features of 8-OHG staining in post–mortem AD brain. 8-

OHG containing positive signals (17 nm gold particles) was seen throughout neuronal cell 

body and within in the matrix of damaged mitochondria (single arrow). Non–damaged 

mitochondria (indicated by double arrows in Figure.5C) and lipofuscin (double asterisk in 

Figures. B and D) do not contain 8-OHG positive gold particles. Original magnification: 

X16,000, 26,000 and 33,000 respectively B, C and D (reprinted from [172] with 

permission). 

 

The features of wild type (in Figures. 6A–B), 5kb deleted mtDNA (in Figure 6C), and COX 

immunoreactivity (in Figure. 6D) in the hippocampus of a postmortem human AD case shows wild 
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type mtDNA containing positive signals (17 nm colloidal gold) detection were seen in the completely 

damaged mitochondria or mitochondria derived lysosomes. Any areas containing lipofuscin did not 
show mtDNA–containing positive signals (in Figures 6A–B). In addition, the 5kb deleted mtDNA 

containing gold particles (17 nm) were mostly located in mitochondria–derived lysosomes (in Figure 

6C). Damaged, abnormal mitochondria shows COX positive containing gold particles in their matrix (in 
Figure 6D).  

Figure 6. The features of wild, 5kb deleted mitochondria DNA (mtDNA), and COX 

immunoreactivity in the hippocampus of a postmortem human AD case. A and B. 
Hippocampal neuron shows wild type mtDNA containing positive signals (17 nm colloidal 

gold) detection were seen in the completely damaged mitochondria or mitochondria 

derived lysosomes (single arrows). Areas containing lipofuscin (asterisk) did not show any 
mtDNA containing positive signals. Magnification X 26,000 and X 20,000, respectively A 

and B. C. 5kb deleted mtDNA containing gold particles (17 nm) were mostly located in 

mitochondria–derived lysosomes (single arrows). Original magnification X 33,000. D. 

Damaged, abnormal mitochondria shows COX positive containing gold particles in the 

matrix (single arrows, colloidal gold 17 nm). Original magnification X 26,000 (reprinted 

from [172] with permission). 

 
 

Mitochondrial lesions and lipofuscinogenesis are also present in other cellular compartments of the 
brain parenchyma. Glial cells at the damaged area, also characterized by the accumulation of 

lipofuscin and mitochondria–derived lysosomes appear to be a major component and source for these 

substrates (data not shown). In addition, glial cells also show the intracellular accumulation of different 
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sized amyloid deposits, and they are accompanied by the presence of giant–sized lipid–laden vacuoles 

and mitochondria–derived lysosomes.  
Quantitative morphometric measurements of the percentage of the different types of mitochondria 

(normal, partially damaged and completely damaged) indicate that age-matched control groups have a 

significantly higher percentage of normal mitochondria, compared to completely damaged 
mitochondria from AD cases [2,3,51,56]. No significant differences between partially damaged 

mitochondria are seen in both groups, indicating that aging induces damage to mitochondria. However, 

the main differences between the age-matched controls and AD cases appear to be significant 
differences in the percentage of the normal and completely damaged mitochondria [2,3,51,56]. 

9. Antioxidant Application for the Treatment of AD 

AD treatment has yet to yield a successful therapy that addresses the cause of injury found in AD 
brain biopsies [11]. Of the various theories proposed for AD etiology, ROS generation is cited as a 

common factor based on several cellular, molecular, and animal model studies of AD. During aging, 

ROS may play a large role in cell death, an important factor responsible for disease progression [66]. 

Efforts to reduce the pathology associated with ROS via antioxidants seem to offer new hope to 

patients suffering from this devastating disease [11]. 

Mitochondria has been considered a primary target in the search for age-related cognitively 

impaired conditions to restore cognitive function including treatments for dementia [11,147–154]. This 

is because the brain, which is characterized by a high energy metabolism and abundance of oxidizable 

materials such as polyunsaturated fatty acids and neuropeptides, is exceedingly susceptible to 

oxidative damage [155], which is known to cause mitochondrial dysfunction [154]. Furthermore, Aβ is 

reported to promote an excess accumulation of intracellular Ca2+ into mitochondria, inducing 

mitochondrial permeability pores to open, damaging mitochondrial structures. which in return increase 

the production of defective mitochondria, decrease mitochondrial trafficking, and alter mitochondrial 

dynamics in neurons affected by AD [156]. The association of mitochondrial activity with the 

antioxidant capacity of certain micronutrients such as alpha–Lipoic acid (LA), a coenzyme essential 

for the maintenance of energy homeostasis in mitochondria, has been shown to influence cognitive 

function in an different animal species [147–154]. 

Previous studies have demonstrated the potential protective effects of selective mitochondrial 

antioxidant treatments on brain mitochondria from aged rats [147–150,152,157]. When treating aged 

rats with selective mitochondrial antioxidants, such as ALCAR and LA, they were able to reduce OS 

and restore cognitive function and mitochondrial structural abnormalities in all parenchymal 

cells [147,151,157,158]. It is important to note that the oxidative damage is associated with 

mitochondria early in AD progression [159]. In addition, to study mitochondrial decay and oxidative 

damage resulting from aging, an examination into the activities and kinetics of the mitochondrial 
complexes (a hallmark of the mitochondrial ability to produce energy) was performed, and showed 

that mitochondrial complexes can be restored by selective mitochondrial antioxidant treatment [158]. 

This established that in the brain mitochondria of old rats, when compared with that of young rats, 
there were significantly decreased endogenous antioxidants and less superoxide dismutase activity; 

more oxidative damage to lipids and proteins; and decreased activities of the mitochondrial complex I, 

IV and V [158]. In regards to this, mutant proteins associated with AD are reported to block the 
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transport of nuclear–encoded mitochondrial proteins to mitochondria, interact with mitochondrial 

proteins and disrupt the electron transport chain, induce free radicals, cause mitochondrial dysfunction, 
and, ultimately, damage neurons [160]. Moreover, the mitochondrial complex I showed a decrease in 

binding affinity (increase in K(m)) for substrates. Feeding LA/ALCAR to old rats partially restored 

age-associated mitochondrial dysfunction compared to young rats. These results indicate that oxidative 
mitochondrial decay plays an important role in brain aging, inducing the generation of free radicals 

that leads to oxidative damage in postmortem brain neurons from AD patients and in brain neurons 

from cell models and transgenic mouse models of AD [161], and that a combination of nutrients 
targeting mitochondria, such as LA/ALCAR, could ameliorate mitochondrial decay through preventing 

mitochondrial oxidative damage [158]. In a recent study [147] we were able to demonstrate that the 

integrity of mitochondrial ultrastructure, which is dependent on aging, could be improvement in old rat 
brain mitochondria when compared to the control group by using antioxidant treatments [147]. In 

contrast, neurons obtained from aged control groups showed a series of mitochondrial abnormalities, 

such as the presence of giant mitochondria and mitochondria with partial or complete damaged cristae. 
Targeting mitochondrial OS improved the overall cognitive ability of aged rats [148–150,152,157,162] 

and aged dogs [153]. 

Reid and colleagues [163] noted that there is epidemiological evidence that links vascular diseases, 

such as hypercholesterolemia, with an increased incidence of AD. While no theory has yielded a 

satisfactory explanation for the pathological changes that lead to neurodegeneration and cognitive 

dysfunction [163], vascular risk factors seem to offer the most interesting results [2,164]. The 

relationship between hypercholesterolemia and AD arose in great extent from ApoE4, a known risk 

factor for AD and a major carrier of cholesterol in the CNS. The detrimental processes of ApoE4 have 

been shown to influence AD pathological processes, including lipid homeostasis and NFT 

formation [165], which suggests that brain vascular alternations play a key role in the progression of 

AD [163]. ApoE4 mechanisms that contribute to the neurodegeneration of the brain could offer strong 

insights into AD susceptibility. For example, it was shown in a rat model that ApoE levels would 

increase as a response to peripheral nerve injury [165], implicating the role of ApoE as a repair 

mechanism. If the delivery of lipophilic antioxidants is impaired due to ApoE4, this could lead to 

OS [166]. It has been proven that AL can improve memory deficits in animal models of AD and 
reduce cognitive deficit in AD patients [155]. The contribution of fatty acids in these cerebrovascular 

processes, and their effect on AD pathogenesis is still uncertain, but the suggestion that they can elicit 

neuronal overexcitation and synaptic depression as contributor factors to AD is suggested [167]. 
Several therapeutic strategies have been developed to treat AD, including anti–inflammatory,  

anti–oxidant, and herbal treatment approaches. These have been tested in animal and cellular models 

of AD and in clinical trials with AD subjects. In AD animal models and cell models, herbal extracts 
appear to have fewer adverse effects than beneficial effects on cognitive functions because of their 

antioxidant, anti-inflammatory properties [168]. We analyzed the effect of mitochondrial antioxidants 

ALCAR and LA as a treatment model for AD on ApoE4 transgenic mice [154]. The decrease in 

cerebrovascular oxygen levels seen in AD patients led to the hypothesis that hypoperfusion in the 

CBF, which over time causes OS and mitochondrial damage, was the main cause of ApoE–related 

cognitive deficits was seen in AD patients with ApoE4 overexpression [169–171]. Our study 

demonstrated for the first time, that ApoE4 caused brain hypoperfusion by gradually reducing CBF 
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when compared to a control group. Structural damage of vascular wall cells, especially in 

mitochondria, seems to play a key role in the generation of ROS, resulting in oxidative damage to the 
neuron and inducing pathological factors associated with AD [154]. Therefore, we believe that 

expanding the focus of study in AD towards mitochondrial pathobiology as a treatment strategy will be 

able to open new and more successful effective treatment strategies for this devastating 
disease [62,67,147,154,164,172]. 

10. Conclusions  

In this review we indicate that chronic vascular hypoperfusion is a part of the common underlying 
mechanisms involved in the initiation and development of neurodegenerative disorders such as stroke 

and arteriosclerosis. In this regard, it appears that the central initiating factor for vascular abnormality 

is mitochondrial damage and a sum of elucidators for the imbalance in the activity of NOS isoforms, 
ET-1, oxidative stress markers, mtDNA and mitochondrial enzymes in the vascular wall and in brain 

parenchymal cells. This is believed to be due to their predominance in CVA and AD. We hypothesize 

that an imbalance between the NOS species and the endothelium, along with antioxidant system 

deficiencies, are predominant brain features of stroke and AD patients. Elevated chronic hypoperfusion 

and physical distortion of tissue are likely to contribute to the collapse of post–ischemic/hypoxic or 

AD vessels. We theorize that future eliminating mitochondrial abnormalities can be considered as a 

new and more effective treatment strategies for this devastative disease in the near future.  
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