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Many eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, compre-
hensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression
profiling applications and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter
activity profiling approach that combines extremely specific 59-complete cDNA sequencing with an integrated data
analysis workflow, to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast
and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, gen-
erates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity in-
formation through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity
throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive data set that represents
the first available developmental time-course of promoter usage. We found that >40% of developmentally expressed genes
have at least two promoters and that alternative promoters generally implement distinct regulatory programs. Trans-
posable elements, long proposed to play a central role in the evolution of their host genomes through their ability to
regulate gene expression, contribute at least 1300 promoters shaping the developmental transcriptome of D. melanogaster.
Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression
specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive
regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes.

[Supplemental material is available for this article.]

In recent years, a large body of work has been uncovering the

complexities of transcriptional regulation in eukaryotes. The land-

scapes of transcription, surveyed with ever-increasing scrutiny, re-

veal intricate genetic architectures from which originate myriads of

protein-coding and noncoding transcripts (Kapranov et al. 2007a;

Djebali et al. 2012). The regulatory blueprints that orchestrate the

spatiotemporal dynamics of eukaryotic transcriptomes mirror this

complexity. Large-scale surveys of chromatin modifications and

transcription factor occupancy in diverse organisms have started

to shed light on the abundance of cis-regulatory modules (Ernst

et al. 2011; Negre et al. 2011; The ENCODE Project Consortium

et al. 2012; Shen et al. 2012), their relevance to development and

disease (Lindblad-Toh et al. 2011; The ENCODE Project Consortium

et al. 2012), and the structure of the gene regulatory networks they

implement (Suzuki et al. 2009; Marbach et al. 2012). Additionally,

genome-wide studies of transcription start site (TSS) usage have

shown that many genes possess alternative promoters, highlight-

ing the importance of their contribution to the diversity of gene

expression patterns (Carninci et al. 2006; Suzuki et al. 2009). TSSs

are of particular interest, because in addition to harboring many

transcription factor binding sites (TFBSs), the promoters they are

embedded in constitute the platforms where the transcriptional

machinery integrates the inputs from cognate cis-regulatory ele-

ments. They are also worthy of attention from an experimental

standpoint, since the quantification of transcripts coming from

individual TSSs allows for precise measurements of the final output

of these molecular computations.

The explosion of experimental and computational ap-

proaches in functional genomics that accompanied the advent of

second-generation sequencing has been, and continues to be, the

major driving force behind our progress in uncovering and un-

derstanding this regulatory complexity. For the study of TSS loca-

tion and activity, however, even state-of-the-art, high-resolution

techniques based on 59-complete cDNA sequencing (Kodzius et al.

2006; Ni et al. 2010; Plessy et al. 2010) are currently lacking in mul-

tiple aspects. Here we address these issues and present RAMPAGE

(RNA Annotation and Mapping of Promoters for the Analysis of

Gene Expression), a very accurate 59-complete cDNA sequencing

approach that allows for the ab initio identification of TSSs at

base-pair resolution, the quantification of their expression and

the characterization of their transcripts. We engineered our pro-

tocol to take full advantage of the paired-end sequencing capa-

bilities of current high-throughput platforms, thus yielding crucial

transcript connectivity information. Importantly, this feature al-

lows us to rigorously connect TSSs to the genes they drive the

expression of based on direct cDNA evidence. Our method also

provides much higher specificity for TSSs than current approaches,

and we developed a streamlined 2-day protocol that allows the

barcoding and pooling of multiple samples after the very first step,

thus greatly facilitating library multiplexing and preparation.

For the analysis of these data, we have developed an integrated
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analysis pipeline that relies on the unique features of the data to

maximize TSS specificity, transcript connectivity information re-

covery, and quantification accuracy. At the core of this pipeline lies

a novel peak-calling algorithm for TSS discovery that was specifi-

cally tailored to filter out multiple types of noise (i.e., random

distortions of the underlying signal by technical factors) associated

with 59-complete cDNA sequencing.

Using this approach, we set out to profile promoter activity

genome-wide throughout the life cycle of Drosophila melanogaster,

so as to have a complete view of the transcriptional landscape and

of the diversity of expression patterns in this model organism. This

rich data set reveals that >40% of all genes are expressed from at

least two promoters, underscoring the pervasiveness of this phe-

nomenon in Drosophila. Importantly, we found that alternative

promoters generally have uncorrelated expression patterns, which

reveals that they most often implement independent regulatory

programs. These observations suggest that the emergence of al-

ternative promoters has been a major driving force underlying the

evolutionary diversification of gene expression programs. Our

analyses also uncovered a widespread role for transposons in the

developmental regulation of transcription, with approximately

1300 transposon-embedded promoters driving developmentally

regulated expression of diverse sets of transcripts.

Transposable elements (TEs) have been shown to influ-

ence gene expression in a variety of organisms, including plants

(McClintock 1956; Lippman et al. 2004; Naito et al. 2009), Dro-

sophila (Lipatov et al. 2005; Rouget et al. 2010), and mammals

(Nigumann et al. 2002; Bejerano et al. 2006). This regulatory po-

tential, together with the ability of transposons to disseminate

stereotyped sequence modules throughout their host genomes, has

led to the proposal that transposon expansion and domestication

may be a powerful force underlying the assembly of complex

regulatory networks (Britten and Davidson 1969; Feschotte 2008),

in particular by providing promoters for host genes (Nigumann

et al. 2002; van de Lagemaat et al. 2003; Faulkner et al. 2009). Their

potential contribution to developmental gene expression, how-

ever, is currently only supported by modest evidence in mammals

(Peaston et al. 2004; Cohen et al. 2009; Macfarlan et al. 2012) and

has been reported to be extremely rare in Drosophila (Lipatov et al.

2005). Furthermore, it is unclear whether transposons actually

distribute promoters with stereotyped regulatory logics through

a copy-and-paste mechanism.

We found that transposons from diverse classes have been co-

opted to drive the expression of hundreds of annotated genes.

Many of these transposons appear to have conferred their intrinsic

regulatory specificity to the genes they drive, which demonstrates

that they do distribute preprogrammed regulatory modules to

multiple loci. A case study of roo element long terminal repeats

(LTRs) uncovered the existence of a core promoter and of a com-

plex set of TFBSs that underlie these intrinsic regulatory properties.

Results

RAMPAGE: multiplexed paired-end sequencing of 59-complete
cDNAs

59-Complete cDNA sequencing has proven to be a challenging

task, despite significant contributions over the years from several

approaches that have relied on diverse strategies. CAGE (Kodzius

et al. 2006) is based on the biotinylation of the 7-methylguanosine

cap of Pol II transcripts and pulldown of the 59-complete cDNAs

they are hybridized to, a technique known as ‘‘cap-trapping’’

(Carninci et al. 1996). CAGEscan (Plessy et al. 2010) and other

approaches (Islam et al. 2011) exploit some unique features of

reverse-transcriptase enzymes to add adaptors to the end of

59-complete first-strand cDNAs during the reverse-transcription

step, in a process dubbed ‘‘template-switching’’ (Hirzmann et al.

1993). PEAT (Ni et al. 2010) and similar techniques rely on the

ligation of an RNA adaptor to the 59 end of capped transcripts

(‘‘oligo-capping’’), similarly to conventional 59-RACE.

CAGE relies on a protocol that, although scalable, is cum-

bersome and requires input amounts on the order of 50 mg of total

RNA. Its main limitation is the impossibility to sequence more

than short 59 tags (about 27 bases) from the cDNAs, which makes

unambiguous read mapping impossible for large parts of eukary-

otic genomes, precludes evidence-driven assignment of novel TSSs

to gene annotations, and yields no transcript structure informa-

tion. This has been a major impediment to the analysis of novel

TSSs in general and of repeat-borne TSSs in particular. The spec-

ificity of CAGE for TSSs is also currently limited (please see As-

sessment of Assay Performance below). CAGEscan does allow

paired-end sequencing of cDNA inserts, but with lower TSS speci-

ficity (Plessy et al. 2010). PEAT also allows for paired-end sequenc-

ing, although only 20 bp can be sequenced from each end due to

the cloning procedure used, but this is again at the expense of

specificity. Moreover, adaptor ligation is mediated by T4 RNA ligase

1, an enzyme known to have strong sequence biases (Zhenodarova

et al. 1989), which is detrimental to accurate transcript represen-

tation. Finally, this complex protocol requires large quantities of

starting material (;150 mg total RNA), which is impractical for

most samples.

To address these challenges, we developed RAMPAGE by

modifying and combining the two orthogonal 59-selection ap-

proaches of template-switching and cap-trapping (Fig. 1A; Sup-

plemental Fig. S1; Methods; Supplemental Methods). In compari-

son to current approaches, RAMPAGE has the key advantage of

yielding long paired reads as opposed to short sequence tags, while

also offering greatly improved specificity for TSSs (Fig. 1B; Sup-

plemental Fig. S2). Library preparation and multiplexing is greatly

facilitated by the fact that individual samples are barcoded and

pooled after the very first step of the protocol, allowing almost the

entire workflow to be carried out on a single library (Supplemental

Fig. S1). Additionally, all steps from the biological sample to the

pooled cDNA products can be carried out in 96-well plates, and our

full workflow from RNA to library can be completed in 2 d, making

library preparation simple and very scalable. Input material re-

quirements are on the order of 10- to 20-fold lower than for con-

ventional CAGE.

Computational analysis of RAMPAGE data

We designed an integrated computational strategy that makes

extensive use of the unique features of the data to enhance the

accuracy and quality of our analysis. All analysis steps from raw

sequencing data to TSS clusters (TSCs), expression level estimates,

and partial transcript models can be performed in a single process

for a set of samples. The complete analysis workflow is summarized

in the Methods section and Supplemental Figure S3A.

The cornerstone of this pipeline is a novel peak-calling algo-

rithm for TSS discovery that implements several noise-filtering

strategies to greatly improve our ability to discriminate between

true TSSs and background signal. As in other high-throughput

assays, robustly detectable signal must be distinguished from a

background that may have multiple possible origins. Additionally,
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most eukaryotic promoters do not use a single position as their TSS,

but allow transcription initiation at several positions. The shapes

of these TSCs vary between promoters, from sharp (a few nucleo-

tides) to broad ($100 nucleotides) (Carninci et al. 2006). There-

fore, previous analyses of 59-complete cDNA sequencing data have

usually made use of some strategy to group individual TSSs into

clusters (Carninci et al. 2006; Ni et al. 2010; Plessy et al. 2010).

Building upon this work, we devised a novel approach to identify

TSCs, which we define operationally as regions of statistically

significant clustering of RAMPAGE 59 end tags. Critically, our

peak-calling algorithm was designed to make extensive use of

paired-end information and to correct for several sources of noise

inherent to 59-complete cDNA sequencing.

First, we expect the background distribution of signal per

genomic position to be overdispersed due to at least two technical

factors: Failures of reverse-transcriptase to reach the 59 end of its

template are expected to be more likely at specific sites of a given

transcript (e.g., strong secondary structures), and PCR duplicates

in the libraries can randomly amplify the signal at individual

positions. Both effects will lead to the data looking more ‘‘peaky’’

than the actual landscape of transcription initiation is. To at-

tenuate these effects, we make use of an overdispersed distribu-

tion (negative binomial) to model background signal, and we

remove PCR duplicates from our data sets prior to peak-calling.

For our purposes, we define PCR duplicates as read pairs that share

similar alignment coordinates (start, end, splice sites) and an

identical reverse-transcription primer sequence (which we use as

a pseudo-random single-molecule barcode).

Second, nonspecific signal coming from non-59-complete

cDNAs represents another source of background, which is complex

because the amount of nonspecific signal depends on transcript

abundance. In the absence of an appropriate correction, this will

lead to highly expressed transcripts contributing many false-pos-

itive TSCs. To limit this effect, other investigators have made use of

independent RNA-seq data to filter CAGE signal (Hoskins et al.

2011), but this approach requires the generation of additional data

sets for all samples under study. Harnessing paired-end informa-

tion, we make use of the fact that coverage by downstream sequencing

Figure 1. RAMPAGE: specific, accurate, quantitative paired-end sequencing of 59complete cDNAs. (A) Graphical representation of the data at the
hunchback gene locus and at an unannotated locus harboring novel transcripts. For each panel, the top track shows the density of cDNA 59 ends per
position on the upper strand, which can be interpreted as a single base-resolution profile of transcription initiation activity. The second track represents the
peaks (i.e., TSS clusters) called from that density profile. The third track shows the partial transcript models reconstructed ab initio from our sequencing
data using Cufflinks. For the upper panel, the fourth track displays FlyBase transcript annotations. For the bottom panel, note that paired-end information
allows one to infer a functional link between the two promoters, which appear to be alternative promoters for a common locus. (B) Metaprofile of signal
density over all FlyBase r5.32 transcript annotations. (TSS) Transcription start site; (TTS) transcription termination site. (C ) Metaprofile of peak density over
annotated transcripts. (Red curve, downstream read coverage correction; black curve, no correction; all other peak-calling parameters were kept iden-
tical). (D) Histogram of the cross-correlation of TSS cluster positioning by RLM-RACE and by our method. For each cluster, we determined the positional
offset (in base pairs) that maximizes the cross-correlation between the data from the two methods. (E) Comparison of RAMPAGE and standard RNA-seq
performance for relative quantification of gene expression. We compared the measures of sex bias in the expression of genes obtained by the two
methods. (F ) Reproducibility of expression level measurements between biological replicates. ([RPM] Reads per million.)

Drosophila promoter expression dynamics
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reads (i.e., the 39-most portion of our cDNAs) can provide us with

an estimate of transcript abundance at internal (non-TSS) posi-

tions. We model background from incomplete cDNAs as linearly

proportional to transcript abundance as measured by downstream

read coverage and show this approach to greatly improve our

ability to distinguish between true TSSs and spurious internal sig-

nal (Fig. 1C; Supplemental Fig. S3B).

These features were incorporated into a sliding window al-

gorithm that scans the genome and assesses the significance of

local signal enrichment given the null distribution. Downstream

read coverage in the same window is used to correct for local

transcript abundance, by subtracting from the raw signal a pseu-

docount proportional to this coverage. After a false discovery rate

(FDR) correction (Benjamini-Hochberg), enriched windows in close

proximity to each other are merged into peaks, and those are sub-

sequently trimmed at the edges down to the first base with signal.

Our data yield rich information about transcript structure

and connectivity, which allows us to connect these TSCs to

annotated genes based on rigorous cDNA evidence. This is an

extremely important feature, since complex transcriptional ar-

chitectures (Kapranov et al. 2007b; Djebali et al. 2012) make the

promoter–transcript relationships at many loci otherwise difficult

to decipher. Additionally, we take advantage of the fact that the

downstream portions of the inserts are distributed over broad re-

gions of the targets to gain knowledge about medium-range tran-

script connectivity. In the current implementation, reads from

individual TSCs are processed through Cufflinks to produce partial

transcript models.

Assessment of assay performance

The combination of template-switching and cap-trapping yields

libraries that are highly enriched for 59-complete cDNAs, as can be

judged from the distribution of raw signal over annotated tran-

scripts (Fig. 1B). For individual transcript annotations, we estimate

that the median proportion of 59 tags in TSS regions is >90%

(Supplemental Fig. S2). Comparisons to similar D. melanogaster

data generated by CAGE or PEAT revealed a dramatic improvement

in specificity over these previous methods (Supplemental Fig. S2).

In turn, the peak calls are themselves extremely highly enriched

over annotated TSSs (Fig. 1C). Analysis of histone modification

ChIP-seq profiles confirmed that the vast majority of peaks display

chromatin features characteristic of TSSs (Supplemental Fig. S4).

The downstream read transcript abundance correction proves to be

very effective at filtering out spurious signal in internal regions of

transcripts, while having a very limited effect on sensitivity for

annotated TSSs (Fig. 1C; Supplemental Fig. S3).

In terms of topological resolution, extensive comparisons on

equivalent samples with a large RNA ligase-mediated 59-RACE

(RLM-RACE) data set (Hoskins et al. 2011) show very strong

agreement between the two techniques (Fig. 1D). This demon-

strates that RAMPAGE achieves single-base topological resolution

in TSS detection, which has previously not been possible with

CAGE (Hoskins et al. 2011).

Gene expression quantification accuracy was benchmarked

against standard shotgun RNA-seq data from adult male and fe-

male D. melanogaster that were generated by the modENCODE

consortium (Graveley et al. 2010). This comparison showed good

agreement between the techniques for absolute quantification

(Supplemental Fig. S5), and excellent agreement for relative quan-

tification (Fig. 1E). Expression level estimates are very repro-

ducible, even between full biological replicates (Fig. 1F).

TSS discovery and expression profiling throughout
the D. melanogaster life cycle

This methodological approach was used to study promoter activity

dynamics throughout the life cycle of D. melanogaster (24 embry-

onic stages, five larval, five pupal, two adult). We sampled em-

bryonic development, a period of fast transitions, at high temporal

resolution (1 h). All sequencing data (Supplemental Table S1)

were mapped to the genome with our spliced read aligner, STAR

(Dobin et al. 2012). Stringent peak-calling identified 31,080 high-

confidence TSCs (versus 12,454 in the most recent global study)

(Hoskins et al. 2011), 76% of which could be unambiguously

assigned to 12,706 annotated genes based on cDNA structure

(Methods). The remaining 7421 TSCs drive novel transcripts, which

we partially characterize (Fig. 1A). Of the genic TSCs, as many as

39.6% are unannotated in FlyBase r5.32. Our results are consis-

tent with the known structure and expression dynamics of well-

characterized developmental regulators (Figs. 1A, 2A), including the

differential expression of alternative promoters (Fig. 2B), and rep-

resent to our knowledge the first genome-wide developmental

timecourse of promoter activity (Fig. 2C).

The use of alternative promoters is very common in

D. melanogaster, with >40% of developmentally expressed genes

having at least two promoters (Fig. 3A). In contrast, FlyBase an-

notations only attribute alternative promoters to 14.8% of genes

(see Methods). The discovery of so many promoters with relatively

shallow sequencing of complex samples and a stringent analysis

indicates that alternative promoter usage is an extremely frequent

phenomenon, even in a relatively simple metazoan genome. Im-

portantly, alternative promoters tend to drive expression in un-

correlated patterns (Fig. 2B; Supplemental Fig. S6). This shows that

they generally implement distinct regulatory programs, as sug-

gested previously (Carninci et al. 2006; Rach et al. 2009). Further

analysis of 1295 genes that undergo clear developmental transi-

tions between alternative promoters revealed that these transitions

occur in a great diversity of temporal patterns, throughout the

entire life cycle (Fig. 3C).

The analysis of our high-resolution data shows that many

genes undergo very fast transitions during embryonic develop-

ment, their expression changes often spanning a large fraction of

their dynamic range (median, 60.8%) within a single hour (Fig. 3D;

Supplemental Fig. S7). Some of these abrupt regulatory transitions

can sometimes be of a very large magnitude on an absolute scale

(Fig. 3E). Functional annotation analysis of the fastest-changing

genes revealed significant enrichment for categories related to

transcription factor activity, tissue morphogenesis, and cell–cell

contacts (Supplemental Table S4).

Role of transposons in developmental gene regulation

We set out to investigate the role of transposons in the de-

velopmental regulation of transcription. For certain timepoints, up

to 1.6% of the transcriptome was the product of transcription

initiating in TEs (Fig. 4A). Prompted by previous reports of devel-

opmental expression of transposons (Parkhurst and Corces 1987;

Ding and Lipshitz 1994; Mozer and Benzer 1994), we established

expression profiles for individual subfamilies (Methods). Virtually

all transposon subfamilies display clear developmental regulation

(Fig. 4B), in diverse patterns. This is consistent with the view that

transposons have intrinsic properties governing their own ex-

pression, as shown previously for individual cases (Bronner et al.

1995; Udomkit et al. 1996; Naito et al. 2009). With regards to
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regulatory innovation, this makes transposons particularly in-

teresting as a versatile toolkit of mobile regulatory modules with

diverse properties.

To search for instances of transposons providing promoters

for host genes, we mined our data for transposon-contained TSCs

that drive the expression of annotated exons (Fig. 4C). We thus

found 182 high-confidence TSCs derived from multiple classes of

TEs (Fig. 4D) that drive the expression of 152 annotated genes.

RNA ligase-mediated 59-RACE on selected candidates validated our

findings (Supplemental Methods; Supplemental Fig. S8). Figure 4C

illustrates one such case, where a solo LTR from a 297 element

provides an unannotated alternative promoter for the TM4SF

gene. Their temporal patterns of expression are diverse, with

subpopulations being active at any developmental stage sampled

(Fig. 4E). Importantly, the expression profiles of these transposon-

derived TSCs are generally uncorrelated with the profiles of alter-

native promoters of the same gene (Supplemental Fig. S9), which

suggests that the emergence of the transposon TSCs did constitute

genuine regulatory innovation. All major classes of D. melanogaster

transposons are represented (LTR, LINE, DNA, Helitrons) (see

Fig. 3B), although LTR retrotransposons alone—predominantly

those of the gypsy and pao families—account for a little over half

of all instances. Not only full-length LTR retrotransposon in-

sertions, but also solo LTRs and other fragments, are found to

provide genic TSCs.

Importantly, these 182 TSCs represent a very stringently se-

lected set, which may lead us to underestimate the pervasiveness of

the phenomenon. To obtain a more accurate estimate, we opti-

mized our peak-calling strategy to increase sensitivity for weaker

TSCs, such as those active only in rare cell types. Retaining a still

stringent threshold of three or more tags in a single timepoint (see

Methods), we thus discovered an additional 333 transposon-borne

TSCs driving the expression of annotated genes, bringing the total

number to 515. We expect that deeper sequencing and targeted

examination of rare cell types will lead to dramatic revisions of this

initial estimate.

Furthermore, our initial high-confidence set includes 779

transposon-borne TSCs driving the expression of novel transcripts.

To provide further evidence of the biological relevance of trans-

poson-driven developmental transcription, we sought to better

characterize these nongenic transcripts. From our data, we could

reconstruct Cufflinks partial transcript models for 509 of the

aforementioned 779 nongenic transposon-derived promoters

(total, 598 transcripts). Out of 598 transcript models, 209 are

clearly spliced, showing that these transcripts often undergo

post-transcriptional processing. Out of 598, at least 198 trans-

poson-driven transcript models (from 161 promoters) contain

$30% nontransposon sequences, which demonstrates that TE-

derived promoters often drive the expression of neighboring

nonrepeat regions. This is bound to be an underestimate, since

Figure 2. RAMPAGE recapitulates known expression profiles and establishes genome-wide promoter activity dynamics. (A) Expression profiles of well-
characterized key developmental genes during embryonic development. Note the sharpness of the profiles afforded by the high temporal resolution of the
timecourse. (K. verkehrt indicates krotzkopf verkehrt.) (B) Differential expression of alternative promoters (hunchback locus). Our data fully recapitulate the
expression pattern for hb that has been characterized in previous work (Schroder et al. 1988). The hb mRNAs transcribed from the upstream (maternal)
promoter are predominant immediately after egg laying and decay rapidly as the downstream promoter starts being expressed, displaying maximal
expression 2–3 h after egg laying. The upstream promoter is active again with a second peak at 5–6 h. (C ) Heatmap representing the Z-score normalized
expression profiles for the 24,264 promoters we could attribute to annotated genes based on cDNA structure.

Drosophila promoter expression dynamics
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our transcript models are usually partial. We hypothesize that the

creation of promoters by transposons could be a very powerful

evolutionary mechanism for the creation of novel noncoding RNA

genes. Strikingly, 112 of the 598 nongenic transcripts are antisense

to FlyBase-annotated mRNA transcripts. Another 61 overlap an-

notated transcripts on the same genomic strand. The abundance of

such gene-overlapping transcripts points to a potentially impor-

tant role of transposon-driven noncoding transcription in the

regulation of gene expression.

Transposons distribute promoters with preprogrammed
regulatory logics

We next investigated whether the transposons that contribute

TSCs to host genes have similar expression profiles to the trans-

poson class they belong to. This would imply that transposons

contribute functional modules with predetermined and stereo-

typed regulatory logics to host genes. We show that the 182 high-

confidence transposon-derived genic TSCs overall have a clear

tendency to share the expression profiles of their class of origin

(Fig. 5A). This trend becomes even clearer when focusing on TSCs

derived from specific classes of elements. In particular, the 18 TSCs

derived from the LTRs of roo elements are expressed in temporal

patterns that display compelling similarity to each other and to the

overall class pattern (Fig. 5B). This observation also holds true for

other classes of elements (Fig. 5B). Roo-driven expression was

clearly detectable in profiles established by standard RNA-seq,

indicating that these elements drive the expression of full-length

genic transcripts (Supplemental Fig. S10).

This is quite a striking result, since the detection of such

broadly correlated patterns is only possible if a large fraction of

gene-driving insertions possess the same specificity. As the analysis

of certain transposon sequences has shown, however, a large

number of diverse TFBS motifs can often be found throughout the

length of the sequence (see, e.g., Lynch et al. 2011). Thus, different

fragments derived from the same original element may confer

vastly different expression specificities, or even carry out other

molecular functions. For instance, different human MER20 in-

sertions can bear, in the same cell type, chromatin profiles that are

characteristic of either transcriptional enhancers, repressors, or

insulators (Lynch et al. 2011). Therefore, even a strict interpre-

tation of the copy-and-paste model does not necessarily imply

simple and systematic expression profile correlations between

fragments belonging to the same TE family. We conclude that our

observations argue very strongly that transposons often impart

their own regulatory properties upon the genes they drive the

expression of.

In order to identify cis-elements in the transposons that could

explain these regulatory properties, we focused on roo LTR TSCs,

the largest group with clear class-specific expression patterns. The

analysis of multiple sequence alignments revealed little diver-

gence among all these insertions and relative to the class consensus

(Fig. 6A). The consensus LTR sequence was found to have matches

to six TFBS motifs (Nub, Tin, Vnd, Btd, and Br_z4: Q-value < 0.05

Figure 3. Widespread differential regulation through alternative promoter usage and fast kinetics of regulatory transitions. (A) Number of TSSs detected
per annotated gene. Over 40% of all expressed genes have at least two alternative TSSs. (A small number of genes are excluded from the graph [more than 10
TSSs], but these are probably affected by technical artifacts.) (B) Distribution of pairwise Pearson’s coefficients of determination (R2) between the full
expression profiles (36 timepoints) of alternative promoters. This gives a measure of the similarity between the expression profiles of alternative promoters.
Only TSCs with a maximum expression level $10 RPM were included. Note the overall absence of correlation (median coefficient, 0.108). (C ) Temporal
dynamics of developmental transitions between alternative promoters. The heatmap represents the fraction of total expression contributed by the main
promoter at each timepoint for 1295 genes that display pronounced transitions between promoters (see Methods). Note the diversity in the timing of
promoter transitions. (D) Maximal fraction of the dynamic range of the profile of a given TSS spanned in a single hour during embryonic development (24
timepoints, 0–24 h). Median is 60.8%. Only genes whose expression range spans at least an order of magnitude and whose maximum expression level
exceeds 10 RPM were considered in this analysis. (E) Example of a gene with fast transitions kinetics of high absolute magnitude.
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for each instance; Bap: Q-value = 0.075) (Fig. 6A; Supplemental

Table S5). With the exception of br, all the genes encoding tran-

scription factors predicted to bind these motifs have expression

profiles consistent with that of the roo LTRs (Fig. 6B). The analysis

of endogenous truncated LTR copies is consistent with a role for

these sequences in transcriptional regulation (Supplemental Fig.

S11). Embryonic expression of roo transposons has previously been

shown to require the mesoderm-determining genes twist and

snail (Bronner et al. 1995). It is also known that the tin and vnd

genes are direct targets of the TWI transcription factor (Mellerick

and Nirenberg 1995; Lee et al. 1997; Yin et al. 1997) and that bap

is a direct target of TIN (Zaffran et al. 2001). Additionally, we show

that the TSS is at the same position in all of the LTRs of interest

(Supplemental Fig. S12) and that it overlaps a canonical core

promoter Initiator (INR) sequence (Fig. 6A). Overall, this analysis

shows that roo LTRs possess a proper Pol II core promoter and cis-

regulatory elements that can explain their expression specificity.

Population genetics of transposon-derived genic TSCs

To explore the evolutionary implications of our observations,

we used existing data (Petrov et al. 2011) on the population

frequencies of many transposons, including 56 of the TSC-

bearing insertions we identified (Methods; Supplemental Table

S6). Of those insertions, 45 are estimated to be rare or very rare

variants in the wild North-American (NA) populations studied.

Notably, 42 of these rare variants were absent from the ancestral

African (AF) populations the NA ones split from 10,000–16,000 yr

ago—a number that again underscores the power of this muta-

tional mechanism to continuously create standing variation

for regulatory networks. Additionally, we found that 11 variants

(20% of total) are either common (four) or fixed (seven) in

NA populations, showing clearly that transposon-derived vari-

ants can make significant contributions to population gene

pools.

Figure 4. Transposable elements display developmental regulation and provide TSSs for many host genes. (A) Contribution of transcription initiating
within transposable elements to the developmental transcriptome. For each time point, we report the proportion of all mapped reads (aligned uniquely or
to multiple locations) for which the 59 end lies in an annotated transposon. (B) Z-score–normalized expression profiles for all annotated classes of
transposable elements. Note the developmental regulation of virtually all classes, as well as the disparity of patterns across classes. (C ) A 297 LTR provides
a strong alternative promoter for the TM4SF gene. (D) Subfamilies of transposable elements providing TSSs for annotated genes. The number of TSCs for
each subfamily is reported in brackets (total 182). (E) Z-score–normalized expression profiles for all transposon-derived genic TSCs. The diversity of
expression profiles underscores the versatility of transposons as regulatory modules.
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Discussion
We have developed and validated a method for high-throughput,

high-quality discovery of TSSs; the characterization of the tran-

scripts that emanate from them; and the quantification of their

expression. We propose this approach, which directly delineates

promoter-specific expression and offers a simple workflow and

optimized sample multiplexing, as an advantageous alternative to

standard RNA-seq for many gene expression profiling applications.

Importantly, this library preparation method will also be easily

portable to other sequencing platforms with minimal alterations.

This is particularly attractive as new technologies yielding greater

read lengths will allow us to move toward large-scale, full-length

cDNA sequencing.

We measured promoter activity throughout the life cycle of

D. melanogaster, thus providing a high-quality reference data set for

the community. Importantly, this data set offers particularly high

temporal resolution (1 h) for the period of embryonic develop-

ment. We observed a very widespread use of alternative promoters

as a means to implement differential regulation in a develop-

mental context. Our results also show that transposons contribute

large numbers of developmentally expressed TSSs, and strongly

support a long-hypothesized mechanism through which trans-

posons distribute preassembled cis-regulatory modules throughout

the genome. These modules appear to affect the developmental

regulation of hundreds of genes and noncoding transcripts. We

expect that further study of more complex genomes with higher

transposon contents, such as mammalian or plant genomes, will

uncover even greater numbers of such instances. Additionally, our

study focused very specifically on transposons providing pro-

moters, but these elements have been shown to have the po-

tential to also contribute TFBSs, enhancers, silencers, insulators,

or microRNA target sites (Bourque et al. 2008; Bourque 2009;

Lindblad-Toh et al. 2011; Lynch et al. 2011). Overall, our ob-

servations underscore the potential of transposons as a powerful

and versatile creative force in regulatory innovation.

Methods

Fly stocks and sample collections
Stocks of the y; cn bw sp strain were maintained in standard corn-
meal medium bottles in a 24°C incubator. Embryo collections were

performed in population cages (Flystuff, no. 59-116). Two-day-old
to 7-d-old flies were left to acclimatize to the cage for at least 48 h
and were regularly fed with grape juice–agar plates (Flystuff, no. 47-
102) generously loaded with yeast paste. After two 2-h prelays,
embryos were collected in 1-h windows and aged appropriately (24
timepoints, 0–24 h). Embryos were washed with deionized water,
dechorionated for 90 sec with 50% bleach, rinsed abundantly with
water, and snap-frozen in liquid nitrogen. Larvae and pupae were
collected according to the method described previously (Graveley
et al. 2010). For L1 and L2 stages, 2-h embryo collections were aged
for 42 or 66 h; larvae were briefly rinsed with deionized water and
snap-frozen. For L3 stages, embryos were transferred to bottles
containing cornmeal medium supplemented with 0.05% bromo-
phenol blue, and wandering L3 larvae were staged based on gut
staining (dark, light, or clear gut) and snap-frozen. For pupae, 2-h
embryo collections were transferred to standard cornmeal medium
bottles; the positions of new white prepupae on the walls of the
bottle were marked; and pupae were collected and snap-frozen at
the desired age. For adults, 0- to 12-h-old flies were sexed and kept
in vials with cornmeal medium for 5 d and then snap-frozen.

RNA extraction

Total RNA was extracted from adult flies using TRIzol (Invitrogen)
according to the manufacturer’s instructions and treated with
DNase I (Roche). Extraction from embryos, larvae, and pupae was
performed using the RNAdvance Tissue kit (Agencourt A32649)
according to the manufacturer’s instructions, including DNase I
treatment. For the human K562 cell line, RNA was extracted using
TRIzol according to the manufacturer’s instructions and treated
with DNase I (Roche). We systematically checked on a Bioanalyzer
(Agilent) that the RNA was of very high quality. 59Monophosphate
species—mainly ribosomes—were depleted by TEX digest (Sup-
plemental Methods).

Library preparation and sequencing

Three multiplexed libraries were prepared: one for embryos (24
barcoded samples), one for larvae and pupae (10 samples), and
one for adults (two samples). The reverse-transcription was run in
parallel for all samples destined to the same library, and the sam-
ples were pooled right after reverse-transcription. Our 59-complete
cDNA selection strategy relies on the combination of two or-
thogonal enrichment methods: reverse-transcriptase template-
switching and cap-trapping. The template-switching approach is

Figure 5. Transposons impart their own expression specificity upon the genes they regulate. (A) Cumulative distribution of pairwise Pearson correlation
coefficients (R) between individual transposon-derived TSCs and the class of TEs they are derived from (red curve). This measures the similarity between the
expression profile of a given gene-driving insertion and the overall profile of the class it belongs to. The black curves show 100 simulations in which the TSS-
transposon class pairs were randomized. Permutation test (10,000 randomizations) P = 0.0001. (B) Z-score-normalized expression profiles for individual
subfamilies of transposons. Bonferroni-corrected P-values from permutation tests quantify the significance of the similarity between each group of TSCs
and its cognate class profile. Note that 0.0018 is the limit of the power of the statistical tests.
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based on the ability of reverse-transcriptase to add linker sequences
to the ends of 59-complete cDNAs—preferentially if they are made
from capped transcripts (Supplemental Fig. S1). Cap-trapping re-
lies on the biotinylation of capped RNA molecules and specific
pulldown of their associated 59-complete cDNAs. The libraries were
run on a DNA HS Bioanalyzer chip for quality control, quantified
by quantitative PCR, and sequenced on one lane each on an Illu-
mina GAIIx (adults, 2 3 76 bp) or HiSeq (embryos, larvae, and
pupae, 2 3 101 bp). For detailed protocol and sequencing data
summary, see Supplemental Methods (Supplemental Table S1).

Sequencing reads alignment

The sequences corresponding to the library identification barcode
and the reverse-transcription primer were trimmed prior to map-
ping. Trimmed reads were mapped with STAR, with parameters
described in Supplemental Tables S2 and S3. All uniquely mapping
reads were kept. As a rescue strategy for multiply mapping reads, if
all alignments for those reads started within an annotated trans-
poson and overlapped the same gene annotation, the alignment
starting in the closest transposon insertion was selected. All non-
rescued multimappers were discarded.

Data analysis pipeline (Fig. S3A)

For details about the peak-calling algorithm, see Supplemental
Methods.

PCR duplicates, defined as reads sharing the same alignment
coordinates (start, end, and splice sites), were removed from the
individual data sets. To avoid overcollapsing, we took advantage of
the fact that the long random sequence (15-mer) of our reverse-
transcription primer often primes with mismatches. We used this
sequence as a pseudo-random barcode, allowing us to distinguish
between true duplicates (same barcode) and independent identical
inserts. All collapsed data sets were then combined prior to peak-
calling. The density of cDNA 59 ends across the genome was de-
termined from this combined data set, as well as the density of
coverage by second (i.e., downstream) sequencing reads. Peaks
were called by a sliding window algorithm that assesses the sig-
nificance of local signal enrichment given a null distribution.
Downstream read coverage in the same window was used to correct
for local transcript abundance, by subtracting from the raw signal
a pseudocount proportional to this coverage. After FDR correction,
significant windows in close proximity to each other were merged
into peaks, and those were trimmed at the edges down to the first
base with signal. (Parameters: window width 15 bases, null distri-
bution negative binomial with k = 4, background weight 0.5, FDR
0.01, merging range 150 bases.) For a more detailed description of
the algorithm, see Supplemental Methods. These peaks were con-
nected to annotated genes based on cDNA structure information.
For each peak, if we could find at least two inserts having their 59 in
the peak and overlapping an annotated exon of a gene, the peak
was functionally linked to that gene. If a peak could potentially be
linked to several genes, ties were broken by removing all links that

Figure 6. Core promoters and cis-regulatory elements in transposable elements: roo LTRs. (A) Multiple alignment of the sequences of the 18 LTRs
providing TSCs for host genes (red bar on the left) to the roo consensus (upper sequence) and to a set of full-length LTRs with high similarity to the
class consensus. The histogram above shows the density of tags on the upper (red) and lower (gray) strands. The positions of various sequence motifs
are depicted, along with the logo of the known motif and the actual consensus sequence of the LTR. The TFBSs for NUB and BAP and the Initiator
sequence (INR) are on the upper strand; the TFBSs for TIN, VND, and BTD are on the lower strand. (B) Expression profiles of the genes encoding
putative regulators of roo LTRs. nub and vnd have more than one TSS, and only the one with the expression profile most consistent with roo LTRs is
shown.
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were fivefold weaker than the strongest one. For quantification,
the signal for each peak and each timepoint was derived from the
uncollapsed data sets and normalized to data set size (defined as
the total number of reads attributed to any genic TSS). We built partial
transcript models by running Cufflinks separately on the set of reads
coming from each peak for each given data set and collapsing all
transcripts for each peak using Cuffmerge. This pipeline was imple-
mented with scripts written in Python, including Scipy and Numpy.
BEDtools (Quinlan and Hall 2010), version 2.11.2, and Cufflinks
(Trapnell et al. 2010), version 1.0.3, were used for some analyses, and
plotting was done in R. All scripts are available upon request.

Comparison with 59-RACE

Our adult flies RAMPAGE data (replicate 2, sexes pooled) was
compared to the modENCODE adult flies 59-RACE data set (see
Supplemental Information). For each RAMPAGE peak that was
#500 bases wide and for which there were five or more tags in
each data set (exactly in the peak for RAMPAGE, in the peak 6 10
bases for RACE), we determined the positional offset that maxi-
mizes the cross-correlation between the two signals.

Comparison with RNA-seq

The modENCODE 5-d-old adult flies RNA-seq data (Graveley et al.
2010) were mapped with STAR, and the expression of annotated
genes was quantified using Cufflinks. Sex bias = Male expression
(reads per million, RPM)/(Male expression + Female expression).
All genes for which the sum of (Male expression + Female expres-
sion) in RAMPAGE was $20 RPM were considered for this analysis.

Reproducibility between biological replicates

RAMPAGE libraries were generated for two independent batches of
adult D. melanogaster females, and sequenced on separate flowcells
on Illumina GAIIx sequencers (8.3 M and 16.7 M million reads).
The second data set was randomly subsampled to match the size
of the first one. Both data sets were mapped in parallel with the
same parameters, duplicates were collapsed, and the data sets were
pooled prior to peak-calling (window width 15 bases, null distri-
bution negative binomial with k = 1.0, read 2 background weight
0.8, FDR = 0.001%, merging distance 150 bases). Expression values
for this common set of intervals were derived from each uncol-
lapsed data set.

Alternative promoters in FlyBase

The number of distinct TSSs was counted for all FlyBase r5.32
mRNA and ncRNA transcript annotations for which we could de-
tect expression in our data set. Since our peak-calling algorithm
merges windows closer than 150 bp, we also merged together an-
notated TSSs within 150 bp of each other, for the fairness of the
comparison.

Identification of weaker peaks

Weaker peaks were identified by calling peaks from the in-
dividual (noncombined) collapsed data sets, to increase sensitivity
for briefly expressed peaks. We also used slightly less stringent
parameters (window width 10 bases, null distribution negative
binomial with k = 5, no downstream read background correction,
FDR 0.05, merging range 150 bases) and retained all peaks sup-
ported by at least three independent tags. To filter out contri-
butions from background signal in the body of transcripts, we

discarded any peaks that overlapped annotated exons. We then
combined the peaks from all data sets and merged any peaks
closer than 50 bp using BEDtools (mergeBed). Peaks were attrib-
uted to genes based on evidence from at least one cDNA.

Genome annotations

Transcript annotations were obtained from FlyBase (release 5.32).
Analyses performed involved all transcripts annotated as ‘‘mRNA’’
or ‘‘ncRNA.’’ Transposable element RepeatMasker annotations
were downloaded from the UCSC Genome Browser. We corrected
the annotation of the DNAREP1_DM element to ‘‘Helitron,’’ based
on analysis by Kapitonov and Jurka (2007).

Correlation of expression profiles between alternative TSSs

All genic TSSs having a maximum expression level of at least 5 RPM
were considered. We computed Pearson’s coefficient of deter-
mination (R2) for all possible pairs of alternative promoters.

Developmental transitions between alternative promoters

For all genes with maximum expression $10 RPM for five or more
consecutive timepoints that had at least two alternative promoters,
we computed the fraction of the total gene expression at each in-
dividual timepoint that was contributed by the main TSS (defined
as the one that contributes the largest proportion of the total ex-
pression over the whole time series). This metric is represented as
a heatmap for 1295 genes that underwent clear transitions be-
tween alternative promoters (difference $0.5 between the maxi-
mum and minimum of the main promoter fraction). (Note that
a default value of 0.5 (black) was attributed to all timepoints where
total gene expression <10 RPM.)

Analysis of fast-regulation genes

All genes with maximum expression levels $10 RPM during em-
bryonic development were considered for this analysis (full set).
The fastest-changing genes were defined as those that overall un-
dergo $10-fold expression level variations and display single-step
variations of $85% of their full dynamic range. Functional cate-
gory enrichment in the fast gene set relative to the full set was
assessed using the DAVID database tools (Huang et al. 2009).

TSSs in transposons

BEDtools (intersectBed) was used to search for TSSs ovelapping
transposons, and we retained all TSSs that overlapped a transposon
over at least 50% of their length.

Transposon subfamily profiles

Transposon subfamily profiles were established by considering all
alignments (from uniquely or multiply mapping reads) starting
within any insertion of the class, weighed by the inverse of the
number of alignments for the read. These profiles were normalized
to the total number of transposon-derived reads in each data set.

Expression profile comparisons between TE-derived TSCs
and transposon classes

The expression profiles of transposon-overlapping TSCs were
paired to their cognate transposon class profile, and Pearson’s cor-
relation coefficient was computed for every such pair. The statistical
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significance of the overall similarity between profiles was assessed
by a permutation test (following the recommendations of Phipson
and Smyth 2010) in which the TSC profiles were paired to random
transposon class profiles (or, alternatively, to random genic TSC
profiles). The same strategy was applied to transposons coming from
individual classes. In that case, we conducted the permutation tests
on all classes for which there were at least three TSCs by pairing the
individual TSCs to random transposons, and the P-values were ad-
justed for multiple testing by Bonferroni correction.

Roo LTR sequence analysis

We retrieved the sequences of the 18 roo LTR insertions bearing
genic TSCs, of all other annotated insertions with length $420 bp
and RepeatMasker alignment score $4000 (chrUextra excluded, 50
insertions). Multiple sequence alignments were generated using
MUSCLE (default parameters) on the EMBL website and visualized
using Jalview. Consensus transposon sequences were downloaded
from FlyBase. The LTR sequence we used corresponds to the first
429 bp of the roo consensus (see FlyBase). We used FIMO (Grant
et al. 2011) to search for matches to TFBS motifs from the Jaspar
Core Insecta database (Bryne et al. 2008), using default parameters
and a fourth-order Markov background model derived from the
whole genome. A custom script was used to search for matches to
previously characterized core promoter motifs (TATA, INR, INR1,
DPE, DPE1) (FitzGerald et al. 2006).

Population genetics data analysis

We used the genotyping data for FlyBase-annotated transposon
insertions from Petrov et al. (2011). Each transposon-contained
TSC was attributed to a FlyBase transposon annotation if it fully
overlapped one of them (108 insertions). Allele frequency data
were available for 56 insertions.

Data access
Data have been submitted to the NCBI Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE36213.
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