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Abstract

Spinal cord injuries (SCIs) are associated with tremendous physical, social, and finan-

cial costs for millions of individuals and families worldwide. Rapid delivery of special-

ized medical and surgical care has reduced mortality; however, long-term functional

recovery remains limited. Cell-based therapies represent an exciting neuroprotective

and neuroregenerative strategy for SCI. This article summarizes the most promising

preclinical and clinical cell approaches to date including transplantation of mesenchy-

mal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and

olfactory ensheathing cells, as well as strategies to activate endogenous multipotent

cell pools. Throughout, we emphasize the fundamental biology of cell-based thera-

pies, critical features in the pathophysiology of spinal cord injury, and the strengths

and limitations of each approach. We also highlight salient completed and ongoing

clinical trials worldwide and the bidirectional translation of their findings. We then

provide an overview of key adjunct strategies such as trophic factor support to opti-

mize graft survival and differentiation, engineered biomaterials to provide a support

scaffold, electrical fields to stimulate migration, and novel approaches to degrade the

glial scar. We also discuss important considerations when initiating a clinical trial for a

cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and

transportation, and the delivery of cells into humans. We conclude with an outlook

on the future of cell-based treatments for SCI and opportunities for interdisciplinary

collaboration in the field.
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1 | INTRODUCTION

Spinal cord injuries (SCIs) have tremendous physical, social, and finan-

cial consequences for over 1 million North Americans and theirChristopher S. Ahuja and Andrea Mothe contributed equally to this study.
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families.1,2 Direct lifetime costs of care range from $1.1 to $4.7 million

per person not including lost wages and productivity.2 Rapid delivery

of specialized medical and surgical care has significantly reduced mor-

tality; however, long-term functional recovery remains limited.3-6 Cell-

based therapies have emerged as an exciting strategy to neuroprotect

and regenerate the injured cord through multiple mechanisms such as

immunomodulation, paracrine signaling, extracellular matrix (ECM)

modification, and lost cell replacement.7,8 Herein, we summarize the

most promising preclinical and clinical cell therapies, adjunct strategies

to enhance transplant success, as well as key translational consider-

ations such as sex and age. Throughout, we emphasize the fundamen-

tal biology of stem cells, critical features in the pathophysiology of

spinal cord injury and provide meaningful discussions on the strengths

and limitations of each therapeutic approach.

1.1 | Epidemiology

The epidemiology of SCI is an important consideration when design-

ing clinical trials. Traumatic SCI is more common in males (79.8%) than

females (20.2%). Most injuries are cervical (�60%) followed by tho-

racic (32%) and lumbosacral (9%).9 There is a bimodal age distribution

with one peak occurring from 15 to 29 years of age and a second,

smaller but growing peak, occurring after age 50.10,11 High-energy

motor vehicle collisions (MVCs) and sports-related injuries dispropor-

tionately affect younger individuals. Low-energy trauma, such as falls,

are more common in those over 60 years old where underlying degen-

erative spinal conditions, such as degenerative cervical myelopathy,

are more prevalent.11,12 Interestingly, MVCs account for a declining

majority (38%) of SCIs in North America,9 whereas falls are increasing

and account for 31% of injuries followed by sports-related impacts at

10% to 17%.11,12

2 | PATHOPHYSIOLOGY

2.1 | Acute injury and the postinjury milieu

The initial traumatic event causes permeabilization of cell membranes,

ion and small molecule dysregulation, and ischemia due to damage to

the sensitive microvascular supply.13,14 Together, these events initiate

a secondary injury cascade which generates further permanent dam-

age (Figure 1A). Over several hours, progressive edema and hemor-

rhage cyclically add to the harsh postinjury milieu. The compromised

blood-spinal cord barrier (BSCB) exposes the vulnerable cord to

inflammatory cells, vasoactive peptides, and cytokines such as tumor

necrosis factor and interleukin-1β.16 Ongoing cell death releases

DNA, ATP, and K+ into the microenvironment; microglia respond by

secreting additional pro-inflammatory cytokines and promoting the

infiltration of large numbers of macrophages, neutrophils, and nearby

microglia. This activates astrocytes and endothelial cells which further

secrete factors such as BMPs, TGF-β, and Notch activating ligand, Jag-

ged. Activated phagocytes can clear myelin debris within the injury

but also produce oxygen free radicals (eg, O2−, peroxynitrite and

hydrogen peroxide) and cytotoxic by-products which generate addi-

tional cell death through lipid peroxidation, protein oxidation, and

DNA damage.17,18 Extracellular glutamate accumulates as neurons die

and astrocytes' reuptake capacity is lost.19,20 This leads to excitotoxic

cell death of the remaining neurons through NMDA, kainate, and

AMPA receptor overactivation combined with ATP-dependent ion

pump dysfunction and subsequent sodium dysregulation

(Figure 1B).21,22

At a systemic level, poor respiratory function can cause hypoxia

whereas loss of sympathetic innervation to the vasculature can result

in profound hypotension. Combined with the impaired autoregulatory

capacity of the cord, this can contribute to ongoing ischemia for days

to weeks postinjury.23 The multiple causes of acute and subacute cell

death in this injury cascade represent important targets for cell-based

neuroprotective approaches.

2.2 | Barriers to recovery

In the intermediate-chronic phase, acute inflammation subsides and

the cord undergoes alterations in ECM composition, attempts at

remyelination, and remodeling of neural networks.24 Although this

can result in limited recovery, multiple barriers to local circuit and

long-tract regeneration persist.

Neuroglial cell death and degeneration in the early phase disrupts

the cord's structural framework and leads to ex vacuo formation of

microcystic cavitations containing extracellular fluid with thin bands

of connective tissue.25 These cavities coalesce into larger collections

which lack substrate for directed axonal regrowth and regenerative

cell migration.26,27 Additionally, oligodendrocytes are susceptible to

necrotic and apoptotic cell death. The denuded axons they leave

behind cannot utilize rapid saltatory conduction and are particularly

susceptible to nonfunctional electrogenesis which further contributes

to poor recovery.28

Significance statement

Traumatic spinal cord injuries (SCIs) result in tremendous

lifelong disability and financial burden for millions of

patients and caregivers worldwide. Cell-based therapies

have emerged as an exciting neuroprotective and neu-

roregenerative strategy for SCI. This review highlights key

preclinical and clinical data in cell therapy with an emphasis

on the pathobiology and mechanisms of recovery. Also dis-

cussed are adjunct treatments to maximize the efficacy of

the grafts. Finally, important translational considerations

such as clinical-grade scale-up and delivery techniques are

discussed. The article succinctly provides readers with a

working knowledge of SCI and cell therapies at the leading

edge of research.
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F IGURE 1 Pathophysiology of traumatic
spinal cord injury. “(a) The initial mechanical
trauma to the spinal cord initiates a secondary
injury cascade that is characterized in the acute
phase (that is, 0–48 hours after injury) by oedema,
haemorrhage, ischaemia, inflammatory cell
infiltration, the release of cytotoxic products and
cell death. This secondary injury leads to necrosis
and/or apoptosis of neurons and glial cells, such
as oligodendrocytes, which can lead to
demyelination and the loss of neural circuits. (b) In
the subacute phase (2–4 days after injury), further
ischaemia occurs owing to ongoing oedema,
vessel thrombosis and vasospasm. Persistent
inflammatory cell infiltration causes further cell

death, and cystic microcavities form, as cells and
the extracellular architecture of the cord are
damaged. In addition, astrocytes proliferate and
deposit extracellular matrix molecules into the
perilesional area. (c) In the intermediate and
chronic phases (2 weeks to 6 months), axons
continue to degenerate and the astroglial scar
matures to become a potent inhibitor of
regeneration. Cystic cavities coalesce to further
restrict axonal regrowth and cell migration.”
Republished with permission from Ahuja et al15
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TABLE 1 Key preclinical studies of cell therapies for spinal cord injury

Cell type Species; source

SCI model; injury level; host;

transplant interval; route of cell

delivery; immunosuppression Behavioral outcome Histological outcome

BMSC Human BMSC51 T8 contusion (MASCIS

Impactor; mild, moderate,

severe); Sprague Dawley rats;

subacute (7 days); epicenter

injections in mild and severe

injury, additional rostral and

caudal injections in moderate

injury group; cyclosporine

immunosuppression (10 mg/kg/

day s.c.)

Improvement in BBB score in

mild SCI group at endpoint; in

moderate SCI group BBB score

higher at 1, 3, and 7 wk post-

transplantation but not

sustained; transient effect in

severe SCI group; no

improvement in grid walk and

no difference in thermal

sensitivity

In moderate SCI group more

axons found within BMSC

grafts relative to control; low

graft survival in severe SCI

group

BMSC Human BMSC52 T8-9 modified balloon

compression; Wistar rats;

subacute (7 days); intravenous

injection; cyclosporine

immunosuppression (10 mg/kg/

day s.c.)

Improvement in BBB score at

21 and 28 days post-SCI

Transplanted BMSC detected in

ventrolateral white matter and

in segments rostral and caudal

to injury epicenter

BMSC Adult rat BMSC53 T9 contusion (NYU impactor);

Lewis rats; acute and subacute

(7 days); epicenter and rostral

and caudal injections; no

immunosuppression

In acute groups, no difference

between BMSC and control

groups; in subactute groups,

BMSC grafts improved BBB

score

Better survival of grafts with

subacute transplants; BMSC

formed bundles bridging the

epicenter of the injury

BMSC Adult rat BMSC54 T8-9 contusion (NYU impactor);

Sprague Dawley rats; acute;

epicenter injection; no

immunosuppression

BMSC treated rats showed

higher BBB with weight

supported stepping

Less cavitation in BMSC group

BMSC Adult rat BMSC55 T8-9 contusion (NYU impactor;

mild and severe SCI); Sprague

Dawley rats; acute; intrathecal

injection into fourth ventricle;

FK506 immunosuppression

Improvement in BBB score for

mild injury and at endpoint for

severe SCI

Transplanted BMSC were found

attached to spinal surface at

initial time point and

undetectable by 3 wk post-

transplant; smaller lesion cavity

in BMSC treated rats

BMSC Adult rat BMSC56 T8 contusion (OSU Impactor);

Wistar rats; subacute (2 days);

epicenter injection; group with

additional injection at T11; no

immunosupression

No significant differences in

BBB and subscore; more rats

with BMSC grafts showed

hindlimb airstepping

Spared tissue area rostral and

caudal to epicenter in BMSC

transplanted groups; more

axonal fibers at lesion site

BM-MNC Adult rat BM-MNC57 T8-9 balloon compression;

Wistar rats; subacute (7 days);

intravenous injection; Depo-

Medrol immunosuppression

(2 mg/rat/wk, i.m.)

Improvement in BBB score

from 2 wk post-SCI

BMSC transplanted groups

showed spared white matter

rostral and caudal to epicenter,

and some spared gray matter

Umbilical

cord-

derived

MSC

Human umbilical cord-derived

MSC58

T9 contusion (NYU); Sprague

Dawley rats; subacute (7 days);

intraspinal injections

intralesional

Improvement in BBB score

from 2 wk after transplantation

Reduced cavity volume

Adipose-

derived

MSC

Human adipose-derived MSC59 T8-9 balloon compression;

Sprague Dawley rats; acute;

intraspinal injection rostral to

lesion

Increased BBB score

throughout time course

Tissue preservation, restricting

inflammation, stimulation of

axonal growth; laminin at lesion

site associated with MSC grafts

NSPC and

BMSC

Adult rat spinal cord derived

NSPC alone or co-grafted with

adult rat BMSC60

T8 clip compression; Sprague

Dawley rats; subacute (9 days)

transplants of NSPC, acute

transplants of BMSC, alone or

in combination; intraspinal

rostral and caudal injections;

cyclosporine

immunosuppression (15 mg/kg/

day s.c.)

Improved recovery on BBB and

horizontal ladder with subacute

NSPC transplants only

Grafted NSPC ensheathed

axons at injury site; increased

sparing of long tracts
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TABLE 1 (Continued)

Cell type Species; source

SCI model; injury level; host;

transplant interval; route of cell

delivery; immunosuppression Behavioral outcome Histological outcome

NSPC Adult rat spinal cord derived

NSPC61

T8 clip compression; Sprague

Dawley rats; acute, subacute

(9 days) and chronic (6 wk);

intraspinal rostral and caudal

injections; cyclosporine

immunosuppression (15 mg/kg/

day s.c.)

Functional recovery only

examined in acute transplant

groups and no significant

differences

NSPC transplants showed

primarily glial differentiation;

better graft survival with

subacute transplants

NSPC Adult rat spinal cord derived

NSPC and adult NSPC

transduced to express

neurogenin-253

T8-9 contusion (weight drop);

Sprague Dawley rats; subacute

(7 days); intraspinal around the

lesion site

Increased pain sensation with

NSPC grafts but not with

neurogenin-2 transduced NSPC

which also showed improved

BBB and grid walk scores

NSPC transplants primarily

differentiated into astrocytes

whereas neurogenin-2

transduced NSPC grafts

showed neuronal phenotypes,

enhanced myelination, white

matter sparing, and axonal

sprouting

NSPC Adult mouse SVZ derived

NSPC62

T7 clip compression; Wistar

rats; subacute (14 days) and

chronic (56 days); intraspinal

rostral and caudal injections;

growth factors (EGF, bFGF,

PDGF-AA) infused intrathecally

at time of transplant for 1 wk;

minocycline for 10 days

(starting 3 days prior to

transplantation); daily

cyclosporine

immunosuppression

Subacutely transplanted NSPC

promoted recovery from 3 wk

post-transplant on BBB; fewer

footfalls on gridwalk; no

improvement in chronic group

NSPC-derived oligodendrocytes

produced MPB when

transplanted subacutely; low

survival in chronic transplants

NSPC Adult mouse SVZ derived

NSPC63

T7 clip compression; Wistar

rats; chronic (7 wk); intraspinal

rostral and caudal injections;

ChABC infused intrathecally 1

wk prior to transplant; growth

factors (EGF, bFGF, PDGF-AA)

infused intrathecally at time of

transplant for 1 wk; minocycline

for 10 days; daily cyclosporine

immunosuppression

Improved BBB score and fewer

footfall errors on grid walk with

combination treatment; grafts

did not cause allodynia

ChABC infusion reduced CSPG

and improved NSPC graft

survival; NSPC primarily

differentiated into

oligodendrocytes; combination

enhanced axonal plasticity

NSPC Human fetal NSPC (hCNS-SC)64 T9 contusion (Infinite Horizon);

NOD-SCID mice; subacute

(9 days)

Improvement in BBB and

horizontal ladder beam task in

NSPC group; effects lost when

diphtheria toxin was used to kill

the grafted cells

Neuronal differentiation of

grafted cells; wrapping of

spared axons

NSPC Human fetal NSPC65 C5 contusion (modified NYU

impactor); common marmosets;

subacute (9 days); epicenter

injection; cyclosporine (10 mg/

kg/day)

NSPC transplants improved bar

grip power and spontaneous

motor activity

Axonal bundles in NSPC grafts

filling lesion; MRI shows smaller

lesions in NSPC transplanted

group

iPSC-

derived

NSPC

Human iPSC-derived NSPC66 T10 contusion (Infinite

Horizon); NOD-SCID mice;

subacute (9 days); epicenter

injections

Improvement in BMS score and

rotarod test

Grafted cells expressed

neurotrophic factors;

stimulation of angiogenesis and

axonal growth; increased

myelination; synapse formation

between graft-derived neurons

and host neurons

(Continues)
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TABLE 1 (Continued)

Cell type Species; source

SCI model; injury level; host;

transplant interval; route of cell

delivery; immunosuppression Behavioral outcome Histological outcome

iPSC-

derived

NSPC

Human iPSC-derived NSPC67 T9-10 contusion (Infinite

Horizon); NOD-SCID mice;

subacute (7 days); epicenter

injections

Improvement in BMS at 2 wk

post-transplantation and motor-

evoked potentials

Sparing of endogenous

neurons; synapse formation

between graft-derived neurons

and host neurons

ESC-derived

OPC

Mouse ESC-derived NSPCs68 T9-10 contusion (NYU); Long

Evans rats; subacute (9 days);

intraspinal into lesion site;

cyclosporine (10 mg/kg/day s.c.)

Improvement in BBB at 5 wk

post-transplantation

Grafted cells differentiated into

neuronal and glial phenotypes

ESC-derived

OPC

Human ESC-derived OPC69 T8-11 contusion (Infinite

Horizon); Sprague Dawley rats;

subacute (7 days) and chronic

(10 mo); intraspinal rostral and

caudal injections; cyclosporine

(10 mg/kg/day s.c.)

Subacutely transplanted hESC-

derived OPC promoted

recovery from 3 wk post-SCI on

BBB and certain gait

parameters; no improvement in

chronic groups

Subacute transplants increased

oligodendrocyte remyelination

and decreased the density of

demyelinated axons; no change

in chronic groups

ESC-derived

OPC

Human ESC-derived OPC70 C5 contusion (Infinite Horizon);

Sprague Dawley rats; subacute

(7 days); intraspinal rostral and

caudal injections; cyclosporine

(20 mg/kg/day s.c.)

Improved specific gait

parameters of forelimb motor

function

Tissue sparing; preservation of

motor neurons

Schwann

Cells

Adult human Schwann cells;

peripheral nerve71
4-5 mm segment of cord

removed at T8; athymic nude

rats; Schwann cells implanted

acutely in PAN/PVC channels;

in combination with

methylprednisolone (30 mg/kg,

i.v to all animals at 5 min, 2 and

4 hours)

Rats implanted with bridging

Schwann cell grafts in PAN/

PVC channels showed higher

scores on BBB and inclined

plane at 6 wk post-SCI

Schwann cell grafts without

channels showed more

myelinated fibers than grafts in

channel; 5-HT+, CGRP+ axons

were present within the grafts

but did not exit grafts

Schwann

Cells and

OEC

Adult rat Schwann cells and

OEC from nerve fiber layer72
T9 contusion (NYU impactor);

Fischer rats; subacute (7 days);

intraspinal injection into lesion

of Schwann cells, OEC, or

Schwann cell + OEC grafts

Improved BBB score in

Schwann cell group only

More myelinated axons in

Schwann cell grafts compared

to OEC or OEC + Schwann cell;

less cavitation and more sparing

in all grafted groups

Schwann

Cells and

OEC

Adult rat Schwann cells and

OEC from olfactory bulb73
T9 contusion (NYU/MASCIS);

Fischer rats; chronic (8 wk);

intraspinal injections of

Schwann cell or OEC grafts

Schwann cell but not OEC

grafts improved BBB score and

base of support and hindpaw

rotation in footprint analysis

Schwann cells survived better

than OEC and Schwann cell

grafts contained more sensory

axons but not CST ingrowth

Schwann

Cells and

OEC

Adult rat Schwann cells and

OEC from olfactory bulb74
T9 contusion (NYU/MASCIS);

Fischer rats; subacute (7 days);

intraspinal injections of

Schwann cells, OEC, or

Schwann cell + OEC grafts

Improved BBB score only with

Schwann cell + OEC grafts but

no improvement in gait

parameters

More myelinated axons found

within regions of grafted

Schwann cells but not OEC;

both grafts increased host

Schwann cell infiltration but no

sensory or supraspinal axon

ingrowth; OEC grafts survived

poorly

OEC Adult rat OEC from olfactory

bulb75
Cervical CST hemisection;

acute; intraspinal transplant

into lesion site

Rats in which OEC grafts

formed continuous bridge

across lesion were able to use

affected forepaw for directed

reaching

OEC grafts promoted growth of

lesioned axons

OEC Adult rat OEC76 T8/T9 complete transection;

acute; intraspinal transplants

into cord stumps

Improved locomotor function

and sensorimotor reflexes in

climbing test

Regeneration of motor axons

caudally in OEC grafts
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Early after injury, astrocytes also proliferate within the peri-

lesional zone and tightly interweave an irregular mesh of processes to

sequester the injured region (Figure 1C). Resident neural stem and

progenitor cells surrounding the central canal can also differentiate to

astrocytes and contribute to this astrogliosis. The astrocytes, peri-

cytes, and ependymal cells in the region generate dense deposits of

chondroitin sulfate proteoglycans (CSPGs), NG2, and tenascin which

form the fibrous component of the glial scar.29-32 Although literature

exists supporting the beneficial aspects of scar, the balance of evi-

dence suggests that chronic scarring potently inhibits axonal regener-

ation and neurite outgrowth by acting as a physical barrier and tightly

binding transmembrane protein tyrosine phosphatase receptors.33-35

Furthermore, CNS myelin- and neuron-associated ligands, such as

myelin associated glycoprotein (MAG), oligodendrocyte myelin glyco-

protein (OMgp), neurite outgrowth inhibitor (NOGO), and semaphorin

3A/4D, bind NOGO receptor-p75 complexes (NgR) and plexins to

activate Rho GTPase and its downstream effector, Rho-associated

protein kinase (ROCK).36-39 This results in a change in actomyosin

contractility and collapse of the axonal growth cone and further inhi-

bition of regeneration. There are other potent inhibitors of axonal

regeneration such as Repulsive Guidance Molecule A which are

upregulated in the injured cord.40-42

Multiple cell strategies discussed below aim to preserve and/or

regenerate functional, myelinated neural circuits to enhance func-

tional recovery.

3 | CELL-BASED THERAPIES

Cell-based therapies include cell transplantation and harnessing the

potential of endogenous neural precursor cells. Cell treatments can

immunomodulate, alter the microenvironment, and replace lost cells

depending on the cell type, cell state, delivery route (eg, systemic vs

local), and timing of administration.43-46 The most commonly studied

and promising cell types include mesenchymal stem cells (MSCs), neu-

ral stem cells (NSCs), oligodendrocyte progenitor cells (OPCs),

Schwann cells (SCs), and olfactory ensheathing cells (OECs).47-50 This

section outlines the mechanisms of action for each and summarizes

progress along the translational research spectrum. Key preclinical

studies are highlighted in Table 1, and completed and ongoing clinical

trials are summarized in Tables 2 and 3, respectively.

3.1 | Cell source

MSCs, SCs, and OECs can all be harvested from an adult allogeneic

source to generate standardized stocks depending on the success of

proliferation. MSCs, SCs, and OECs can also be derived directly from

the patient to avoid post-transplant immunosuppression.84 However,

autologous primary cells are typically more costly requiring harvest

surgery, in vitro expansion and extensive characterization prior to

transplant.

CNS cells, such as NSCs, OPCs, astrocytes and microglia, are

more challenging to isolate from adult allogeneic donors, and the per-

formance of a line is influenced by donor age, genetics, and harvest

conditions.85-87 Furthermore, autologous CNS tissue is inaccessible.

As a result, these cells are often derived from embryonic stem cell

(ESC) sources.88,89 ESCs can be propagated indefinitely and can gen-

erate cells of any germ layer. However, ESC-derived grafts have ethi-

cal issues surrounding their use and may show karyotypic instability

or hold the potential for tumorigenesis due to incomplete or aberrant

differentiation. More recently, induced pluripotent stem cells (iPSCs)

have allowed derivation of NSCs and OPCs from autologous, accessi-

ble cells such as bone marrow and skin fibroblasts. This has been fur-

ther adapted to allow direct reprogramming of adult somatic cells to

multipotent neuroglial cells while bypassing the pluripotent state.7 In

more recent protocols, it has also become possible to convert easily

accessible somatic cells directly into neurons,90,91 neuronal sub-

types,92,93 and oligodendrocytes progenitors.94 Some limitations asso-

ciated with these approaches such as reprogramming efficiency, line

variability, lineage-specific differentiation, and retention of epigenetic

memory are being investigated.

3.2 | Neural stem cells

NSCs are tripotent, self-renewing cells which have attracted great

interest as they can potentially replace the neurons, oligodendrocytes,

and astrocytes lost after injury.88,95-97 During embryological develop-

ment, NSCs are found throughout the neural tube where they acquire

unique identities based on their position and temporal exposure to

patterning morphogens.98-101 In adults, they are found in a more lim-

ited number of regions such as the subventricular zone in the brain95-

97 and around the central canal in the spinal cord.102-105 There are

two distinct NSC populations that can be isolated from the adult spi-

nal cord: (a) primitive NSCs (pNSCs) and (b) the definitive NSCs

(dNSCs) they give rise to (Figure 2).106,107 pNSCs are rare cells

expressing pluripotency marker, Oct4, and are responsive to leukemia

inhibitory factor in vitro.108-110 dNSCs are more abundant in adults,

express astrocyte marker, GFAP, and respond to epidermal and fibro-

blast growth factors (EGF and FGF) in vitro. Both populations can pro-

liferate and generate neurons, astrocytes and oligodendrocytes.

Numerous small and large animal preclinical studies have pro-

vided evidence supporting the therapeutic efficacy of transplanting

NSCs derived from ESCs or allogeneic adult sources.60,62,84 More

recently, autologous iPSC-derived and directly reprogrammed NSCs

have emerged as translationally relevant options which mitigate

immunorejection concerns and generate highly pure populations of

cells over several weeks. A 2016 meta-analysis (N = 74 studies) found

all sources of NSCs to provide significant motor recovery in models of

SCI (pooled SMD = 1.45; 95% confidence interval [CI]: 1.23-1.67;

P < .001).111 Although the mechanisms underlying recovery continue

to be investigated in preclinical studies, it is likely that trophic signal-

ing (eg, BDNF, GDNF, IGF-1, etc.), remyelination of denuded axons,
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TABLE 2 Key completed clinical trials of cell therapies for spinal cord injury

Cell type Sponsor, country
Phase; Clinicaltrials.
gov identifier

#

Participants;
age

Injury level; severity;

transplant interval
after SCI

Route of cell
delivery

Completion
date

Autologous

BMSC

Puerta de Hierro

University Hospital,

Spain

Phase II;

NCT02570932

10; 18-70 yr ASIA A-D; more than

6 mo

Intrathecal; 3

injections 3 mo

apart

Dec 2017

Autologous

BMSC

Indian Spinal Injuries

Centre, India

Phase I/II;

NCT02260713

21; 18-50 yr T1-T12; ASIA A; 10-

14 days

Intrathecal (single

injection) or

intraspinal

Nov 201777

Autologous

BMSC

Hospital Sao Rafael,

Brazil

Phase I;

NCT01325103

14; 18-50 yr Thoracic and lumbar;

ASIA A; more than

6 mo

Intraspinal Dec 201278

Autologous

BMSC

International

Stemcell Services

Limited, India

Phase I;

NCT01186679

12; 20-55 yr C4-T12; ASIA A-C;

acute within 2 wk,

subacute 2-8 wk,

chronic more than

6 mo

Intrathecal for acute

and subacute;

intraspinal for

chronic

Aug 2010

Autologous

BMSC

Cairo University,

Egypt

Phase I/II;

NCT00816803

80; 10-36 yr C3-T12; ASIA A-B;

10 mo to 3 yr

Intrathecal Dec 200879

Autologous MSC Hospital Sao Rafael,

Brazil

Phase I;

NCT02152657

5; 18-65 yr T8 and below; ASIA

A; more than 6 mo

Percutaneous

injection

Dec 2016

Autologous

Adipose-derived

MSC

Biostar, Korea

University Anam

Hospital, Korea

Phase I/II;

NCT01769872

15; 19-70 yr ASIA A-C; more than

3 mo

Intravenous,

intrathecal, and

intraspinal; each

single injections

Jan 201680

Autologous

Adipose-derived

MSC

Biostar, Anyang Sam

Hospital, Korea

Phase I;

NCT01274975

8; 19-60 yr ASIA A-C; more than

2 mo

Intravenous, single

injection

Feb 201081

Autologous

BMSC vs

Adipose-derived

MSC

University of Jordan,

Jordan

Phase I/II;

NCT02981576

14; 18-70 yr AISA A-C; more than

2 wk

Intrathecal; total of

three injections

Jan 2019

Autologous BM-

MNC

Armed Forces Bone

Marrow Transplant

Center, Pakistan

Phase I;

NCT02482194

9; 18-50 yr Thoracic; ASIA A;

more than 2 wk

Intrathecal Mar 201682

Autologous BM-

MNC

Neurogen Brain and

Spine Institute, India

Phase I;

NCT02027246

166; 8 mo to

63 yr

Any SCI Intrathecal Feb 2013

Autologous BM-

MNC

China Spinal Cord

Injury Network,

China

Phase I/II;

NCT01354483

20; 18-60 yr C5-T11; ASIA A;

more than 1 yr

Intraspinal; dose

escalation

Dec 2013

Human Central

Nervous System

Stem Cells

(HuCNS-SC)

StemCells, Inc,

Canada and

Switzerland

Phase I/II;

NCT01321333

12; 18-60 yr T2-T11; ASIA A-C;

3-12 mo

Intraspinal Apr 201583

Human Central

Nervous System

Stem Cells

(HuCNS-SC)

StemCells, Inc,

Canada and United

States

Phase II;

NCT02163876;

terminated (based on

a business decision

unrelated to any

safety concerns)

31; 18-60 yr C5-C7; ASIA B-C;

more than 12 wk

Intraspinal May 2016

ESC-derived

OPC (GRNOPC1)

Asterias

Biotherapeutics, Inc,

United States

Phase 1;

NCT01217008

5; 18-65 yr T3-T11; ASIA A; 1-

2 wk

Intraspinal July 2013

ESC-derived

OPC (AST-OPC1)

Asterias

Biotherapeutics, Inc,

United States

Phase I/IIa;

NCT02302157;

25; 18-69 yr C4-7; ASIA A-B; 21-

42 days

Intraspinal; dose

escalation study

Dec 2018
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partial regeneration and remodeling of neural circuitry, and ECM

deposition play a role.7,84,112 Recent work demonstrating the self-

assembly of grafted spinal cord NSCs into organotypic, dorsal horn-

like domains highlights their plasticity and the potential for further

optimization as a therapy.113

Currently, a phase I/II study in China (N = 30; NCT02688049) is

comparing 1 × 106 MSCs vs NSCs supported by a linearly ordered col-

lagen biomaterial, NeuroRegen scaffold, in individuals with chronic

AIS Grade A C5-T12 injuries. The study is expected to conclude in

2020 and report on AIS grade, somatosensory evoked potentials,

motor evoked potentials, Functional Independence Measure, and MRI

assessments. Neuralstem is also conducting a trial (N = 8;

NCT01772810) of NSI-566, human fetal spinal cord NSCs, delivered

through six intraspinal injections into patients with 1 to 2 year old

thoracic injuries. In 2016, a pair of phase II trials led by Stem Cells Inc

were terminated prior to completion. The studies were assessing the

effects of human CNS stem cell transplants for thoracic

(NCT01321333) and cervical (NCT02153876) SCI.114 A recently pub-

lished report on the studies found that escalating doses up to

4.0 × 106 were well tolerated with no significant increase in serious

adverse events related to the cells or free-hand manual injection tech-

nique.83 Based on emerging preclinical data, it is likely that further

modifying the cells in vitro and/or altering the local environment will

be necessary to enhance functional recovery.

3.3 | Oligodendrocyte progenitor cells

OPCs are tripotent cells which predominantly differentiate into oligo-

dendrocytes to remyelinate axons. They are suited for regeneration in

SCI as they respond rapidly to injuries, can self-renew, and address an

important component of the injury pathophysiology. Animal studies

have shown that transplanted OPCs can promote white matter pres-

ervation, increase the number of surviving endogenous oligodendro-

cytes, and reduce cavity volume, resulting in enhanced motor

recovery. The underlying mechanism may be a combination of

remyelination, local immunomodulation, trophic factor secretion, and

provision of a physical scaffold to support growing axons.69,70,115,116

The cells also possess a favorable secretome,117 consisting of growth

factors, neurotrophins, chemokines and cytokines, and can form gluta-

matergic synapses with neurons, an area of ongoing discovery.118 It

remains unclear whether improved outcomes are due to these factors

or direct remyelination of denuded axons, and to what extent

remyelination can itself enhance function after injury.119,120

A large clinical trial by Geron Inc assessing human ESC-derived

OPCs was discontinued for financial reasons. Renewed funding

allowed Asterias Biotherapeutics Inc to extend the trial of these cells,

termed AST-OPC1, in a phase I/IIa open-label dose-escalation study

(N = 25; NCT02302157). 2 × 106, 1 × 107, or 2 × 107 cells were

transplanted 21 to 42 days after SCI patients with AIS grade A or B

injuries at C4 to C7. The study completed in 2019 and BioTime, which

later changed its name to Lineage Cell Therapeutics, acquired the

company. Key findings were no increase in significant adverse events

and evidence of regeneration on MRI at 12 months. Ninety-five per-

cent of patients improved by at least 1 AIS grade and 32% of patients

improved by at least 2 AIS grades by 12 months after receiving the

1 × 107 and 2 × 107 doses.114 Longer term follow-up is continuing

and the company plans to further optimize the cell manufacturing

process.121

3.4 | Olfactory ensheathing cells

OECs are specialized glial cells that encircle olfactory neurons and

clear bacteria and debris at the CNS-nasal mucosa transition.122-125

They also secrete neurotrophic factors126 and maintain a favorable

environment for neuronal function. When the olfactory nerve or epi-

thelium is damaged, OECs support the growth of olfactory epithe-

lium-derived neurons into the olfactory bulb. They differ from typical

glia but share a number of morphological and molecular markers with

astrocytes and SCs. After transplantation, OECs form a cellular sub-

strate through which injured axons can regenerate across a spinal cord

TABLE 2 (Continued)

Cell type Sponsor, country
Phase; Clinicaltrials.
gov identifier

#

Participants;
age

Injury level; severity;

transplant interval
after SCI

Route of cell
delivery

Completion
date

Autologous

Human Schwann

Cells (ahSC)

The Miami Project to

Cure Paralysis,

University of Miami,

United States

Phase I;

NCT01739023

9; 18-60 yr T3-T11; ISNCSCI

grade A; 30-72 days

Intraspinal Aug 201650

Autologous

Human Schwann

Cells (ahSC)

The Miami Project to

Cure Paralysis,

University of Miami,

United States

Phase I;

NCT02354625;

recruiting

8; 18-65 yr C5-T12; ASIA A-C;

more than 12 mo

Intraspinal Aug 2019

Note: Clinical trials that are completed are identified with the NCT number listed on www.ClinicalTrials.gov. Published results of clinical trials, if available,

are referenced.

Abbreviations: BM-MNC, bone marrow-derived mononuclear cells; BMSC, bone marrow-derived mesenchymal stem cells; ESC, embryonic stem cell;

ISNCSCI, International Standards for Neurological Classification of Spinal Cord Injury; MSC, mesenchymal stem cells; NSPC, neural stem/progenitor cells;

OPC, oligodendrocyte precursor cells.
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transection lesion site.127 OECs can be harvested from the nasal

mucosa or directly from the olfactory bulb and transplanted into the

cord parenchyma as a bridging, nonrelay approach.75 OECs have also

been shown to enhance neurite outgrowth, promote remyelination,

neuroprotect, provide guidance cues, and locally

immunomodulate.49,128,129

Several clinical trials have transplanted OECs for subacute and

chronic SCI. Early work confirmed the safety of a purified population

of OECs; however, subsequent studies using mucosal tissue reported

conflicting results.130-132 To clarify the discrepancy, a meta-analysis of

key clinical trials (pooled N = 1193) was conducted which found no

statistically significant increase in serious adverse events; however,

efficacy has not been definitively established due to technical and

methodological concerns with existing studies.133 Recently, a small

phase I trial (N = 6) of autologous mucosal OECs and olfactory fibro-

blasts demonstrated sensorimotor improvements after transplant into

TABLE 3 Key ongoing clinical trials of cell therapies for spinal cord injury

Cell type Sponsor, country

Phase; Clinicaltrials.

gov identifier; study
status

Estimated

enrollment;
age

Injury level; severity;
transplant interval after SCI

Route of cell
delivery

Estimated

completion
date

Autologous

MSC

Hospital Sao Rafael, Brazil Phase I;

NCT02574572;

recruiting

10; 18-

65 yr

C5-C7; ASIA A; more than

12 mo

Intraspinal Jun 2020

Autologous

MSC

Hospital Sao Rafael, Brazil Phase II;

NCT02574585; not

yet recruiting

40; 18-

65 yr

T1-L2; ASIA A; more than

12 mo

Percutaneous; 2

injections 3 mo

apart

Jan 2022

Autologous

MSC

Pharmicell Co., Ltd., Seoul,

Korea

Phase II/III;

NCT01676441; active,

not recruiting

32; 16-

65 yr

Cervical; ASIA B; more than

12 mo

Intraspinal and

intrathecal

Dec 2020

Autologous

Adipose-

derived MSC

Allan Dietz, Mayo Clinic,

United States

Phase I;

NCT03308565;

recruiting

10; 18 yr

and older

AISA A-B; 2 wk to 1 yr Intrathecal; single

injection

Nov 2023

Autologous

BM-MNC

Da Nang Hospital, Vietnam Phase I/II;

NCT02923817;

recruiting

30; 20-

60 yr

ASIA A-B; 3 wk to 12 mo Intrathecal Jun 2019a

Allogeneic

UC-derived

MSC

The Third Affiliated Hospital,

Sun Yat-Sen University,

Guangdong, China

Phase I/II;

NCT03505034;

recruiting

43; 18-

65 yr

ASIA A-D; more than 12 mo Intrathecal Dec 2021

Allogeneic

UC-derived

MSC

Limin Rong, Third Affiliated

Hospital, Sun Yat-Sen

University, Guangdong,

China

Phase I/II;

NCT02481440;

recruiting

44; 18-

65 yr

ASIA A-D; more than 2 wk Intrathecal;

monthly injections

for 4 mo

Dec 2018a

Allogeneic

UC-derived

MSC

The Third Affiliated Hospital,

Sun Yat-Sen University,

Guangdong, China

Phase II;

NCT03521323;

recruiting

92; 18-

65 yr

ASIA A-D; 2-12 mo Intrathecal;

monthly injections

for 4 mo

Dec 2022

Allogeneic

UC-derived

MSC

The Third Affiliated Hospital,

Sun Yat-Sen University,

Guangdong, China

Phase II;

NCT03521336;

recruiting

130; 18-

65 yr

ASIA A-D; subacute (2 wk to

2 mo), early chronic (2-

12 mo), chronic (more than

12 mo)

Intrathecal;

monthly injections

for 4 mo

Dec 2022

Allogeneic

WJ-derived

MSC

Banc de Sang i Teixits,

Barcelona, Spain

Phase I/II;

NCT03003364; active,

not recruiting

10; 18-

65 yr

T2-T11; ASIA A; 1-5 yr Intrathecal Apr 2020

Human Spinal

Cord-derived

NSC

Neuralstem Inc, United

States

Phase I;

NCT01772810;

recruiting

8; 18-65 yr T2-T12 or C5-C7; ASIA A; 1-

2 yr

Intraspinal Dec 2022

Autologous

OEC

Wroclaw Medical University,

Poland

Phase I;

NCT01231893;

unknown status

10; 16-

65 yr

C5-L5; ASIA A; Interval N/A Intraspinal N/Aa

Note: Clinical trials currently recruiting or ongoing are identified with the NCT number listed on www.ClinicalTrials.gov.

Abbreviations: BM-MNC, bone marrow-derived mononuclear cells; BMSC, bone marrow-derived mesenchymal stem cells; ESC, embryonic stem cell; MSC,

mesenchymal stem cells; NSPC, neural stem/progenitor cells; OEC, olfactory ensheathing cells; OPC, oligodendrocyte precursor cells; UC-derived MSC,

umbilical cord-derived mesenchymal stem cells; WJ-derived MSC, Wharton's jelly-derived mesenchymal stem cells.
aStatus unknown or not updated on clinicaltrials.gov.
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patients with AIS grade A injuries; however, a larger sample size and

extended follow-up will be required to confirm safety and

efficacy.45,129,131

3.5 | Schwann cells

SCs are myelinating cells in the peripheral nervous system (PNS) and

are an important component of the robust, spontaneous regeneration

observed in the PNS. They provide a structural scaffold acting as a

conduit to guide growing axons. They also produce a favorable envi-

ronment by expressing growth factors and extracellular proteins. In

animal models of SCI, they have been shown to promote tissue spar-

ing, reduce cystic cavitation, enhance CNS axon regeneration,

remyelinate axons, and enhance endogenous SC myelination resulting

in sensorimotor recovery.134-138 The growth-promoting properties of

SCs are also being exploited in combinatorial therapies. For example,

neuroprotectant D15A (a modified human NT3 that can activate both

TrkB and TrkC receptors) has been combined with phosphodiester-

ase-4 inhibitor, rolipram, and SCs to enhance axonal sparing and

growth of serotonergic fibers into and beyond the SC graft.139 SCs

have also been combined with NSC,140 OEC,74 and BM-MSC141

transplants to enhance cell survival and promote additional

remyelination.

In humans, The Miami Project to Cure Paralysis conducted a

phase I, open-label study (N = 8; NCT02354625) of autologous SC

transplants in individuals with chronic AIS grade A-C C5-T12 inju-

ries. The study completed in August 2019 with results pending. The

same group conducted an open-label, nonrandomized, noncontrolled,

dose-escalation phase I study (N = 6) of autologous SCs

transplanted into the lesion epicenter for subacute-intermediate AIS

grade A thoracic injuries. SCs were harvested from the sural nerve

within 5 to 30 days of injury, expanded in vitro, and transplanted

within 4 to 7 weeks of injury. After 1 year, there were no medical,

surgical, or neurological complications to indicate that the treatment

was unsafe.50

3.6 | Mesenchymal stem cell

MSCs are multipotent, self-renewing connective tissue progenitor cells

found throughout the body, particularly in the perivascular region. They

have the capacity to regenerate muscles (myocytes), cartilage (cho-

ndrocytes), bone (osteoblasts), and fat (adipocytes).142,143 They also have

favored properties for conducting a clinical trial. Multipotent MSCs

expand rapidly,144 remain viable after −80�C or liquid nitrogen cryo-

storage,145 demonstrate minimal immunoreactivity after allogenic trans-

plant,146 and can be harvested from accessible tissue such as fat, bone

marrow, and skeletal muscle.147 This has encouraged their translation in

multiple fields such as sepsis,148 multiple sclerosis,149 and arthritis.150 In

SCI, MSCs have been shown to promote angiogenesis and significantly

enhance tissue sparing through neurotrophic signaling and immuno-

modulation.8,56,151,152 There is also evidence that MSCs transplanted

directly into the spinal cord can modulate activation of macrophages and

promote tissue sparing.153,154 However, MSC transplants have shown

considerable variability with some studies showing positive effects

whereas other studies have shown no benefit (Table 1).

Multiple adipocyte-derived MSC clinical trials are ongoing to

assess safety, dosing, and efficacy. The Mayo Clinic is conducting a

phase I study (N = 10; clinicaltrials.gov identifier NCT03308565) of

1 × 108 autologous, adipose-derived MSCs delivered intrathecally into

patients with American Spinal Injury Association (ASIA) Impairment

Scale (AIS) grade A/B/C injuries from 2 weeks to 1 year prior to trans-

plant. The study will be completed by 2023.

Bone marrow-derived MSCs are also being studied. A phase II/III trial

(N = 32; NCT01676441) conducted by Pharmicell Co is assessing 1.6 × 107

intraparenchymal and 3.2 × 107 intrathecal autologous bone marrow-

derived MSCs in chronic cervical AIS grade B patients with 12 month fol-

low-up of ASIA motor scores, MR Diffusion Tensor Imaging, and electro-

physiological parameters. The study is expected to conclude in 2020.

The umbilical cord is an alternate source of MSCs (UC-MSCs).

UC-MSCs can be isolated from cord tissue, cord blood, or Wharton's

jelly, a gelatinous substance within the umbilical cord that insulates

the blood vessels. Umbilical cord tissue is readily accessible and

F IGURE 2 A simplified schematic representation of a proposed endogenous neural stem cell (NCS) lineage. Within the central nervous
system, the proposed lineage suggests two types of NSCs are present. Primitive NSCs (pNSCs) are a population of rare, leukemia inhibitory factor
(LIF) responsive cells that give rise to more abundant definitive NSCs (dNSCs). dNSCs are responsive to EGF and FGF2 (EFH). NSC progeny
(progenitor cells) give rise to neurons, astrocytes, and oligodendrocytes upon differentiation. This pathway is exploited for ESC- and iPSC-based
generation of NSCs, neurons and glia. Direct reprogramming allows somatic cells to enter the NSC or later stage without passing through the
pluripotent state
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frequently discarded, and MSCs from the umbilical cord are less prone

to rejection, as evidenced by a lower risk of developing graft vs host

disease.155 Compared with adult sources, the number of MSCs

obtained from cord blood or placental tissues is small, although they

can be readily expanded and tissue can be frozen and used later for

isolation.156 MSCs derived from the umbilical cord have also been

shown to have immunomodulatory properties.157 Several recently

registered phase I/II trials (NCT03505034; NCT02481440;

NCT03521323) are recruiting to assess allogeneic UC-derived MSCs

for subacute and chronic SCI. A phase I/II open-label study (N = 14;

NCT02981576) in Jordan directly compared adverse effects and AIS

improvement with intrathecal adipose- vs bone marrow-derived MSCs

in AIS A/B/C patients 2 or more weeks postinjury. The study com-

pleted in January 2019 with results pending.

3.7 | Endogenous stem cell therapies

An alternative approach to promote neural repair is to harness the

potential of resident stem cells, such as NSCs within the injured

CNS.158,159 This approach circumvents immunorejection, cell delivery

challenges and logistical hurdles such as good manufacturing practice

(GMP) scale-up, cell storage, and transport. Within the spinal cord, it

has been demonstrated that NSCs respond to injury by proliferat-

ing160 and migrating to the lesion, although the effect is likely insuffi-

cient to generate recovery.29,159 Recently, small molecules, such as

the FDA-approved drugs cyclosporin A and Metformin, have been

found to increase the size of the endogenous pNSC and dNSC pool to

augment this intrinsic injury response.161,162 Cyclosporin A is an

immunosuppressive medication that has been shown to enhance sur-

vival of NSCs and promote recovery within the brain.161,162 Activation

of NSCs with cyclosporin A has also been observed in the spinal cord

and ongoing investigations aim to elucidate its effect following

SCI.161,162 Metformin, a drug commonly used to treat type II diabetes,

has also been shown to activate endogenous NSCs and direct their

differentiation toward neurons and oligodendrocytes.110,159 Although

molecular mechanisms underlying these effects have not been eluci-

dated, metformin administration has been shown to improve func-

tional recovery after insult to the brain.110,159 Studies of metformin in

SCI animal models are ongoing. Additional targets being explored to

enhance the endogenous NSC response are the C-Kit and ErbB2 sig-

naling pathways.163

4 | ENHANCING CELL TRANSPLANTATION
THERAPIES

Transplanted cell survival has historically been low in animal models

of SCI.164 This is typically overcome by delivering excess numbers of

cells to compensate for losses; however, this approach introduces var-

iability into the therapy, contributes cytotoxic by-products of cell

death to the microenvironment, and becomes infeasible when large

numbers of surviving cells are required. Ongoing work seeks to

enhance cell survival, migration, and axonal outgrowth by overcoming

key barriers in the SCI microenvironment.

4.1 | Growth factors

To support graft survival, growth factors (eg, PDGF, EGF, and IGF-1),

neurotrophins (eg, BDNF, NT3, NGF), and anti-inflammatory agents (eg,

minocycline) have all been successfully delivered via intrathecal injections

and pumps.63,164-166 Unique biomaterials have also been engineered to

gradually deliver key factors to support grafts.167 Growth factors and

treatments such as ferritin are also associated with enhanced endoge-

nous OPC proliferation and oligodendrogenesis. However, pumps are

prone to failure, require refilling and explant procedures, and expose

growth factors to mammalian body temperatures for prolonged periods.

As a result, alternate approaches continue to be investigated such as the

codelivery of cells with biomaterials capable of slowly releasing growth

factors directly into the environment. This unique strategy is discussed

further in the Biomaterials section below. Another approach is the in

vitro genetic modification of cells or the in vivo transfection of endoge-

nous cells to secrete the necessary factors. For example, MSCs have

been successfully engineered to express bFGF,168 HGF,169 NT3,170

BDNF,171 and GDNF172 in vivo for various applications. SCs have also

been transduced to overexpress BDNF and NT3 simultaneously.173 Simi-

larly, safe and highly efficient methods of engineering human iPSCs,

ESCs, and NSCs are currently being developed.

4.2 | Rehabilitation

An often overlooked method of promoting endogenous trophic factor

release and long-term cell survival noninvasively is rehabilitation. Physical

rehabilitation, with or without electroceutical augmentation, is an integral

component of the care plan for individuals with SCI; however, it is under-

represented in preclinical trials. Whether the rehabilitation entails forced

treadmill training, free swimming, or task-specific tests such as forelimb

reaching, the functional benefits can be significant.174 In addition to

enhancing cardiorespiratory and musculoskeletal function, treadmill loco-

motor training has been found to enhance transplanted NSC survival by

more than fivefold through increased IGF-1 signaling.175 This finding

underscores the value ofmultimodality, interdisciplinary care in SCI.

4.3 | Biomaterials

Biomaterials can enhance cell-based approaches for SCI in several

ways. Scaffolds derived from either natural or synthetic polymers

have been implanted within the lesion cavity to bridge the gap to

serve as a substrate for axonal growth and cell migration.176-180

InVivo Therapeutics' Neuro-Spinal Scaffold is a porous bio-

resorbable polymer scaffold shown to promote appositional

healing, white matter sparing, and normalization of

intraparenchymal tissue pressure in preclinical models of SCI.181 A
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recent case study at 6 month follow-up from a patient enrolled in

the clinical trial (NCT02138110) reported no adverse effects

related to acute scaffold implantation.182

Scaffolds can also provide a physical substrate for seeded cells

and provide directional guidance for axons. Moreover, biomaterials can

also be used as vehicles to deliver cells and release growth factors to aid

in graft cell survival, integration, and differentiation. Injectable in situ

polymerizing hydrogels can deliver cells and factors directly into a lesion

site with less invasive surgical interventions. For example, a polymer

blend of hyaluronan/methylcellulose (HAMC) is injectable, in situ gelling,

biodegradable, and noncytotoxic.183 HAMC modified with PDGF-AA, to

enhance graft survival and oligodendrocyte differentiation of

cotransplanted rat brain-derived NSCs,184,185 promoted host oligoden-

drocyte sparing and improved fine motor function.186 Further modifica-

tion of the HAMC hydrogel with RGD peptide promoted the survival,

integration, and differentiation of human iPSC-derived OPCs.187

Another approach has been the use of fibrin scaffolds which have

been shown to promote the survival of transplanted stem cells after

SCI and, when codelivered with growth factors, have been used to

direct differentiation and enhance recovery.188,189 QL6 is an exciting

peptide biomaterial which self-assembles to form a lattice-like struc-

ture at physiological temperatures. QL6 injected with NSCs improved

graft survival, reduced glial scarring and inflammation, and improved

forelimb function in cervical models of SCI.190-192

4.4 | Galvanotaxis

Electrical fields (EFs) are a physical environmental cue present within liv-

ing tissue. During development, multipotent cells rely on these fields for

appropriate migration and differentiation. If the fields are disrupted,

severe defects can result.193 EFs have also been shown to guide cells in

adults after injury.194,195 Therapeutic galvanotaxis (the directed migration

of cells in an electric field) exploits the electrosensitivity of cells to pro-

mote migration using externally applied EFs.196 This has been shown to

be feasible with SCs,197 NSCs,198 and many other cell types.199 Both

endogenous and transplanted NSCs, but not their differentiated progeny,

have been shown to migrate with transcranial direct current electrical

stimulation; however, directed migration will require further optimization

to establish the ideal current, voltage, phase, lead placement, and timing

of EF application.200,201

4.5 | Disrupting the glial scar

The glial/CSPG scar is well established in chronic injury and limits

axon regeneration through the lesional/perilesional region (Figure 1C).

A meta-analysis of NSC treatments found motor function recovered

to a greater extent with cell delivery in the acute phase (SMD = 1.80;

95% CI: 1.36-2.24) or subacute phase (SMD = 1.38; 95% CI: 1.08-

1.67) than in the chronic phase (SMD = 1.04; 95% CI: 0.47-1.60;

P = .03) of injury111 highlighting the difficulty in regenerating the

chronically injured spinal cord.

As a result, numerous labs have focused on methods to disrupt

the glial/CSPG scar during or prior to cell transplant. Chondroitinase

ABC (ChABC) is a bacterial enzyme which rapidly degrades the long

glycosaminoglycan (GAG) side chains of CSPGs202 In SCI, intrathecal

or intraparenchymal ChABC treatments have been shown to promote

neurite outgrowth and enhance anatomic plasticity, by degrading

CSPGs within the perineuronal nets, resulting in sensorimotor behav-

ioral recovery.203-205 This exciting approach is under further develop-

ment to address key limitations and better combine with cell

transplants. First, thermostabilized variants of ChABC are being devel-

oped to retain activity for longer periods at mammalian body tempera-

tures.206 Second, ChABC is being delivered via novel vehicles such as

affinity-release biomaterials or lentivirus transfections of host

cells.207,208 Finally, alternate human enzymes with GAG or CSPG core

protein degrading activity are being studied to mitigate immunogenic-

ity risks associated with using a bacterial protein.209

Another exciting approach is to inhibit the association of the pro-

tein tyrosine phosphatase σ receptor with its CSPG ligand.210 An

example is Intracellular Sigma Peptide (ISP) which is administered sub-

cutaneously after injury, crosses the BSCB, and results in significant

axonal regrowth within the injured cord.34 Recently, ISP has also been

shown to indirectly immunomodulate when combined with leukocyte

antigen-related receptor blockade.211

5 | TRANSLATING STEM CELL THERAPIES

5.1 | Graft survival

Amajor challenge in translating cell therapies to clinic is assessing and opti-

mizing graft survival. Culture and storage conditions, characterization pipe-

lines, and transplant conditions can be significantly different in the

laboratory than in clinical trial or routine use.212 Furthermore, commonly

employed graft assessment techniques such as immunohistochemistry and

bioluminescent tagging are typically not possible in humans. Strategies dis-

cussed previously such as increased trophic support, timed rehabilitation,

and codelivering biomaterials may prove to be important adjuvants in

advancing cell therapy for humans. These are in early deployment such as

Neuro-Spinal Scaffold (NCT02138110) by InVivo Therapeutics Inc or the

phase I/II study of MSCs and NSCs using the NeuroRegen scaffold

(NCT02688049). Assessing grafted cells in vivo may also become viable as

novel MRI-based cell trackers are developed.213,214

5.2 | Immunorejection

Another important translational hurdle is understanding and overcoming

potential immunorejection within the CNS. The extent and temporality

of cell graft rejection within the human CNS is currently unknown. Addi-

tionally, the cell source (eg, autologous, allogenic, genetically modified,

etc.) may significantly affect downstream graft survival in humans.215,216

Enhancing endogenous cell proliferation is one strategy to avoid immu-

norejection; however, endogenous cell pools may still be limited and
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optimal methods to drive their differentiation and migration have not yet

been established.217 Recently, genetic techniques which modify major

histocompatibility complexes and CD47 have been shown to generate

immune-evasive iPSC lines.218 This may become an important strategy in

the future to protect grafts from immune cells.

5.3 | GMP-grade scale-up

Effective translation of cell therapies into clinical trial and beyond

requires careful planning of GMP facilities and scale-up strategies.

Many challenges of GMP-grade production are not typically encoun-

tered in a research setting and are associated with significant financial

costs. For example, all manual handling must be highly reproducible

between facilities and occur in stringent GMP-grade clean rooms. Stan-

dard operating procedures must be established and compliance must

be traceable throughout the production chain.212 Cultures are typically

free of animal products (eg, proteins, feeder cells, etc.), unless more

suitable options are not available, and all reagents require qualification

as meeting the standards for GMP-grade culture.212 Common viral

transduction and nonviral transfection (eg, electroporation, lipofection)

techniques require additional steps to validate that risks inherent to

viral particles or foreign DNA have been mitigated. Furthermore, mas-

ter and working cell banks must be established with extensive testing

for bacteria, viruses, fungi, mycoplasma, and endotoxins at each step of

preparation. It is also important to note that during this translational

process, the research cell line with which preclinical efficacy was vali-

dated, may not be the same as the final clinical cell line for trial which

may necessitate additional efficacy testing in animal models.219

The importance of cell line and subline testing is apparent when

addressing the potential for tumor formation as graft-derived tumors

can occur in rigorously tested and banked lines due to the multiple

potential etiologies of tumorigenicity.220,221 As a living therapy, even

small variations in transport, subculture, or transplant technique at

individual centers hold the potential to alter the phenotype of the

graft. Furthermore, lines are typically characterized by sampling a por-

tion of the larger population; however, tumor formation can occur

due to a single aberrant cell. Advanced technologies, such as environ-

ment-controlled cell culture robots and high-throughput total popula-

tion screening techniques, seek to address these challenges.222,223

Fortunately, the US FDA and European Medicines Agency have

provided regulatory frameworks to begin approaching the complexi-

ties of GMP cell manufacturing.224,225 Additionally, networks of

GMP-grade facilities, such as the CellCAN Regenerative Medicine and

Cell Therapy Network in Canada, have been established to aid in navi-

gating these challenges.226

5.4 | Storage and transport

Conducting clinical trials or treatments across multiple sites requires a

coordinated storage and transportation approach capable of

accommodating international shipping delays and unexpected package

handling conditions. For example, a study of human MSCs found that

cells stored at 2�C to 8�C were sensitive to 25 Hz vibrations,227 lead-

ing to cell death and increases in MSC marker expression such as

CD29 and CD44.228 Similarly, temperature and repeated freeze-thaw

cycles have a significant effect on cell viability. Cryoprotectant toxic-

ity, rapid osmotic shifts, ice crystal formation, and activation of apo-

ptosis are key mechanisms underlying cell death during the

process.229 Early studies achieved human cryopreserved pluripotent

cell survival rates of only 30% or less.230 As a result, other cold stor-

age techniques have been developed such as vitrification, the rapid

cooling of cells in high concentrations of cryoprotectants to inhibit ice

formation. These were found to provide >75% survival but add tech-

nical complexity and may be limiting in the production of large-scale

banks.229 Furthermore, the storage solution (eg, DMSO, polyethylene

glycol, etc.) and additives (eg, ROCK-inhibitor, trehalose, poly-L-lysine,

etc.) exert their own effects on the survival and differentiation of

stored cells.229 Therefore, each cell type and cell line requires optimi-

zation to establish ideal conditions for a functional and reliable supply

chain.

5.5 | Patient selection

Establishing the ideal patient population for cell transplant in SCI is

challenging. Given the currently high cost and limited availability of

GMP-grade cell therapies, one strategy is to focus on populations with

the greatest potential gains. Cervical cord injuries are the most com-

mon and can result in devastating impairments in activities of daily liv-

ing (eg, feeding, grooming, transferring) and are often associated with

respiratory and autonomic complications.47 Even modest improve-

ments in key muscle groups such as grip and elbow flexion can have

profound benefits for quality of life making this an important popula-

tion for inclusion in cell-based studies. It is, however, important to bal-

ance these inclusion benefits with potential risks. The cervical SCI

population can be more expensive to study in trial as hospital stay,

treatment, and rehabilitation costs are higher.2 Additionally, limiting

studies to highly specific study regions can make recruitment more

challenging.

Another key consideration is transplant timing. Due to differ-

ences in physiology, injury etiology, cord architecture, patient com-

orbidities, and a host of microenvironmental cell signals, the optimal

timing for transplant in animal models likely differs from humans.15

Furthermore, even with established infrastructure, there is often a

lead time associated with delivering banked cells (eg, allogeneic ther-

apy) or generating a cell line (eg, autologous therapy).231 Therefore,

many trials are now conducted in the intermediate to chronic phases

of injury where the patients' condition and neurologic status are bet-

ter established and study recruitment is less complex. However,

overcoming regenerative barriers in chronic SCI such as the glial scar

and cystic cavitation may require some of the innovative strategies

discussed previously.
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5.6 | Delivery techniques

Adapting delivery techniques is a key facet of translating cell thera-

pies. Systemic or intrathecal treatments avoid many challenges by

using existing, well-established medical techniques; however, the dis-

tribution of cells is poorly controlled. For intraparenchymal treatments

(Figure 3), trials are increasingly utilizing standardized, tightly con-

trolled delivery systems which must be scaled for human doses, pro-

vide high reliability, allow sterilization, and have undergone regulatory

approval as a medical device.232

The two main classes of injectors currently in use are table-

mounted and spine-mounted systems. Table-mounted injectors233,234

provide a high degree of injection cannula stability along all three axes

but do not account for cord movement due to ventilation, cardiovas-

cular pulsations, or other patient movement. Spine-mounted devices

are typically immobilized on pedicle screws or by clamping the poste-

rior vertebral arch to account for respiration but may not account for

all cord pulsations. Recently, a floating cannula system has also been

developed which compensates for these natural pulsations to further

improve targeting.235 A third class of devices is also under develop-

ment which utilizes tools mounted on surgical robots, such as the da

Vinci Surgical System (Intuitive Surgical Inc), for highly precise

localization.

6 | OUTLOOK

The multifaceted pathophysiology of SCI and the complexities of neu-

ral repair and regeneration necessitate novel approaches to treatment.

Cell-based therapies continue to be very attractive and hopeful strate-

gies for repair of SCI and the rapid pace of innovation continues to

increase as our understanding of fundamental cell biology deepens.

We predict that as the timing, dose, and delivery of adult- and pluripo-

tent stem cell-derived treatments are optimized, increasing numbers

of cell-based therapies will be translated to humans. It is highly likely

that successful approaches will integrate strategies to enhance and

support cells, such as genetic engineering, biomaterials, galvanotaxis,

and scar degradation to maximize clinical outcomes. Ongoing preclini-

cal and clinical trials highlight the excitement and tremendous pro-

gress that has been made in the field and underscore the importance

of the collaborative work being conducted by researchers, clinicians,

stakeholders, and funding agencies worldwide.
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