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Abstract Robots are increasingly expected to perform

tasks in complex environments. To this end, engineers

provide them with processing architectures that are based

on models of human information processing. In contrast to

traditional models, where information processing is typi-

cally set up in stages (i.e., from perception to cognition to

action), it is increasingly acknowledged by psychologists

and robot engineers that perception and action are parts of

an interactive and integrated process. In this paper, we

present HiTEC, a novel computational (cognitive) model

that allows for direct interaction between perception and

action as well as for cognitive control, demonstrated by

task-related attentional influences. Simulation results show

that key behavioral studies can be readily replicated. Three

processing aspects of HiTEC are stressed for their impor-

tance for cognitive robotics: (1) ideomotor learning of

action control, (2) the influence of task context and atten-

tion on perception, action planning, and learning, and (3)

the interaction between perception and action planning.

Implications for the design of cognitive robotics are

discussed.

Keywords Integrated processes � Perception–action

interaction � Computational modeling � Cognitive

robotics � Common coding � Ideomotor learning

Introduction

Robots are increasingly expected to autonomously fulfill a

variety of tasks and duties in real-world environments that

are constantly changing. In order to cope with these

demands, robots cannot rely on predefined rules of

behavior or fixed sets of perceivable objects or action

routines. Rather, they need to be able to learn how to

segregate and recognize novel objects (e.g., Kraft et al.

2008), how to perceive their own movements (e.g., Fitz-

patrick and Metta 2003), and what actions can be per-

formed on objects in order to achieve certain effects (e.g.,

Montesano et al. 2008).

In this ultimate robot engineering challenge, the nature of

perception, action, and cognition plays an important role.

Traditionally, these domains are assumed to reflect different

stages of information processing (e.g., Donders 1868;

Neisser 1967; Norman 1988): first, objects are perceived and

recognized; subsequently, based on the current situation,

task, and goal, the optimal action is determined; and finally,

the selected action is prepared and executed. However, new

robot architectures increasingly recognize the benefits of

integration across these domains. Some roboticists have

focused on creating (perceptually defined) anticipations that

guide action selection and motor control (e.g., Hoffmann

2007; Ziemke et al. 2005). Others stress the importance of the

acquisition and use of affordances (after Gibson 1979) in

navigation (e.g., Uğur and Şahin 2010), action selection

(e.g., Cos-Aguilera et al. 2004; Kraft et al. 2008), and imi-

tation (e.g., Fitzpatrick and Metta 2003). Also, some

approaches propose active perception strategies (e.g.,

Hoffmann 2007; Lacroix et al. 2006; Ognibene et al. 2008)

that include epistemic sensing actions (e.g., eye movements)

that actively perceive features necessary for object recog-

nition or for the planning of further actions.
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In our laboratory, we study perception and action in

human performance. Findings in behavioral and neuro-

cognitive studies have shed new light on the interaction

between perception and action, indicating that these pro-

cesses are not as separate and stage-like as has been pre-

sumed. First, features of perceived objects (such as

location, orientation, and size) seem to influence actions

directly and beyond cognitive control, as illustrated by

stimulus-response compatibility phenomena, such as the

Simon effect (Simon and Rudell 1967). This suggests that

there is a direct route from perception to action that can

bypass cognition. Second, in monkeys, neural substrates

(i.e., so-called mirror neurons) have been discovered that

are active both when the monkey performs a particular

action and when it perceives the same action carried out by

another monkey or human (Rizzolatti and Craighero 2004).

This suggests that common representations exist for action

planning and action perception. Finally, behavioral studies

show that, in humans, action planning can actually influ-

ence object perception (Fagioli et al. 2007; Wykowska

et al. 2009), suggesting that perceptual processes and

action processes overlap in time.

In order to integrate these findings, we have developed a

novel cognitive architecture that allows for the simulation

of a variety of behavioral phenomena. We believe that our

computational model includes processing aspects of human

perception, action, and cognition that may be of special

interest to designers of cognitive robots.

In this paper, we argue that in addition to representations

that include both perceptual and action-related features

(e.g., Wörgötter et al. 2009), perception, and action may

also be intertwined with respect to their processes. First, we

discuss the theoretical foundation of our work (the Theory

of Event Coding: TEC) and describe our recently devel-

oped computational model, called HiTEC (Haazebroek

et al. submitted). Then, we discuss a number of simulations

of behavioral phenomena that illustrate the principles of the

processing architecture underlying HiTEC. Finally, we

discuss the wider implications of our approach for the

design of cognitive robotics.

HiTEC

Theory of event coding

The theoretical basis of our approach is the Theory of

Event Coding (TEC, Hommel et al. 2001), a general the-

oretical framework addressing how perceived events (i.e.,

stimuli) and produced events (i.e., actions) are cognitively

represented and how their representations interact to gen-

erate perceptions and action plans. TEC claims that stimuli

and actions are represented in the same way and by using

the same ‘‘feature codes’’. These codes refer to the distal

features of objects and events in the environment, such as

shape, size, distance, and location, rather than to proximal

features of the sensations elicited by stimuli (e.g., retinal

location or auditory intensity). For example, a haptic sen-

sation on the left hand and a visual stimulus on the left both

activate the same distal code representing ‘‘left’’.

Feature codes can represent the properties of a stimulus

in the environment just as well as the properties of a

response—which, after all, is a perceivable stimulus event

itself. This theoretical assumption is derived from ideo-

motor theory (James 1890; see Stock and Stock 2004, for a

historical overview), which presumes that actions are

cognitively represented in terms of their perceivable

effects. According to the ideomotor principle, when one

executes a particular action, the motor pattern is automat-

ically associated to the perceptual input representing the

action’s effects (action effect learning: Elsner and Hommel

2001). Based on these action effect associations, people

can subsequently plan and control (Hommel 2009) a motor

action by anticipating its perceptual effects, that is, (re-)

activate a motor pattern by intentionally (re-)activating the

associated feature codes. Thus, stimuli and actions are

represented in a common representational medium (Prinz

1990). Furthermore, stimulus perception and action plan-

ning are considered to be similar processes: both involve

activating feature codes that represent external events.

Finally, TEC stresses the role of task context in stimulus

and response coding. In particular, the responsiveness of

feature codes to activation sources is modulated according

to the task or goals at hand (the intentional weighting

principle). For example, if the task is to grasp an object,

features codes representing features relevant for grasping

(such as the object’s shape, size, location, and orientation)

will be enhanced, while feature codes representing irrele-

vant features (such as the object’s color or sound) will be

attenuated.

In our work, we address how these principles may be

computationally realized. To this end, we have developed a

computational model, called HiTEC, and tested its per-

formance against empirical data from human studies on

various types of perception–action interactions (Haazebroek

et al. submitted). In this paper, two simulations are descri-

bed, illustrating the aspects that are of particular relevance

for information processing in cognitive robotics.

HiTEC’s structure and representations

HiTEC is implemented as a connectionist network model

that uses the basic building blocks of parallel distributed

processing (PDP; e.g., Rumelhart et al. 1986). In a PDP

model, processing occurs through the interactions of a

number of interconnected elements called units. Units may
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be organized into higher order structures, called modules.

Each unit has an activation value indicating local activity.

Processing occurs by propagating activity through the

network, that is, by propagating activation from one unit to

the other, via weighted connections. When a connection

between two units is positively weighted, the connection is

excitatory and the units will increase each other’s activa-

tion. When the connection is negatively weighted, it is

inhibitory and the units will reduce each other’s activation.

Processing starts when one or more units receive some sort

of external input. Gradually, unit activations will change

and propagate through the network while interactions

between units control the flow of processing. Some units

are designated output units. When the activation of any one

of these units reaches a certain threshold, the network is

said to produce the corresponding output.

In HiTEC, the elementary units are codes that may be

connected and are contained within maps (HiTEC’s mod-

ules). Codes within the same map compete for activation

by means of lateral inhibitory connections. As illustrated in

Fig. 1, maps are organized into three levels: the sensory-

motor level, the feature level, and the task level. Each level

will now be discussed in more detail.

Sensory-motor level

The primate brain encodes perceived objects in a distrib-

uted fashion; different features are processed and repre-

sented across different cortical maps (e.g., DeYoe and Van

Essen 1988). In HiTEC, different perceptual modalities

(e.g., visual, auditory, tactile, proprioceptive) and different

dimensions within each modality (e.g., visual color and

shape, auditory location and pitch) are processed and rep-

resented in different sensory maps. Each sensory map

contains a number of sensory codes that are responsive to

specific sensory features (e.g., a specific color or a specific

pitch). Note that Fig. 1 shows only the sensory maps that

are relevant for modeling the Simon effect (Simulation 2 in

the Simulations section): auditory pitch, auditory location,

and haptic location. However, other specific instances of

the model may include other sensory maps as well (e.g.,

visual maps).

The sensory-motor level also contains motor codes,

referring to more or less specific movements (e.g., the

muscle contractions that produce the movement of the hand

pressing a certain key). Although motor codes could also

be organized in multiple maps, in the present version of

HiTEC, we consider only one basic motor map with a set

of motor codes.

Feature level

TEC’s notion of ‘‘feature codes’’ is captured by codes that

are connected to and thus grounded in both sensory codes

and motor codes. Crucially, the same (distal) feature code

(e.g., ‘‘left’’) can be connected to multiple sensory codes

(e.g., ‘‘left haptic location’’ and ‘‘left auditory location’’).

Thus, information from different sensory modalities and

dimensions is combined in one feature code representation.

Although feature codes are considered to arise from expe-

rience, in the present HiTEC simulations, we assume the

existence of a set of feature codes (and their connections to

sensory codes) to bootstrap the process of extracting senso-

rimotor regularities in interactions with the environment.

Task Level

Sensory-motor Level

Haptic

Feature Level

Location

Left Right

Location

Left Right

Auditory

Motor Codes

M1 M2

Pitch

High Low

Other

Key

Location

Left Right

T1 T2

Pitch

High Low

Motor

Fig. 1 HiTEC architecture as

used for simulation of the

Simon effect (see ‘‘Simulations

section’’). Codes reside in maps

on different levels and are

connected by excitatory

associations. Solid lines denote

fixed weights, dashed lines are

connections with learned

weights. Sensory codes receive

modulated excitation from

feature codes, denoted by the

open arrows
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Task level

The task level contains generic task codes that reflect

alternative ways to wire and weigh existing representations

to prepare for and carry out a particular task. Task codes

connect to both the feature codes that represent stimuli and

the feature codes that represent responses, in correspon-

dence with the current task context.

Associations

In HiTEC, codes are associated. Some are considered

innate or reflecting prior experience (depicted as solid lines

in Fig. 1), others are learned during the simulation

(depicted as dashed lines in Fig. 1). This will be elaborated

in the next subsection.

HiTEC’s processes

In general, codes can be stimulated, which results in an

increase in their activation level. Gradually, activation will

flow toward other codes through the connections. Note that

connections are bidirectional (except for the learned feature

code—motor code associations), which results in activation

flowing back and forth between sensory codes, feature

codes, and task codes and activation flowing toward motor

codes. In addition, codes within the same map inhibit each

other. Together, this results in a global competition

mechanism in which all codes participate from the first

processing cycle to the last.

Ideomotor learning

Associations between feature codes and motor codes are

explicitly learned as follows. A random motor code is acti-

vated (comparable to the spontaneous ‘‘motor babbling’’

behavior of newborns) first. This leads to a change in the

environment (e.g., the left hand suddenly touches an object)

that is registered by sensory codes. Activation propagates

from sensory codes toward feature codes. Subsequently, the

system forms associations between the active feature codes

and the active motor code. The weight change of these

associations depends on the level of activation of both the

motor code and the feature codes during learning.

Action planning

Once associations between motor codes and feature codes

exist, they can be used to select and plan actions. Planning an

action is realized by activating the feature codes that corre-

spond to its perceptual effects and by propagating their acti-

vation toward the associated motor codes. Initially, multiple

motor codes may become active as they typically fan out

associations to multiple feature codes. However, some motor

codes will have more associated features and some of the

associations between motor codes and feature codes may be

stronger than others. In time, the network converges toward a

state where only one motor code is strongly activated, which

leads to the selection of that motor action.

Task preparation

In behavioral experiments, participants typically receive a

verbal instruction of the task. In HiTEC, a verbal task

instruction is assumed to directly activate the respective fea-

ture codes. The cognitive system connects these feature codes

to task codes. When the model receives several instructions to

respond differently to various stimuli, different task codes are

recruited and maintained for the various options. Due to the

mutual inhibitory links between these task codes, they will

compete with each other during the task. Currently, the asso-

ciations between feature codes and task codes are set by hand.

Responding to stimuli

When a stimulus in an experimental trial is presented, its

sensory features will activate a set of feature codes

allowing activation to propagate toward one or more task

codes, which were already associated during task prepa-

ration. Competition takes place between feature codes,

between task codes, and between motor codes, simulta-

neously. Once any one of the motor codes is activated

strongly enough, it leads to the execution of the respective

motor response to the presented stimulus. In our simula-

tions, this marks the end of a trial. In general, the passing of

activation between codes along their connections is iterated

for a number of cycles, which allows for the simulation of

reaction time (i.e., number of cycles from stimulus onset to

response selection) until the activation level of any one of

the motor code reaches a set threshold value.

Neural network implementation

All HiTEC codes—sensory codes, motor codes, task codes,

and feature codes alike—are implemented as generic units

with an activation value bound between 0.0 and 1.0.

Stimulus presentation is simulated by setting the external

input values for the sensory codes. In addition, codes

receive input from other, connected codes. In sum, their

activation level is updated each processing cycle according

to the following function:

Aðt þ 1Þ ¼ 1� dð Þ � AðtÞ þ ðExt þ Exc þ BgÞ
� 1� AðtÞð Þ þ Inh� AðtÞ

Here, A(t) denotes the activation of node at time t, d is a

decay term, Ext is its external input (sensory codes only),
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Exc is its excitatory input (bottom up and top down), Bg is

additive background noise, and Inh is its inhibitory input.

Note that we first compute all input values to all codes and

then update their respective activation values, resulting in

(simulated) synchronous updating. Ideomotor weights (i.e.,

weights of connections between feature codes and motor

codes) are acquired during learning trials, using the

following Hebbian learning rule:

wjkðt þ 1Þ ¼ ð1� dÞ � wjkðtÞ þ LR � ActjðtÞ � ActkðtÞ
� 1� wjkðtÞ
� �

Here, wij denotes the weight between nodes j and k at

time t, d is a decay term, LR is the learning rate, and Actj
and Actk refer to the activation levels at time t of nodes

j and k, respectively.

Note that we register a stimulus (or action effect) by

simply providing input values to the relevant sensory

code(s). In a real robotic setup, these sensory codes could

be grounded in the environment, either by defining this

a priori or by generating the sensory codes by means of

unsupervised clustering techniques (e.g., the category for-

mation phase in Montesano et al. 2008). Also note that, in

principle, our model is not restricted to any number or type

of sensory codes, as long as one can find a reasonable way

to ground their stimulation in actual (robotic) sensor val-

ues. In simulations, we use specific instances of the model

that include only those codes we need for the simulation at

hand. Nothing, however, prohibits us from including other

codes as well. The fact that only those codes that are

connected to higher level feature and task codes (resulting

from the task internalization) receive top-down enhance-

ment makes that only a selection of available codes matter

for further processing and other sensory stimulation is to be

ignored (unless strongly salient). Also note that the time

dimension is actually of value to us. Rather than computing

a perception–action mapping or function as fast as possi-

ble—as is common in robotics algorithms—taking more

time for a computation actually reflects the (cognitive or

perception–action related) effort needed for the task at

hand. Consequently, apart from accuracy scores, we also

obtain reaction times that vary as a function of the diffi-

culty of the task. For further computational details, we refer

to Haazebroek et al. (submitted).

Simulations

The HiTEC computational model has been tested against a

variety of behavioral phenomena. Three processing aspects

of the model are of particular interest: (1) ideomotor

learning of action control, (2) the influence of task context

and attention on both perception and action planning, and

(3) the interaction between perception and action planning.

For the purpose of this paper, these processing aspects are

illustrated by simulating two behavioral studies: a study on

response-action effect compatibility, conducted by Kunde

et al. (2004) and the Simon task (Simon and Rudell 1967).

We now elaborate on these paradigms and discuss the

results of the simulations in HiTEC.

Simulation 1

In earlier studies (e.g., Elsner and Hommel 2001), it has

been shown that people automatically learn associations

between motor actions and their perceptual effects. An

experiment by Kunde et al. (2004) demonstrates that per-

formance is also affected by the compatibility between

responses and novel (auditory) action effects. In this

experiment, participants had to respond to the color of a

visual stimulus by pressing a key forcefully or softly. The

key presses were immediately followed by a loud or soft

tone. For one group of participants, responses were fol-

lowed by a compatible action effect; the loudness of the

tone matched the response force (e.g., a loud tone appeared

after a forceful key press). In the other group of partici-

pants, the relationship between actions and action effects

was incompatible (e.g., a soft tone appeared after a forceful

key press). If the intensity of an action (e.g., a forceful

response) was compatible with the intensity of the action

effect (e.g., a loud tone), then responses were faster than if

the intensity of the action and its effect were incompatible.

Given that the tones did not appear before the responses

were executed, this observation suggests that the novel, just

acquired action effects were anticipated and considered in

the response selection process.

In HiTEC, this experiment is simulated using the model

as depicted in Fig. 2. Here, visual colors, auditory inten-

sity, and haptic intensity are coded by their respective

sensory codes. At the feature level, generic intensity fea-

ture codes exist that code for both auditory and haptic

intensity. The motor codes refer to the soft and forceful key

presses, respectively. The bindings between feature codes

and task codes follow the task instructions: red is to be

responded to by a strong key press, green by a weak key

press. As an equivalent of the behavioral study, we allow

the model to learn the relationship between key presses and

their perceptual effects. This is realized by randomly

activating one of the two motor codes (i.e., pressing the key

softly or forcefully), registering their sensory effects (i.e.,

both the key press and the tone) by activating the respective

sensory codes, and propagating activation toward the fea-

ture codes. As a result, the active motor code and the active

feature codes become (more strongly) associated. Thus,

ideomotor learning takes place; actions are associated with

their effects.
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Importantly, trials with incompatible action effects

result in simultaneous activation of both ‘‘strong’’ and

‘‘weak’’ feature codes. Moreover, these feature codes

inhibit each other. As a result, associations learned between

feature codes and motor codes are weaker (and less spe-

cific) than in trials with compatible action effects. As these

associations (co-)determine the processing speed during

experimental trials, group differences in reaction time

arise: 24.16 cycles (SD = 0.20) for the compatible group

and 30.64 cycles (SD = 4.10) for the incompatible group.

These results fit well with available behavioral data as

shown in Fig. 3. Thus, regular and compatible action

effects allow for faster anticipation of a motor action

resulting in faster responses to stimuli in the environment

than when action effects are incompatible.

Crucially, participants in behavioral studies typically

receive a task instruction before performing practice trials.

This is simulated by internalizing the task instruction as

feature code—task code connections already before per-

forming the ideomotor learning. As a consequence, acti-

vation also propagates from the haptic intensity sensory

codes to the ‘‘Key’’ feature code to the task codes—and

back—during ideomotor learning, resulting in a top-down

enhancement of the haptic intensity sensory codes as

compared to the auditory intensity sensory codes. While

both haptic intensity and auditory intensity sensory codes

receive equal external stimulation from the environment,

haptic intensity comes to determine the learned connection

weights, where auditory intensity only moderates this

process. Thus, the task instruction not only specifies the

actual S-R mappings that reflect the appropriate responses

to the relevant stimulus features, it also configures the

model in such a way that ‘‘most attention is paid’’ to those

action effect features in the environment that matter for the

current task. Indeed, additional action effects (i.e., the

auditory intensity in this task) do not escape processing

completely (hence the compatibility effect), but their

influence is strongly limited as compared to the main action

effect dimension (i.e., the haptic intensity). This illustrates

the role of task context and attention in ideomotor learning

of action control.

Simulation 2

The canonical example of stimulus-response compatibility

effects is the Simon task. In this task, the participant per-

forms manual, spatially defined responses (e.g., pressing a

left or right key) to a nonspatial feature of a stimulus (e.g.,

the pitch of a tone). Importantly, the location of the stim-

ulus varies randomly. Even though stimulus location is

irrelevant for the response choice, performance is facili-

tated when stimulus location corresponds spatially to the

correct response. Conversely, performance is impaired

when stimulus location corresponds spatially to the other,

not to be chosen response.

The Simon task is simulated in HiTEC using the model

as depicted in Fig. 1. There are sensory codes for auditory

pitch levels, auditory locations, and haptic locations. The

motor codes refer to the left key press and the right key

press motoric responses, respectively. At the feature level,

generic pitch feature codes as well as generic location

codes are included, as is a general ‘‘Key’’ code that allows

the system to code for all key-related features in a simple

way.

Task Level

Sensory-motor Level

Haptic

Feature Level

Intensity

Force Weak

Auditory

Intensity

Loud Soft

Visual

Motor Codes

M1 M2

Color

Red Green

Other

Sound Key

Intensity

Strong Weak

T1 T2

Color

Red Green

Motor

Fig. 2 HiTEC architecture as

used for simulation of the

experiment by Kunde et al.

(2004). Both auditory intensity

and haptic intensity project to

the general intensity feature

dimension
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Crucially, the ‘‘Left’’ and ‘‘Right’’ feature codes are

used both for encoding (egocentric) stimulus location (i.e.,

they are connected to auditory location sensory codes) and

for encoding (egocentric) response location (i.e., they are

connected to haptic location sensory codes). When a tone

stimulus is presented, auditory sensory codes are activated,

activation propagates gradually toward pitch and location

feature codes, toward task codes and (again) toward loca-

tion feature codes. Over time, the motor codes also become

activated until one of the motor codes reaches a threshold

level and is executed. Simulation results thus yield a clear

compatibility effect. On average, the compatible trials

require 19.79 cycles (SD: 0.18), neutral trials 25.28 (SD:

0.23) cycles, and incompatible trials 34.04 (SD: 0.73)

cycles. These results fit well with the available behavioral

data (Simon and Rudell 1967) as is shown in Fig. 4.

To understand the source of the compatibility effect in

this model, consider the following compatible trial: a high

tone is presented on the left. This activates the auditory

sensory codes Shigh and Sleft. Activation propagates to the

feature codes Fhigh and Fleft and to task code T1. Because

the task is to respond to high tones with a left key press,

activation flows from T1 to Fleft and from there to M1 (left

response). As soon as the motor activation reaches a

threshold, the action is executed (i.e., the left key is pres-

sed). Now, consider an incompatible trial: a high tone is

presented on the right. This activates the auditory sensory

codes Shigh and Sright. Activation propagates to the feature

codes Fhigh and Fright and to task code T1. Activation flows

from T1 to Fleft. Because both Fleft and Fright are activated,

activation is propagated to both motor codes. As a result,

competition arises at different levels of the model, which

results in a longer response time.

Thus, because common feature codes are used to rep-

resent both stimulus features and response features, stim-

ulus-response compatibility effects are bound to occur. In

the case of this simulation of the Simon effect, although the

location of the stimulus is irrelevant for the task, location is

relevant for the anticipation (thus planning) of the appro-

priate response. Now, the model is, in a sense, forced to

also process the stimulus location and—automatically—

bias the planning of the action response, generating the

Simon effect. Thus, again ideomotor learning is influenced

by the current task. In addition, automatic interaction

between perception and action causes compatibility effects.

Still, even this automatic interaction arises from the task

that defines the stimulus features and response (effect)

features that are to be used in planning a response to the

presented stimulus.

Discussion

In this paper, we argue that perception and action are not

only intertwined with regard to their representations, but

may also be intertwined with respect to their processes, in

both humans and artificial cognitive systems. To demon-

strate this, we have presented a computational model,

HiTEC, which is able to replicate key findings in psycho-

logical research (Haazebroek et al. submitted). Three
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processing aspects of the model may be of particular

interest for cognitive robotics: ideomotor learning of action

control, the role of task context and attention, and the

interaction between perception and action. These aspects,

as well as implications for anticipation and affordances—

two important themes in cognitive robotics—are discussed.

Ideomotor learning of action control

The first aspect concerns the ideomotor learning of action

control. When working with robots in real-world environ-

ments, it is quite common to assume a predefined set of

(re)actions and let the robot learn whether these actions can

be applied to certain objects (e.g., Cos-Aguilera et al. 2004;

Kraft et al. 2008). However, it is often hard to define

a priori exactly which actions can be performed by the

robot given the characteristics of the robot body and the

physical environment. Moreover, the same robot body can

have different action capabilities in different (or changing)

environments. Thus, it makes sense not to pre-wire the

actions in the system, but let them be learned by experi-

ence. In our model, we explicitly do not include a known

set of movements. Instead, motor actions are labeled ‘‘M1’’

and ‘‘M2’’ on purpose; only by means of sensorimotor

experience, associations are learned between feature codes

and motor codes, allowing the model to represent its own

actions in terms of the perceived action effects. The model

can subsequently plan a motor action by anticipating (i.e.,

activating the feature codes corresponding to) these per-

ceptual effects (see also the subsection on anticipation).

The theme of ideomotor learning is already quite popular in

the robotics literature (for an overview, see Pezzulo et al.

2006). Note that in our current implementation, we assume

the existence of distal feature codes and let the model learn

connections between these feature codes and motor codes,

rather than between sensory codes and motor codes

directly. We envision that this generalization renders the

acquired ideomotor associations applicable to a variety of

circumstances (i.e., generalizing over objects and over

actions). In addition, ideomotor learning is modulated by

the current task and attentional resources, as described in

the next subsection.

Task context and attention

The second aspect is the influence of task context and

attention on both perception and action. As is demonstrated

in Simulation 1, internalization of the task instruction not

only specifies the stimulus-response mappings that deter-

mine the perception-cognition-action information flow

from stimulus to response, but also influences the interac-

tions between perception and action (see next subsection).

Codes that are relevant for stimulus perception and/or

action planning are top-down enhanced. Different task

contexts may weigh different dimensions and features

differently and consequently speed up the stimulus-

response translation process in a way that suits the task

best. Attention is studied quite extensively in cognitive

robotics and is key in active perception strategies (e.g.,

Ognibene et al. 2008).

In HiTEC, feature codes belonging to objects can be

enhanced in activation (in other words: attended to), as can

be features belonging to action effects (in other words:

intended or effect anticipation). Thus, as demonstrated by

Simulation 1, task context can make the system ‘‘pay

attention’’ to those action effects that are important to the

task while attenuating the influence of irrelevant additional

effects. This processing aspect is crucial when learning

(both in sensorimotor and ideomotor learning) in a com-

plex environment. As cognitive robots are typically able to

track a wealth of sensor readings, it can be hard to deter-

mine which action effects are particularly relevant for

learning (see also the frame problem in artificial intelli-

gence, Russell and Norvig 1995; Dennett 1984). The

selective attention for elements of the important action

effects still relies on the context such as the task at hand or

on a system that uses internal drives (e.g., Cos-Aguilera

et al. 2004), but the weighting of action effect features may

present an elegant way for a robot system to specifically

monitor its anticipated action results.

Also, actions are selected based on perceived object

features—following the task level connections—and the

attention for specific features or feature dimensions applied

to both object perception and action planning. As a con-

sequence, the model does not select actions for a particular

object in a reflex-like manner, but it takes the current task

into account, both in object perception and response

selection (see also Hommel 2000).

It is important to note that our conception of ‘‘task’’ is

extremely simplified and only relates to the current stim-

ulus to response translation rules, neglecting the human

capacity of planning action sequences or even performing

multiple tasks simultaneously (e.g., as modeled in EPIC,

Kieras and Meyer 1997). However, HiTECs task could be

part of a broader definition of task, including sequences of

actions and criteria for determining whether a task has

ended (see also Pezzulo et al. 2006 for a conceptual anal-

ysis of ideomotor learning and a task-oriented model such

as TOTE).

Interaction between perception and action

The third aspect is the interaction between perception and

action planning as a result of the common coding principle

(Hommel et al. 2001). Feature codes that are used to

cognitively represent stimulus features (e.g., object
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location, intensity) are also used to represent action fea-

tures. As a result, stimulus-response compatibility effects

can arise, such as the Simon effect that we replicated in

Simulation 2: when a feature code activated by the stimulus

is also part of the features belonging to the correct

response, planning this response is facilitated, yielding

faster reactions. If, on the other hand, the feature code

activated by the stimulus is part of the incorrect response,

this increases the competition between the alternative

responses, resulting in slower reactions. It may appear that

this effect is due to information processing from stimulus

to response only. However, following the HiTEC logic, the

stimulus location only has an effect because location is

relevant for the action. Thus, action planning influences

object perception. Moreover, while attention plays a role in

‘‘tagging’’ codes to be of importance (whether it is for

stimulus perception or for action planning), the actual

information flow from stimulus to response (effect) is

rather automatic, in a sense bypassing the ‘‘cognitive’’

stage. In robotics, one could envision that perceiving an

object shape already enhances the planning of a roughly

equivalent hand shape. In our model, this is done on a distal

level. That is, a ball-park type of ‘‘equivalent’’ shape is

anticipated. During a reaching movement, the precise hand

shape can be adjusted to the precise shape of the object to

be grasped. Of course, how this is realized exactly should

be subject to further research. Still, the automatic transla-

tion from perceived object features to anticipated action

features seems a promising characteristic with respect to

the notion of affordance (see last subsection).

Anticipation

Numerous cognitive robotics projects include a notion of

‘‘anticipation’’ (see Pezzulo et al. 2008 for an overview).

This is crucial, because in action planning and control it

seems difficult to evaluate all potential variations in

advance, as real data can vary a lot and the behavior of the

environment is not always completely controlled by the

robot. Thus, it seems intuitive to form anticipations on a

distal level. In HiTEC, we adhere to an explicit notion of

anticipation using distal feature codes. Activating these

codes not only helps in action selection or planning, rather

it is how actions are selected and planned in HiTEC. Fol-

lowing the ideomotor principle, the anticipated action

effect activates the associated motor action resulting in

actual action execution. However, how, the action subse-

quently unfolds is not explicitly modeled. By comparing

the anticipated effects with the actually perceived effects,

the system can determine whether the action was suc-

cessful. If there is a discrepancy between the anticipated

and perceived action effect, the model can update its rep-

resentations to learn new action effects or fine-tune action

control (see for more details Haazebroek and Hommel

2009).

Finally, as described in previous subsections, the system

focuses attention on those features that are important for

the current task context, both in object perception and in

action effect perception. Thus, the task context determines

which effect features are especially monitored. This pro-

cess may present opportunities to tackle the frame problem

in artificial intelligence (Russell and Norvig 1995; Dennett

1984).

Affordances

Roboticists have started to embrace the notion of affor-

dance (after Gibson 1979) in their robot architectures. For

example, Montesano et al. (2008) define affordances as

links between objects, actions, and effects. It is commonly

assumed that such links are acquired during experience.

Typical setups consist of an exploration phase in which

actions are executed randomly and action success is

determined. Then, object features are correlated with

actions and their success. Finally, for each action, it is

determined which object features are good indications for

their successful execution yielding a set of affordances in

terms of stimulus features—motor actions (S-R) reflexes.

In our model, the notion of affordance is effectively

realized by allowing for automatic translation of perceptual

object features (e.g., object shape) to action by means of

overlap with anticipated action effect features (e.g., hand

shape). In this sense, feature codes are representations of

regularities encountered in sensorimotor experience. By

focusing attention on certain action plan features, these

dimensions also become enhanced in object perception. As

a consequence, these sensory features are processed more

strongly than others. Thus, rather than defining affordances

as successful, yet arbitrary, S-R reflexes, we define an af-

fordance in terms of intrinsic overlap between stimulus

features and action effect features as encountered in sen-

sorimotor experience. Indeed, by having common codes,

perceiving objects fundamentally implies anticipating

intrinsically related action plan features. Because of the

ideomotor links, activating features shared by objects and

actions, the system is easily biased to plan and execute

appropriate motor actions. Crucially, the task determines

which (object and action) features are relevant and there-

fore which affordances apply.

Conclusion

We have shown how the HiTEC model can readily repli-

cate key findings from the perception–action literature

using simulations. These simulations demonstrate three
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main processing aspects that seem relevant for cognitive

robots as they intimately relate to crucial themes as

anticipation and affordances.

It is clear that HiTEC is still limited to simulations of

basic, yet fundamental phenomena in the perception–action

domain. Our main objective was to develop an architecture

that gives an integrated processing account of the interac-

tion between perception and action. However, we envision

that the model could be extended with a variety of capa-

bilities, such as higher fidelity perception and motor action,

as well as episodic and semantic memory capacities. This

way, HiTEC could become a more mature cognitive

architecture (Byrne 2008).

Other extensions may include the processing of affective

information. In reinforcement learning approaches, affec-

tive information is usually treated as additional information

that co-defines the desirability of a state (i.e., as a

‘‘reward’’) or action alternative (i.e., as part of its ‘‘value’’

or ‘‘utility’’). By weighting action alternatives with this

information (see also the notion of somatic markers,

Damasio 1994), some can turn out to be more desirable

than others, which can aid the process of decision making

(e.g., Broekens and Haazebroek 2007). In psychological

research, studies have shown affective stimulus-response

compatibility effects (e.g., Chen and Bargh 1999; van

Dantzig et al. 2008). Participants are typically faster to

respond to positive stimuli (e.g., the word ‘‘love’’, a picture

of a smiling face) when they perform an approach move-

ment than an avoidance movement. Conversely, they are

faster to respond to negative stimuli (e.g., the word ‘‘war’’,

a picture of a spider) when performing an avoidance

movement than an approach movement. These findings are

taken as evidence that affective stimuli automatically

activate action tendencies related to approach and avoid-

ance (e.g., Chen and Bargh 1999). Elsewhere (Haazebroek

et al. 2009), we have shown how HiTEC can already

account for such affective stimulus-response compatibility

effects.

Still, HiTEC has not yet been implemented on an actual

robot platform, which would require substantial imple-

mentation effort concerning the grounding of sensory input

and motor output. However, it would also provide a wealth

of opportunities to study and test HiTEC’s processing

aspects in real-world scenarios.
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