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Abstract: The restoration of soil fertility and microbial communities is the key to the soil reclamation
and ecological reconstruction in coal mine subsidence areas. However, the response of soil bacterial
communities to reclamation is still not well understood. Here, we studied the bacterial communities
in fertilizer-reclaimed soil (CK, without fertilizer; CF, chemical fertilizer; M, manure) in the Lu’an
reclamation mining region and compared them with those in adjacent subsidence soil (SU) and
farmland soil (FA). We found that the compositions of dominant phyla in the reclaimed soil differed
greatly from those in the subsidence soil and farmland soil (p < 0.05). The related sequences of
Acidobacteria, Chloroflexi, and Nitrospirae were mainly from the subsided soil, whereas those of
Alphaproteobacteria, Planctomycetes, and Deltaproteobacteria were mainly derived from the farmland
soil. Fertilization affected the bacterial community composition in the reclaimed soil, and bacteria
richness and diversity increased significantly with the accumulation of soil nutrients after 7 years of
reclamation (p < 0.05). Moreover, soil properties, especially SOM and pH, were found to play a key
role in the restoration of the bacterial community in the reclaimed soil. The results are helpful to the
study of soil fertility improvement and ecological restoration in mining areas.

Keywords: coal mining; soil reclamation; bacterial community; bacterial diversity; high-throughput
sequencing

1. Introduction

China is one of the largest coal-producing countries in the world [1]. However, the
large-scale and high-intensity exploitation of coal resources has caused a series of ecological
and environmental problems, such as soil erosion, declines in soil quality, aggravation of
land degradation, and imbalance of the soil ecosystem [2–4]. In particular, land subsidence
caused by underground coal mining can lead to drastic disturbances of soil structure and
remarkable variation in soil microbial communities [5,6], which greatly reduce soil fertility,
crop productivity, and the stability of the soil ecosystem [4,7,8]. These have serious impacts
on the sustainable development of agriculture in mining areas. Land reclamation is an
effective method to solve the conflict between coal mining and land resource protection
and to alleviate the contradiction between humans and land in the coal mining area.

Restoring soil fertility is the emphasis for land reclamation and ecological restoration
in coal mining subsidence areas. Soil microorganisms, one of the most important parts of
the soil ecosystem, are essential in soil formation, nutrient cycling (such as carbon, nitrogen,
and phosphorus), and ecological balance [9–11]. The abundance, diversity, and activity of
soil bacteria can be used as effective indicators of soil quality due to their high sensitivity to
environmental changes and soil nutrient status [12–14]. It has been reported that bacterial
community stability in subsidence soil was dramatically disrupted by coal mining activities,
resulting in reductions in total bacterial biomass and diversity [15–18]. To some extent,
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it is not only necessary to increase soil nutrients but also more important to restore soil
microbial activities and communities for the sustainability of reclaimed soil ecosystems [19].
For a long time, research on reclaimed soil has mainly focused on the improvement of
soil physicochemical status and vegetation characteristics [20,21]. However, there are few
studies on microbial population, diversity, and function in reclaimed soil.

The sustainability of terrestrial agroecosystems depends to a great extent on soil
bacterial diversity for sustaining soil biological activity and crop productivity [22,23].
Fertilization can effectively improve soil nutrient conditions and affect soil microbial
communities [24,25]. Generally, the application of organic fertilizer is beneficial to soil
microbial communities [26–28], while the long-term application of chemical fertilizer can
decrease soil microbial diversity in farmland [24,29,30]. At present, fertilization is the
most effective way to restore cultivated land and improve soil in mining subsidence
areas. Different fertilization methods have different effects on soil physical and chemical
properties and microbial community. Therefore, an in-depth study on the changes in
microbial community composition in reclaimed soil caused by fertilization will help to
further understand how soil fertility affects the changes in microbial communities during
the restoration of disturbed land to farmland.

The present study was carried out to investigate the response of bacterial communi-
ties to land reclamation with different fertilizers. Illumina high-throughput sequencing
technology was used to compare the bacterial community structure and diversity in re-
claimed soil with those in adjacent unreclaimed soil (from adjacent farmland and subsided
land) from a mining area (in the same edaphic-climatic area) in Shanxi Province, China.
We hypothesized that fertilization activity in the process of reclamation could improve
soil nutrients and increase bacterial community diversity, and the variation of bacterial
community structure may be related to changes in physicochemical properties, such as
pH, soil organic matter, available nitrogen, phosphorus, and potassium. This study could
identify an effective and appropriate method for the rapid restoration of soil fertility and
provide a valuable reference for the soil restoration of coal mining subsidence areas with
similar climatic and soil conditions.

2. Materials and Methods
2.1. Experimental Site Description

The field experimental area is located in the Lu’an coal mine (36◦28′12′ ′ N, 113◦00′53′ ′

E), Xiangyuan county in Shanxi, China. This region has a warm and semi-humid continental
monsoon climate with a frost-free period of 160 d. The average annual temperature is about
9.5 ◦C, with monthly mean minimum temperatures occurring in January (−8.1 ◦C) and
monthly mean maximum temperatures in July (23.4 ◦C). The mean annual precipitation is
approximately 532.8 mm and mainly occurs from July to September. The soil type of the
research area is calcareous cinnamon soil with silty loam, which is classified as Luvisols
according to the World Reference Base (FAO) system [31]. In this region, coal mining has
triggered the goaf in underground mines and formed land subsidence since the 1970s.
Land consolidation, including topsoil stripping, land leveling, and backfilling, was carried
out using large loaders before the reclamation in the autumn of 2008. The leveled land was
divided into separate plots for fertilizer reclamation.

2.2. Experimental Treatments and Soil Sampling

The field experiment in this reclaimed site included three fertilization amended treat-
ments: without fertilizer (CK), chemical fertilizer (CF), and manure (M) treatment. The
chemical fertilizer was applied as urea, calcium superphosphate, and potassium chloride
in CF. Decomposed chicken manure (27.8% organic matter, 1.68% N, 1.54% P2O5, and
0.82% K2O) was provided as an organic amendment at a rate of 12,000 kg·ha−1 in the M
treatment. An equal amount of 201 kg N·ha−1, 185 kg P2O5·ha−1, and 98.5 kg K2O·ha−1

was applied before corn sowing in the fertilizer treatments. The treatments were arranged
in a randomized complete block design with three replicates, and the size of each plot
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was 100 m2. Maize (Zea mays L.) was continuously planted in each plot from 2009 to 2015.
According to local farming practices, crops are sown on or about May 1 and harvested on
October 1. In addition, two unreclaimed treatments (SU and FA) were selected as controls
for the reclaimed site. SU is a neighboring unclaimed subsidence site, and its surface
vegetation is sparse and naturally growing weed. FA is another adjacent farmland that
has been disturbed by coal mining and has been planting maize using local traditional
fertilizing practices for many years.

Soil samples were collected after the maize harvest in October 2015. A total of fifteen
individual soil samples (5 treatments × 3 replicates) represent three reclaimed treatments
(CK, CF, and M) and two controls (SU and FA). All the soil samples were taken using a
hand auger (5 cm diameter) at a depth of 0–20 cm after the superficial vegetation was
removed, and each sample was a composite of six subsamples randomly collected from
the five treatments. After mixing thoroughly, the homogeneous composite soil samples
were enclosed in sterile plastic bags and transferred to the laboratory on ice. The samples
were sieved through a 2.0 mm mesh and immediately divided into two parts: one part
was stored at −80 ◦C for further molecular analysis, and the other was air-dried for
chemical determination.

2.3. Selected Soil Properties Analysis

Soil pH was measured with a soil–water mixture (1:1) using a glass combination
electrode [32]. Soil organic matter (SOM) was measured according to the method described
by Strickland and Sollins [33]. The Mason-jar diffusion method by Bremner [34] was used
to determine the soil alkali-hydrolyzable nitrogen (AN). Available phosphorus (AP) was
analyzed by resin extraction following a protocol modified from Hedley and Stewart [35].
Available potassium (AK) was extracted with ammonium acetate and determined by flame
photometry [36].

2.4. DNA Extraction, PCR Amplification, Illumina MiSeq Sequencing, and Sequencing
Data Processing

Soil microbial DNA was extracted from approximately 1 g of soil samples using the
TIANamp Genomic DNA Kit (TIANGEN Biotech, Beijing, China, Cat. No.: DP304) accord-
ing to the manufacturer’s instructions. The integrity of the extracted DNA was assessed
by agarose gel electrophoresis (1%), and the concentration and purification of the DNA
(2 µL) were determined using NanoDrop ND-1000 microspectrophotometry (NanoDrop
Technologies, Wilmington, DE, USA). The bacterial primer set of forward primer 341F (5′-
CCTACGGGNBGCASCAG-3′) and reverse primer 806R (5′-GACTACNVGGGTATCTAATCC-
3′) was used to amplify the 16S rDNA gene sequence in the V3–V4 hypervariable region
(465 bp). PCRs were carried out in triplicate, 25 µL reactions with 2.5 µL of Ex Taq buffer
(Takara Bio Inc., Kusatsu, Japan, Takara code: RR001B), 1.5 µL of 2.5 mM Mg2+, 2 µL
of 2.5 mM dNTPs, 0.25 µL Ex Taq DNA Polymerase (Takara Bio Inc., Kusatsu, Japan,
Takara Code: RR001B), 16.75 µL of double-distilled water, 10 µM of each primer, and
approximately 20 ng of DNA template. The amplification program consisted of an initial
denaturation step of 94 for 2 min, followed by 30 cycles of denaturation at 94 for 30 s,
annealing at 50 for 30 s, and elongation at 72 for 30 s, with a final extension at 72 for
5 min. Replicate reaction mixtures of the same sample were assembled within a PCR
tube. After visualization on agarose gels (1% in TBE buffer) containing ethidium bromide,
PCR products were purified using the QIAquick PCR Purification Kit (QIAGEN, Hilden,
Germany, Cat. No.: 28106) and quantified with a NanoDrop ND-1000 spectrophotome-
ter (NanoDrop Technologies, Wilmington, DE, USA). Purified amplicons were pooled in
equimolar concentrations and paired-end sequenced on the Illumina MiSeq TM System
platform according to the manufacturer’s protocols.

Sequence analysis was conducted using quantitative insights into the microbial ecol-
ogy (QIIME) pipeline (version 1.7.0), as previously described by Fadrosh et al. [37]. After
the barcodes and primers were trimmed, and low-quality sequences were removed (<Q20),
the remaining high-quality reads were clustered into operational taxonomic units (OTUs)
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based on their sequence similarity at 97%. Community richness and diversity indices based
on the number of OTUs and rarefaction curves were obtained using the Mothur software
(version 1.34.0, Pat Schloss, Michigan, USA). Prior to the data analysis, the alpha-diversity
indices of the bacterial community, including Good’s coverage, Chao1, ACE, and the
Shannon index, were calculated based on an appropriate subsample depth.

2.5. Statistical Analysis

Statistical analyses were performed by one-way analysis of variance (ANOVA) using
the PASW Statistics program (version 18.0 for windows). The means were segregated using
Duncan’s multiple comparison test with a significance level of p < 0.05. Pearson’s correla-
tion analysis was conducted to evaluate the correlations between soil physicochemical and
microbiological characteristics. To compare bacterial community structures across all soil
samples, principal coordinate analysis (PCoA) and cluster analysis were performed based
on the unweighted UniFrac distance matrix [38]. Redundancy analysis (RDA) was carried
out to examine the relationship between abundant phyla (proteobacterial classes) and soil
physicochemical characteristics [39].

3. Results
3.1. Soil Properties

The result showed that fertilizer reclamation clearly affected the soil nutrient amounts.
As shown in Table 1, the subsidence soil showed the lowest nutrient amounts. The amounts
of SOM in the SU treatment were 36.56% of that in the FA treatment, and AN, AP, and
AK in the SU treatment accounted for 33.97%, 16.37%, and 61.14%, respectively. After
the 7-year fertilizer reclamation, the amounts of SOM, AN, AP, and AK were consistently
increased in the reclamation-treated soil compared with the subsidence soil. The SOM and
AN amounts in the CF and M treatments were significantly higher than those in the CK
treatment (p < 0.05). Significantly higher SOM and AN amounts (p < 0.05) were obtained
in the M treatment compared with the CF treatment. The highest pH was observed in the
subsidence soil, and fertilizer reclamation decreased the soil pH (Table 1). However, there
was no significant difference in soil pH between CF treatment and M treatment.

Table 1. Soil chemical characteristics in different treatments.

Treatments pH SOM (g·kg−1) AN (mg·kg−1) AP (mg·kg−1) AK (mg·kg−1)

SU 8.06 ± 0.06 a 9.74 ± 0.28 e 16.51 ± 0.58 e 3.18 ± 0.12 c 123.30 ± 4.61 b

CK 7.91 ± 0.03 b 11.37 ± 0.59 d 24.68 ± 1.01 d 4.65 ± 0.31 c 135.30 ± 2.31 b

CF 7.84 ± 0.02 bc 14.06 ± 0.46 c 27.13 ± 1.46 c 17.75 ± 1.54 b 233.57 ± 15.32 a

M 7.76 ± 0.02 c 18.15 ± 0.51 b 35.60 ± 0.68 b 19.46 ± 1.47 b 236.36 ± 19.58 a

FA 7.85 ± 0.03 bc 26.64 ± 0.40 a 48.59 ± 2.33 a 35.60 ± 0.68 a 201.7 ± 15.78 a

Values followed by different lowercase letters (a–e) are significantly different (p < 0.05) according to Duncan’s
multiple comparison test; SOM: organic matter; AN: alkali-hydrolyzable nitrogen; AP: available phosphorus;
AK: available potassium; CK: reclaimed soil sampled in no-fertilizer treatment; CF: reclaimed soil sampled in
chemical fertilizer treatment; M: reclaimed soil sampled in manure treatment. SU: subsided soil sampled in an
adjacent site; FA: soil sampled in another adjacent farmland.

3.2. Soil Bacterial Abundance and Diversity

A total of 138,894 high-quality sequences (average read length of 440 bp) were obtained
from all the soil samples. These optimized sequences were clustered into OTUs by Mothur
software. As shown in Table 2, the Sobs values in all treatments were in the range of
3672–11,030, and the lowest Sobs was found in the SU treatment. There was no significant
difference in Sobs between the reclaimed soil (CK, CF, and M) and farmland soil (FA), but
they were significantly higher than those in the subsided soil (SU). Venn analysis (Figure 1)
showed that 805 Sobs were found in all five treatments, accounting for 7.2–21.92% of each
treatment, respectively. A total of 3478 Sobs were detected in the CK, CF, and M treatments,
which were 31.53–35.59% of their total number. In addition, 5131 Sobs were detected in the
CF and M treatments, accounting for 46.52% and 46.56% of their total Sobs, respectively.
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The unique Sobs out of all the treatments accounted for 21.52–88.82%, indicating that there
were differences in the composition of the soil bacterial community among the treatments.

Table 2. Estimated number of observed Sobs, coverage, richness, and diversity in different treatments.

Treatments Sobs Coverage
Richness and Diversity Indices

Chao1 ACE Shannon

SU 3672 ± 195 b 0.97 ± 0.01 a 4455 ± 323 c 4358 ± 319 c 10.02 ± 0.24 d

CK 10803 ± 106 a 0.96 ± 0.02 a 13864 ± 174 b 14078 ± 242 b 11.37 ± 0.05 c

CF 11021 ± 731 a 0.94 ± 0.01 ab 15190 ± 463 a 15621 ± 413 a 11.60 ± 0.05 b

M 11030 ± 337 a 0.95 ± 0.00 a 15330 ± 216 a 15845 ± 170 a 11.39 ± 0.12 c

FA 9772 ± 288 a 0.91 ± 0.02 b 14430 ± 313 a 14988 ± 302 a 11.77 ± 0.04 a

Values followed by different lowercase letters (a–d) are significantly different (p < 0.05) according to Duncan’s
multiple comparison test; Sobs: the species of OTU that can be detected; Coverage: Good’s nonparametric
coverage estimator; ACE: abundance-based coverage estimator; Shannon: nonparametric Shannon diversity
index. CK: reclaimed soil sampled in no-fertilizer treatment; CF: reclaimed soil sampled in chemical fertilizer
treatment; M: reclaimed soil sampled in manure treatment. SU: subsided soil sampled in an adjacent site; FA: soil
sampled in another adjacent farmland.
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Figure 1. OTU Venn analysis of different treatments. OTU: Operational Taxonomic Units; CK:
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The result of bacterial community diversity is presented in Table 2. The SU treatment
showed the lowest Chao1, ACE, and Shannon index (alpha-diversity indices), which were
significantly different from those in the reclaimed soil. After reclamation, soil bacterial
diversity and abundance in the reclaimed soil were significantly higher than those in the
subsidence soil (p < 0.05). However, Chao1 and ACE showed no significant difference
among the CF, M, and FA treatments, which were significantly higher (p < 0.05) than those
in the CK treatment. The Shannon index of the FA treatment was the highest (11.77) and
significantly higher than those of the reclamation treatments (CK, CF, and M). In addition,
the Shannon–Weiner curve showed similar trends (FA > CF > M > CK > SU) in terms of
high species richness at 97% similarity (Figure S1). Good’s coverage values in all samples
ranged from 91% to 97% at a similarity cutoff of 97%, indicating that the current numbers
of sequence reads were sufficient to capture the bacterial diversity in these soils.
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3.3. Soil Bacterial Taxa Community Composition

Based on the Illumina platform analysis, sequences from all soil samples were classi-
fied into 54 different phyla, 138 classes, 213 orders, 244 families, 423 genera, and 218 species
(Figure S2). Proteobacteria were the most abundant phyla, accounting for 20.15%–31.66%
in these five treatments (Figure 2a). Furthermore, classes of Alphaproteobacteria, Betapro-
teobacteria, Deltaproteobacteria, and Gammaproteobacteria were detected in this study, and
Alphaproteobacteria was the most abundant phylum, accounting for 41.48% of total Pro-
teobacteria sequences. Other predominant phyla were Actinobacteria (27.80%), Acidobacteria
(7.96%), Bacteroidetes (7.42%), Chloroflexi (7.21%), and Gemmatimonadetes (6.62%), accounting
for 81.30% of the bacterial sequences. Additionally, Firmicutes (2.81%), Planctomycetes
(2.01%), Cyanobacteria (1.50%), Nitrospirae (1.25%), TM7 (1.07%), and Verrucomicrobia (1.01%)
were present in soil samples with lower relative abundances, which occupied 9.65% of
bacterial sequences (Figure S2 and Figure 2a).

The distribution of predominant bacterial phyla (classes) between the different treat-
ments is illustrated in Figure 2a. Although similar main phyla (classes) existed in the
selected treatments, the relative abundance of taxa in these treatments was different. No
significant differences in the abundance of Gemmatimonadetes and Verrucomicrobia were
observed in all treatments (Table S1). The highest relative abundance of Acidobacteria
(9.37%), Chloroflexi (9.85%), and Nitrospirae (5.88%), as well as the lowest abundance of
Alphaproteobacteria (4.16%), Gammaproteobacteria (3.85%), and Actinobacteria (16.12%), was
detected in the SU treatment. Alphaproteobacteria (15.32%), Planctomycetes (2.44%), and
Deltaproteobacteria (6.34%) showed the highest relative abundance in the FA treatment,
while Firmicutes showed the lowest abundance. In the reclaimed soil, Bacteroidetes and
Firmicutes were remarkably distinct (p < 0.05) in the CK treatment as compared with those
in the CF and M treatments. Moreover, the respective abundances of the top 10 genera
were examined to compare the distribution of bacterial genera in the different treatments
(Figure 2b). It was found that the most bacterial taxa at the phylogenetic of genera dif-
fered greatly among the selected treatments, except for Streptomyces and Bacillus (Table S1).
The lowest (p < 0.05) relative abundance of Sphingomonas (0.12%), Rhodoplanes (0.24%),
Skermanella (0.09%), Steroidobacter (0.24%), and Lentzea (0.14%) was obtained in the SU
treatment. The abundance of Kaistobacter in the M treatment (2.42%) was significantly
(p < 0.05) higher than that in the FA treatment (1.62%). The highest (p < 0.05) abundance
of Lentzea (1.16%) and Balneimonas (0.94%) was observed in the CF and FA treatments,
respectively. Furthermore, the abundance of Balneimonas and Lentzea were significantly
distinct (p < 0.05) between the CF and M treatments.

PCoA analysis based on the unweighted UniFrac distance metric was conducted to
estimate β-diversity, which clearly revealed the variation of bacterial community among
the treatments (Figure 3a). The first and second principal components explained 47.96%
(PC1) and 11.25% (PC2) of the variance, respectively. As illustrated in the results of PCoA,
the soil bacterial community in the SU treatment (with lower soil nutrient content) was
separated from that in the CK, CF, M, and FA treatments (with higher soil nutrient content)
along the PC1 axis. The soil bacterial community in the farmland soil (with higher soil OM,
AN, and AP) was separated from that in the reclamation soil (CK, CF, and M treatments)
along the PC2 axis. In addition, the CF and M treatments were clustered together and
located in the first quadrant. It meant that the soil from the CF and M treatments had some
of the same Sobs but at different levels. Moreover, Bray–Curtis analysis of dissimilarity
(ANOSIM, R = 0.778, p = 0.001) showed that the differences between groups were larger
than within groups, thus there was dissimilarity between the groups.
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Figure 3. (a) Principal coordinate analysis (PCoA) based on unweighted UniFrac distances of soil
bacterial communities sampled from different treatments; (b) similarity trees based on Bray–Curtis
distance indices were calculated by OTUs at a distance of 3% using the hierarchical clustering
analysis of bacterial communities for soil samples. CK: reclaimed soil sampled in no-fertilizer
treatment; CF: reclaimed soil sampled in chemical fertilizer treatment; M: reclaimed soil sampled
in manure treatment. SU: subsided soil sampled in an adjacent site; FA: soil sampled in another
adjacent farmland.

A hierarchical cluster analysis based on the beta distance matrix was conducted to
compare the similarity of the soil bacterial community in the different treatments. The
results showed that soil samples (three replicates) from the subsidence site were grouped
together and differed from other samples (Figure 3b). The other samples were clustered
into two main groups: one group consisting of reclaimed soil samples from the CK, CF,
and M treatments and the other consisting of samples from the FA treatment. In addition,
the cluster tree revealed that the bacterial communities in the soil of the CF treatment
were similar to that of the M treatment, which was different from that of the CK treatment.
Overall, the results of cluster analysis were in line with PCoA.
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3.4. Relationship between Soil Properties and Bacterial Community Composition

The results of Pearson’s correlation analysis showed that soil properties were highly
related to bacterial abundance and diversity. As shown in Table 3, soil pH showed signifi-
cant negative correlations with Chao1 (r = −0.826, p < 0.01), ACE (r = −0.824, p < 0.01), and
Shannon index (r = −0.745, p < 0.01). In contrast, SOM, AN, and AP showed significant
positive correlations with Chao1 (r = 0.545–0.606, p < 0.05), ACE (r = 0.564–0.659, p < 0.05,
p < 0.01), and Shannon index (r = 0.559–0.623, p < 0.05). AK was positively correlated with
Chao1 (r = 0.644, p < 0.01) and ACE (r = 0.656, p < 0.01).

Table 3. Pearson’s correlation coefficients between soil physicochemical characteristics and Sobs, and
diversity indices.

Pearson Sobs Chao1 ACE Shannon

pH −0.768 ** −0.826 ** −0.824 ** −0.745 **
SOM 0.399 0.545 * 0.564 * 0.616 *
AN 0.463 0.572 * 0.647 ** 0.559 *
AP 0.377 0.606 * 0.659 ** 0. 623 *
AK 0.508 0.644 ** 0.656 ** 0.409

** Correlation is significant at the 0.01 level; * Correlation is significant at the 0.05 level. pH: potential of hydrogen;
SOM: organic matter; AN: alkali-hydrolyzable nitrogen; AP: available phosphorus; AK: available potassium.

Results of the RDA analysis are shown in Figure 4. Selected soil property factors
could explain 78.96% of the variation. The first and second axes of RDA explained 64.4%
and 9.6% of total variation in our data, respectively. The bacterial community of the FA
treatment was related to higher SOM, AN, and AP contents and lower pH, as shown
by the vectors, while that of the SU treatment was associated with higher pH and lower
soil nutrients (SOM, AN, and AP). As shown in Figure 4, the main group of phyla in the
CK, M, and CF treatments was closer to that in the FA treatment along the first axis with
decreasing pH and increasing soil nutrient contents. Furthermore, abundant phyla of
the M and CF treatments were more alike their closer distance than the other treatments.
The contributions of the selected physicochemical factors followed this trend: pH > SOM
> AP > AN > AK, and their contributions were 39.34%, 27.59%, 18.27%, 13.80% and
11.27%. It is indicated that the structure of the bacterial community was closely correlated
with soil properties and mainly shaped by soil pH and SOM. Pearson’s correlation was
calculated between the most abundant bacterial phyla (Proteobacteria classes) and soil
environmental factors (Table S2). We found that the relative abundance of dominant
phyla (Proteobacteria classes), such as Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes,
and Planctomycetes, showed significantly negative correlations with soil pH and positive
correlations with AK (p < 0.05; p < 0.01). Chloroflexi, Firmicutes, and Nitrospirae showed
significantly positive correlations with pH and negative correlations with SOM, AN, and
AK (p < 0.05; p < 0.01). Alphaproteobacteria and Planctomycetes were positively correlated
with SOM and AN (p < 0.05; p < 0.01), and Actinobacteria was positively correlated with AN
(p < 0.05). Additionally, Acidobacteria, Gemmatimonadetes, Verrucomicrobia, and TM7 had no
significant correlation with the selected soil factors.
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Figure 4. Redundancy analysis (RDA) of abundant phyla (proteobacterial classes) and selected soil
edaphic properties such as pH, SOM, AN, AP, and AK for individual samples from three sites.
SOM: organic matter; AN: alkali-hydrolyzable nitrogen; AP: available phosphorus; AK: available
potassium; CK: reclaimed soil sampled in no-fertilizer treatment; CF: reclaimed soil sampled in
chemical fertilizer treatment; M: reclaimed soil sampled in manure treatment. SU: subsided soil
sampled in an adjacent site; FA: soil sampled in another adjacent farmland. TM7: the phylum
candidatus Saccharibacteria. The red arrow: soil property factors; The blue arrow: the main group of
bacteria phyla.

4. Discussion
4.1. Effects of Reclamation on Soil Properties and Bacterial Community

Coal mining disturbance and reclamation can change original soil physical and chemi-
cal characteristics, consequently affecting soil microbial community structure and diver-
sity [16,40,41]. In general, coal mining activity and preliminary engineering reclamation,
including stripping, reconstruction, and tillage, lead to the disturbance of vegetation and
original surface soil structure, resulting in the degradation of soil bacterial diversity. In our
study, the lower soil nutrients and bacterial community diversity shown in the subsided
soil were mainly attributable to the deficient management and high erosion rates in the
post-mined soil. After 7-year consecutive fertilizer reclamation, Proteobacteria, Actinobacteria,
Acidobacteria, Bacteroidetes, Chloroflexi, and Gemmatimonadetes were the main bacterial phyla
(Figure S2). In particular, Proteobacteria and Actinobacteria, as the copiotrophic groups living
in nutrient-rich conditions, were the most dominant phyla in the reclaimed soil (Figure 2a),
which is in agreement with previous studies [42–44]. This consistency of dominant phyla
in different mining areas indicates that these bacteria play an important role in soil im-
provement in mining areas and have a wide range of adaptability to the soil environment
of the mining area.

In this study, we found Alphaproteobacteria was the largest subgroup of Proteobacteria
in the reclaimed soil. Moreover, the populations of Rhizobiales, Rhodospirillales, and Sphin-
gomonadales affiliated with the alpha-subclass were also observed in significant proportions
in the reclaimed soil (Table S1). The bacterial community of those functional species played
an important role in C, N cycles and in maintaining the integrity of the coal mine ecosys-
tem [45]. This is consistent with our findings of higher SOM and AN in the reclaimed soil.
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In contrast, we found Chloroflexi (9.85%) was the advantageous population in the subsi-
dence soil (Table S1) and showed lower abundance in the reclaimed soil with improvement
in soil nutrients. This is mainly because this bacterium is a kind of autotrophic bacterium
that does not depend on the nutrient supply in the environment and has a survival ad-
vantage in barren soil [32]. We also found a higher abundance of Acidobacteria (9.37%)
in the subsidence soil (Table S1). As a type of slow-growing oligotroph [46] with a rich
diversity of metabolism and function, they prefer oligotrophic living environments with
poor available carbon sources [47]. Our results demonstrated that the accumulation of soil
available nutrients promoted copiotrophic bacteria but negatively affected the oligotrophic
groups [8].

Reclamation significantly increased the nutrient contents (SOM, AN, AP, and AK)
of reclaimed soil, improved the abundance and diversity of bacteria, and promoted the
restoration of the soil microbial community in the mining area [2,16,18,48]. In the present
study, bacterial communities were restored after 7 years of reclamation with the increase
in soil fertility, but it still differed from the adjacent farmland soil. In the reclaimed soil,
the bacterial community composition of the organic fertilizer and chemical fertilizer treat-
ments showed higher similarity (PCoA and cluster analysis). We found that Actinomycetes
in manure treatment were slightly more abundant than those in the chemical fertilizer
treatment (Table S1). Furthermore, Lentzea (affiliated to Actinomycetales) in the manure
treatment were also significantly higher than those in the chemical fertilizer treatment
(Table S1). This may be because manure contains more carbon and nitrogen sources for the
growth of Actinomycetes than chemical fertilizers. In addition, the organic matter in manure
can improve the aggregation and water-holding capacity of the soil, which is beneficial
to the growth of Actinomycetes. We also observed that soil treated with manure had a
higher abundance of Balneimonas (affiliated with Rhizobiales) than soil treated with chemical
fertilizer (Table S1), probably because the dramatic increase in organic matter in manure
could promote the intensive reproduction of this microbial taxon [49].

The results of PCoA and cluster analysis confirmed the distinct difference in bacterial
community composition existed between the reclaimed and subsided soil (Figure 3a,b). It
should be noted that the CK treatment (planting maize without fertilization for 7 years)
significantly increased SOM and AN compared with the SU treatment, which resulted in el-
evated bacterial richness and diversity indices. This is mainly because the input of previous
maize residues and the exudates released by maize roots through consolidation directly
provided the energy source for microorganisms [50]. Additionally, aboveground maize can
also alter the soil bacterial community by affecting the quality and quantity of microbial
metabolic substrates [51]. These results indicated that surface vegetation restoration was
also an important factor affecting bacterial communities in the reclaimed soil. However, the
influences of various plants on soil microorganisms and soil physicochemical properties
are different [52,53]. Different results could be obtained if other plants were selected in the
soil reclamation of the mining area in this study.

Fertilization can improve soil quality and accelerate soil maturation, which further
affects the diversity and richness of bacteria [25]. The application of organic fertilizer can im-
prove soil structure and function and promote microbial richness and abundance [26–28,45],
which is consistent with our results. In our study, nutrient contents and bacterial richness
(Chao1 and ACE) in soil treated with manure were higher than those treated with chemical
fertilizer (Tables 1 and 2), which may be related to the input of organic matter. In addition,
it is probably because the original bacteria from manure contributed to the increase in
bacterial species. Conversely, the CF treatment had remarkably higher bacterial diversity
(Shannon index) than the M treatment (Table 2), mainly due to the mineral nutrient supplied
by chemical fertilizer being sufficient to induce the corresponding bacterial population in
the root system and increase the soil bacterial diversity. In addition, a dramatic increase
in organic matter contained in mature crops could promote the intensive reproduction
of some microbial groups (Proteobacteria, Actinobacteria, and Bacteroidetes), resulting in the
decrease in soil bacterial diversity [49]. It has been reported that the long-term application
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of chemical fertilizer can destroy soil structure, cause soil acidification, reduce soil enzyme
activity, and decrease microbial biomass and diversity [24,29,30]. In this study, fertilizers
also significantly increased the abundance and diversity of soil bacteria, which may be
related to the lower nutrient levels in the soil before fertilization treatment. It should be
pointed out that, under equal nutrient conditions, much more manure will be applied
than chemical fertilizer because of its fewer available nutrients. Therefore, the detrimental
effects of heavy metal accumulation and antibiotic residues on soil bacteria caused by the
extensive application of manure [54–56] cannot be ignored.

4.2. Effects of Soil Properties on Bacterial Community Composition

Soil microorganisms are closely related to soil properties [13,16,25,57]. Many studies
have reported that improved soil fertility resulted in higher bacterial abundance and
diversity [45,58,59]. In this experiment, we found that Chao1, ACE, and Shannon index
were positively correlated with SOM, AN, AP, and AK (p < 0.01 or p < 0.05). It is indicated
that the accumulation of soil organic matter and nutrients could be a good explanation for
the higher bacterial richness and diversity indices in the reclaimed soil (Table 3). We also
found that most of the abundant phyla or classes were significantly correlated with one
or more selected soil properties, emphasizing the critical role of soil organic matter and
nutrients in shaping the abundance and diversity of the soil bacterial community.

Previous studies have indicated that pH, SOM, and AN are the main factors affecting
the composition of bacterial communities in soil [60–63], which is consistent with our study.
In this study, pH was the major factor affecting the bacterial community structure in the
reclaimed soil. After 7 years of reclamation, soil pH was significantly reduced. Moreover,
the application of chemical fertilizer and manure decreased the soil pH, but there was no
significant difference with no fertilizer (CK). This may be due to the short reclamation
time (≤7 years) resulting in the insufficient effect of fertilization on soil pH (Table 1).
Furthermore, it may relate to our experimental calcareous soil [8]. In this experiment,
bacterial diversity increased with the decrease in soil pH (Table 2). It was found that
there was a positive correlation between soil pH and Nitrospirae because Nitrospirae are
sensitive to soil acidity and usually have a high abundance in alkaline soil [8,64]. Moreover,
the abundance of Actinobacteria and Bacteroidetes had a negative correlation with the soil
pH (Table S2), indicating that the bacteria were most abundant in agricultural soil near
neutral pH [63,64]. It was also found that pH had a closer relationship with Chao1, ACE,
and Shannon index (Table 3) than soil nutrients (SOM, AN, and AP) did. It is indicated
that the soil bacterial diversity and community structure are shaped more by changes in
soil pH than by direct nutrient addition (Zhang et al. 2017). In addition, soil pH could
affect the structure of soil bacterial communities by altering many other environmental
factors [42,65].

SOM is another major factor that was found to influence the soil bacterial community.
It was observed that there were significant positive correlations with SOM, Chao1, ACE, and
Shannon index (p < 0.05, Table 3). These results suggested that the restoration of bacterial
diversity occurred gradually with the accumulation of soil organic carbon. Soil organic
matter is considered to be one of the most common indicators of soil quality. The increase
in soil organic matter can promote soil aggregation and improve soil physical properties
(e.g., soil structure, bulk density, and water storage) and nutrients, which contributed to
the growth and restoration of bacteria in the reclaimed soil. In addition, as a reservoir of
carbon and nitrogen sources, the successive decomposition of SOM can produce diverse
substrates for microbiota, thus contributing to the improvement of bacterial community
diversity [45]. It was also pointed out that SOM had a significant positive correlation with
the abundance of Proteobacteria, Actinobacteria, and Bacteroidetes (p < 0.05, RDA). These
copiotrophic bacteria have a higher abundance in reclaimed soil for their fast growth rates
in nutrient-rich conditions [46].

The aim of reclamation in the mining land is to re-establish a productive, healthy, and
sustainable ecosystem suitable for post-mining land use. The restoration of soil fertility
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by increasing soil nutrients and enriching microbial populations is an effective method
for ecological restoration in mining areas [66]. However, the reestablishment of the soil
microbial community in mining subsidence areas not only depends on the reclamation
practices but also the reclamation time. In general, soil nutrients are gradually accumulated
with the increase in reclamation time, and soil fertility can approach a relatively stable
or predisturbance level after almost 20 years of reclamation [2,48,59]. Studies on mining
reclamation suggest that the most important recovery phase of microbial community occurs
between 5 and 20 years after reclamation, and the difference is mainly associated with
several critical factors, including reclamation practice, soil properties, climatic conditions,
and vegetation [16,18,51]. In our study, soil nutrient and bacterial community diversity
were significantly improved after 7 years of reclamation but did not reach the level of
adjacent farmland soil. Continuous monitoring of soil nutrients and microbial communities
in selected sites will be still needed in the future.

5. Conclusions

In summary, coal mining subsidence greatly reduced soil fertility and changed the bac-
terial community. Reclamation could promote the soil bacterial diversity and community
composition in coal mining areas by improving soil physical and chemical characteristics.
According to our hypothesis, the soil bacterial richness and diversity were elevated with
the improvement of soil nutrients after 7 years of reclamation, but it still did not reach the
level of the adjacent farmland soil. Moreover, fertilization (organic fertilizer and chemical
fertilizer) could significantly increase the soil bacterial abundance, while inorganic fertilizer
had a more obvious impact on bacterial diversity. In addition, soil physicochemical factors
affected by the soil fertilizer remediation, especially SOM and pH, are critical in shaping
the main bacterial populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijerph182312504/s1, Figure S1: Shannon wiener curves of OUT cluster at 97% sequence
identity across different soil samples, Figure S2: The composition of the bacterial community taxa in
all soil samples. Table S1: Relative abundance of dominant bacterial community taxa in different
treatment, Table S2: Pearson’s correlation coefficients between soil properties and dominant bacterial
community taxa.
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