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Objective: This study aimed to explore shared genetic etiology and the causality between
smoking status and type 2 diabetes (T2D), cardiovascular diseases (CVDs), and related
metabolic traits.

Methods: Using summary statistics from publicly available genome-wide association
studies (GWASs), we estimated genetic correlations between smoking status and T2D, 6
major CVDs, and 8 related metabolic traits with linkage disequilibrium score regression
(LDSC) analysis; identified shared genetic loci with large-scale genome-wide cross-trait
meta-analysis; explored potential shared biological mechanisms with a series of post-
GWAS analyses; and determined causality with Mendelian randomization (MR).

Results: We found significant positive genetic associations with smoking status for T2D
(Rg = 0.170, p = 9.39 × 10−22), coronary artery disease (CAD) (Rg = 0.234, p = 1.96 × 10−27),
myocardial infarction (MI) (Rg = 0.226, p = 1.08 × 10−17), and heart failure (HF) (Rg = 0.276,
p = 8.43 × 10−20). Cross-trait meta-analysis and transcriptome-wide association analysis of
smoking status identified 210 loci (32 novel loci) and 354 gene–tissue pairs jointly associated
with T2D, 63 loci (12 novel loci) and 37 gene–tissue pairs with CAD, 38 loci (6 novel loci) and
17 gene–tissue pairs with MI, and 28 loci (3 novel loci) and one gene–tissue pair with HF. The
shared loci were enriched in the exo-/endocrine, cardiovascular, nervous, digestive, and
genital systems. Furthermore, we observed that smoking status was causally related to a
higher risk of T2D (b = 0.385, p = 3.31 × 10−3), CAD (b = 0.670, p = 7.86 × 10−11), MI
(b = 0.725, p = 2.32 × 10−9), and HF (b = 0.520, p = 1.53 × 10−6).

Conclusions: Our findings provide strong evidence on shared genetic etiology and causal
associations between smoking status and T2D, CAD, MI, and HF, underscoring the potential
shared biological mechanisms underlying the link between smoking and T2D and CVDs. This
work opens up a new way of more effective and timely prevention of smoking-related T2D
and CVDs.
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INTRODUCTION

Despite concerted efforts to combat the global tobacco epidemic,
tobacco smoking remains the leading preventable cause of
morbidity and mortality (1). Smoking has multiple well-known
adverse health effects (2, 3), and its association with type 2 diabetes
(T2D) and cardiovascular diseases (CVDs) has been a major public
health concern. Considerable studies, both prospective cohort
studies among different population groups (4–6) and meta-
analyses (7–10), have provided compelling evidence of the
important role of smoking in increasing the risk of T2D and
CVDs. Approximately 30%~40% of the increased risk of T2D (2)
and 20%~30% of all CVD deaths (11, 12) compared to never
smokers are attributed to smoking. In addition, previous twin or
family studies have shown that smoking, T2D, and many CVDs,
such as coronary artery disease (CAD), are heritable traits (13–15),
and the heritability was estimated to range from 4% to 19% for
smoking phenotypes (16, 17), 17%~23% for T2D (18), and 14%
~21% for CAD (19, 20) in recent large-scale genome-wide
association studies (GWASs). Furthermore, genetic correlations
between several smoking phenotypes and T2D or CVDs have
been observed (16, 21). For example, two recent large-scale
GWASs on tobacco use revealed that smoking initiation was
genetically positively correlated with T2D, CAD, myocardial
infarction (MI), and heart failure (HF) and that cigarettes per day
and smoking cessation were genetically positively correlated with
CAD. More interestingly, single-nucleotide polymorphisms (SNPs)
in some genes have been reported to have effects on both smoking
and T2D or CVDs (22–24).

These lines of evidence suggest two possibilities to account for
such associations between smoking and T2D or CVDs. One is
pleiotropy. Smoking and T2D or CVDs may share common genetic
variants that simultaneously influence two or more of these traits or
disorders by engaging in common pathways or controlling common
risk factors. An alternative possibility is that causal associations may
exist between smoking and T2D or CVDs. In recent years, large
publicly available GWAS datasets and multiple state-of-the-art
statistical analysis methods including linkage disequilibrium score
regression (LDSC) (25), cross-trait meta-analysis (26),
transcriptome-wide association studies (TWAS) (27), and
Mendelian randomization (MR) analysis (28–31), can be utilized
to facilitate investigations of whether the comorbidity and risk
interrelationship of these traits or disorders can be explained by
common genetic variants or causality. Given these possibilities and
methodological advances, it is now important and feasible for us to
elucidate the mechanisms underlying the comorbidity between
smoking and T2D and CVDs. As is apparent from the literature,
the associations between smoking and T2D or CVDs varied due to
the differences in the measurement of smoking in different studies
(3–5, 8). In our study, we chose smoking status, an ordinal
categorical variable, which is divided into current smokers, former
smokers, and never smokers according to smoking intensity
and recency.

To our knowledge, no genetic study has systematically
explored the common genetic etiology between smoking status
and T2D and CVDs. Therefore, in the present study, we
conducted a comprehensive analysis using summary statistics
Frontiers in Endocrinology | www.frontiersin.org 2
from publicly available GWASs to explore shared genetic
etiology and the causality between smoking status and T2D,
CVDs, and related metabolic traits.
MATERIALS AND METHODS

Study Design and Data Summary
The whole study design is shown in Figure 1. Summary statistics
used in this study were extracted from publicly available GWASs.
The dataset of smoking status was from Gene ATLAS, consisting of
452,264 participants (32, 33). We retrieved summary statistics from
the Diabetes Genetics Replication And Meta-analysis (DIAGRAM)
Consortium for T2D (N = 898,130) (18). Generally, CVDs
encompass a broad range of disorders of the heart and blood
vessels including coronary heart disease, cerebrovascular disease,
and other conditions. In this study, we chose six common or
devastating CVDs including CAD (N = 148,715) (20) and MI
(N = 163,665) (34) from the Coronary Artery Disease Genome wide
Replication and Meta-analysis (CARDIoGRAM) plus the Coronary
Artery Disease (C4D) Genetics (CARDIoGRAMplusC4D)
consortium, HF (N = 977,323) (35) from the Heart Failure
Molecular Epidemiology for Therapeutic Targets (HERMES),
ischemic stroke (IS; N = 521,612) from the METASTROKE
collaboration (36), intracerebral hemorrhage (ICH; N = 3,026)
from the International Stroke Genetics Consortium (37), and
atrial fibrillation (AF; N = 133,073) from the Atrial Fibrillation
Genetics Consortium (38). In addition, several important T2D/
CVD-related metabolic traits were considered in this study,
including glycemic traits [fasting glucose (FG; N = 46,186), fasting
insulin (FI; N = 38,238), and the surrogate estimates of b-cell
function (HOMA-b; N = 36,466) and insulin resistance (HOMA-
IR; N = 37,037) derived from fasting variables by homeostasis model
assessment from the Meta-Analyses of Glucose and Insulin-related
traits Consortium (39) and blood lipids [high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C),
total cholesterol (TC), and triglyceride (TG), N = 188,577] from the
Global Lipids Genetics Consortium (40). The majority of the
participants were of European ancestry in each GWAS
(Supplementary Table 1). Detailed disease definition and baseline
characteristics for each study were described in previous studies (18,
20, 32–40). For example, smoking status, an ordinal categorical
variable based on several questions about smoking intensity and
recency, includes the categories of current smokers (those who have
smoked 100 cigarettes in their lifetime and currently smoke
cigarettes), former smokers (those who have smoked at least 100
cigarettes in their lifetime but had quit smoking at the time of
interview), and never smokers (those who have never smoked or
who have smoked less than 100 cigarettes in their lifetime) (32, 33).
T2D status was defined based on multiple sources of evidence,
including a self-reported history of T2D, doctor-diagnosed T2D,
antidiabetic treatment, fasting plasma glucose >7.0 mmol/L, or 2-h
plasma glucose >11.1 mmol/L (18). In CARDIoGRAMplusC4D,
CAD status was defined by an inclusive CAD diagnosis, including
MI, percutaneous transluminal coronary angioplasty (PTCA),
coronary artery bypass grafting (CABG), chronic ischemic heart
February 2022 | Volume 13 | Article 809445
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disease (IHD), and angina (20). More details of these datasets can be
seen in the original publications or related websites (18, 20, 32–40). In
this study, our analyses were restricted to autosomal chromosomes.

Statistical Analysis
Linkage Disequilibrium Score Regression
We used LDSC, a method requiring only GWAS summary statistics
and having no bias by sample overlap, to estimate genetic
correlations between smoking status and T2D, 6 major CVDs,
and 8 related metabolic traits (41). This method relies on an
algorithm that multiplies the Z score of the same SNP and two
different phenotypes and then regresses the product of the Z scores
from two phenotypes on the LD that the SNP has with all
neighboring SNPs (25, 41). The Bonferroni correction was used
to adjust multiple testing (two-tailed p < 0.05/15).

Partitioned Genetic Correlation
Genetic correlations within functional categories between smoking
status and T2D, CAD,MI, and HF were estimated using partitioned
LDSC to further describe the genetic overlap at the level of
functional categories (42). Eleven functional categories were
involved, including the DNase I digital genomic footprinting
(DGF) region, DNase I hypersensitivity sites (DHSs), fetal DHS,
intron, super-enhancer, transcription factor-binding sites (TFBS),
transcribed regions, and histone marks H3K4me1, H3K27ac,
H3K4me3, and H3K9ac. This method recalculated LD scores for
Frontiers in Endocrinology | www.frontiersin.org 3
SNPs partitioned in each particular functional category to estimate
the genetic correlation within that functional group.

Cross-Trait Meta-Analysis
We applied a cross-trait GWAS meta-analysis by the R package
Cross-Phenotype Association (CPASSOC) to further identify
shared loci of the above four trait pairs with strong and
significant genetic correlation (26). This method is robust to
sample overlap and accommodates different types of phenotypic
traits, correlated, independent, continuous, or binary traits. In
addition, the effects of trait heterogeneity, population structure,
and cryptic relatedness can be controlled by CPASSOC (26). SHet
was chosen as the main statistics. SNPs with PSHet < 5 × 10−8 and
trait-specific p < 0.01 were considered to have effects on both traits.

Fine-Mapping Credible Set Analysis
To identify the regions of shared loci more precisely, fine-mapping
credible set analysis based on a Bayesian algorithm was performed
to determine credible sets of causal variants at each of the shared loci
(43–45). The identified credible sets of causal variants were 99%
likely to contain causal disease-associated SNPs by extracting
variants that were highly linked (r2 > 0.4) with the index SNP
and within 500 kb of the index SNP (46).

Colocalization Analysis
A colocalization analysis by the R package coloc was applied to
determine whether the association signals of trait pairs colocalized at
FIGURE 1 | Overall study design. Multiple genome-wide association study (GWAS) data sources were first retrieved. We first conducted a genome-wide genetic
correlation analysis between smoking status and type 2 diabetes (T2D), six cardiovascular diseases (CVDs), and eight related metabolic traits. For the traits that
showed significant genetic correlation with smoking status, we further conducted post-GWAS analyses to investigate the genetic overlap between them (variant/
region/functional levels). Then, we also explored the causal relationship between smoking status and T2D, six CVDs, and eight related metabolic traits.
February 2022 | Volume 13 | Article 809445
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the same locus (47, 48). The probability that both traits are
associated and share a single causal variant (Coloc H4 Prob) was
calculated with variants extracted within 500 kb of the index SNP at
each of the shared loci. Loci with Coloc H4 Prob greater than 0.5
were considered to colocalize (49).

Tissue Enrichment Analysis, Overrepresentation
Enrichment Analysis, and Transcriptome−Wide
Association Study Analysis
To further understand the biological insights of the identified shared
genes between smoking status and T2D, CAD, MI, and HF, we
conducted multiple post-GWAS functional analyses. Based on
RNA-Seq data from the Human Protein Atlas (HPA) across 35
human tissues (50), we used the TissueEnrich web application to
calculate the tissue-specific gene enrichment and further understand
whether identified shared genes of each trait pair were enriched in
disease-relevant tissues (51).We applied theWebGestalt application
(52) to determine overrepresentation enrichment of the identified
shared gene set in Gene Ontology (GO) biological processes (53,
54). Furthermore, we conducted TWAS using the FUSION software
package and 48 Genotype-Tissue Expression (GTEx) (version 7)
reference weights (27) to explore the gene expression association in
different tissues between smoking status and T2D, CAD, MI, and
HF. The false discovery rate (FDR) Benjamini–Hochberg procedure
was applied to correct for multiple testing, and FDR < 0.05 was
regarded as significant.

Bidirectional Mendelian Randomization Analysis
Finally, we used the TwoSampleMR package to perform a
bidirectional MR analysis to explore the causality between
smoking status and T2D, 6 major CVDs, and 8 related metabolic
traits (28–31). Bidirectional MR is a form of causal inference
analysis that can estimate causal directions and effects by
employing genetic instruments selected from large-scale GWASs
(55), even in the presence of unmeasured confounders. Three basic
assumptions must be fulfilled to yield unbiased causal estimates in
the MR analysis: 1) the genetic instruments used must be associated
with the exposure, 2) the genetic instruments should be
Frontiers in Endocrinology | www.frontiersin.org 4
independent of the confounders between the exposure and
outcome, and 3) the genetic instruments affect the outcome only
through the exposure (46, 56). In this study, we extracted genetic
instruments (SNPs) with p < 5 × 10−8 from the GWAS summary
statistics of the exposure of interest, conducted the horizontal
pleiotropy test, and selected independent genetic instruments at
r2 < 0.001 to satisfy these three assumptions. For each potential
causality, the inverse variance-weighted (IVW) method was used to
obtain the primary causal estimates. The FDR Benjamini–Hochberg
procedure was applied to correct for multiple testing (FDR < 0.05).

Notably, theT2D,CAD, andHFGWASscontainedUKBiobank
participants,whichmayoverlap to some extentwith smoking status
GWAS from the UK Biobank. Therefore, we additionally extracted
T2D, CAD, and HF GWAS summary statistics from earlier or
smaller-scale GWASs (57–59) that did not contain UK Biobank
participants to further confirm the potential causal associations
between smoking status and T2D, CAD, and HF. The details of
these GWASs are presented in Supplementary Table 2.

RESULTS

Genome-Wide Genetic Correlation
Understanding the genetic correlations of different complex traits or
diseases can provide preliminary insights into genetic etiology.
Therefore, we firstly estimated genetic correlations between
smoking status and T2D, 6 major CVDs, and 8 related metabolic
traits by LDSC. Among these traits, T2D (Rg = 0.170, p = 9.39 ×
10−22), CAD (Rg = 0.234, p= 1.96 × 10−27),MI (Rg = 0.226, p= 1.08 ×
10−17), and HF (Rg = 0.276, p = 8.43 × 10−20) showed strong and
significant positive genetic correlations with smoking status (Table 1).
In addition, we found nominally significant positive genetic
correlations with smoking status for IS, ICH, and FG (Table 1).
Genetic correlations between smoking status and HDL-C or TG
reached statistical significance, but the magnitude of genetic
correlation was less than 10% (Table 1). However, we did not find
evidence of genetic correlations with smoking status for AF, FI,
HOMA-B, HOMA-IR, LDL-C, and TC (Table 1).
TABLE 1 | Genetic correlations between smoking status and T2D, CVDs, and related metabolic traits (a = 0.05/15).

Phenotype 1 Phenotype 2 Rg Rg_SE p-Value

Smoking status T2D 0.170 0.018 9.39E−22*
CVDs CAD 0.234 0.022 1.96E−27*

MI 0.226 0.026 1.08E−17*
HF 0.276 0.030 8.43E−20*
IS 0.164 0.057 3.70E−03
ICH 0.188 0.080 1.80E−02
AF 0.029 0.029 3.17E−01

Glycemic traits FG 0.105 0.042 1.31E−02
FI 0.048 0.055 3.84E−01
HOMA−b −0.012 0.052 8.13E−01
HOMA−IR 0.064 0.058 2.72E−01

Blood lipids LDL−C 0.022 0.030 4.77E−01
HDL−C −0.094 0.024 6.14E−05
TC 0.032 0.026 2.11E−01
TG 0.096 0.026 2.00E−04
Februa
ry 2022 | Volume 13 | Articl
Rg, genetic correlation estimate; SE, standard error of genetic correlation estimate; T2D, type 2 diabetes; CAD, coronary artery disease; MI, myocardial infarction; HF, heart failure; IS,
ischemic stroke; ICH, intracerebral hemorrhage; AF, atrial fibrillation; FG, fasting glucose; FI, fasting insulin; HOMA-b, b-cell function obtained by homeostasis model assessment; HOMA-
IR, insulin resistance obtained by homeostasis model assessment; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG,
triglyceride.
*A significant p-value after Bonferroni correction.
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Partitioned Genetic Correlation
We used partitioned LDSC analysis to further evaluate genetic
correlations between smoking status and T2D, CAD, MI, and HF
in 11 functional annotations. Almost all the partitioned genetic
correlations in each trait pair were positive (Figure 2 and
Supplementary Table 3). Large and statistically significant
genetic correlations in many functional categories were
observed, and a few categories stood out in particular. The
highest magnitude of significant genetic correlation between
smoking status and T2D (Rg = 0.167), MI (Rg = 0.164), and
HF (Rg = 0.227) was in transcribed regions, where this region can
transcribe DNA sequence to mRNA (Figure 2 and
Supplementary Table 3). Smoking status and CAD
(Rg = 0.162) showed the highest magnitude of significant
genetic correlation in DHSs, which are regions of chromatin
that are sensitive to cleavage by the DNase I enzyme (Figure 2
and Supplementary Table 3).
Frontiers in Endocrinology | www.frontiersin.org 5
Cross-Trait Meta-Analysis
The strong genetic correlations for smoking status and T2D,
CAD, MI, and HF encouraged the exploration of common
genetic architecture; therefore, we performed a genome-wide
cross-trait meta-analysis to identify shared genetic loci between
them (meta-analysis p < 5 × 10− 8; trait-specific p < 0.01). The
lists of shared loci of each trait pair are provided in Tables 2, 3
and Supplementary Tables 4–7.

We found 210 loci significantly associated with both smoking
status and T2D, and of these, 32 loci were novel. The most
significant locus (index SNP rs9937053, pmeta = 6.72 × 10− 81)
was mapped to FTO (Supplementary Table 4), the first gene
contributing to common forms of human obesity (60). Previous
studies have indicated that FTO is an essential regulator in the
development of obesity-induced metabolic and vascular changes
(61) and that adiposity-related risk alleles at FTOmay predispose
individuals to diabetes and cardiovascular events (62, 63). A total
A

B

FIGURE 2 | Partitioned genetic correlations of smoking status and T2D, CAD, MI, and HF. (A) Partitioned genetic correlations of smoking status and T2D.
(B) Partitioned genetic correlations of smoking status and CAD, MI, and HF. The vertical axis represents the genetic correlation estimate; the horizontal axis
represents 11 functional categories. The asterisk represents significance after Benjamini–Hochberg correction (FDR < 0.05); error bars represent the SE of the
genetic correlation estimate. T2D, type 2 diabetes; CAD, coronary artery disease; MI, myocardial infarction; HF, heart failure; FDR, false discovery rate.
February 2022 | Volume 13 | Article 809445
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of 63 genome-wide significant loci were identified in the meta-
analysis of smoking status and CAD, of which 12 loci were novel
(Supplementary Table 5). The most significant locus (index
SNP rs1412830, pmeta = 3.03 × 10−34) was mapped to the
CDKN2B-AS1 region, which was also found to be significant in
Frontiers in Endocrinology | www.frontiersin.org 6
the cross-trait meta-analysis for smoking status and T2D
(pmeta = 2.63 × 10−17) or MI (pmeta = 1.45 × 10−23) (Figure 3).
CDKN2B-AS1 is a significant genetic susceptibility locus for
CVDs and has also been linked to several other pathologies,
such as several cancers, T2D, periodontitis, Alzheimer’s disease,
TABLE 2 | Novel shared loci in the cross-trait meta-analysis of smoking status and T2D (pmeta < 5 × 10−8; single trait p < 0.01).

SNP CHR N Position kb pmeta Variant annotation Genes within clumping region

rs10093628 8 6 chr8:9393379.9452088 58.71 2.72E−10 Intergenic variant TNKS
rs7650482 3 4 chr3:12840934.12848822 7.889 5.27E−10 Coding transcript intron

variant
CAND2

rs2608280 11 3 chr11:93209472.93264680 55.209 3.60E−09 Downstream gene
variant

SMCO4

rs4804414 19 3 chr19:7222655.7223848 1.194 5.98E−09 Coding transcript intron
variant

INSR

rs181110840 10 1 chr10:114645185.114645185 0.001 6.00E−09 Intergenic variant TCF7L2*
rs72682256 14 21 chr14:43069125.43122091 52.967 6.09E−09 Intergenic variant RP11-90P16.1*
rs8009520 14 20 chr14:103261300.103280657 19.358 6.20E−09 Coding transcript intron

variant
TRAF3

rs17412920 22 14 chr22:28628209.28947631 319.423 7.68E−09 Coding transcript intron
variant

MIR5739, TTC28

rs7944490 11 20 chr11:17001934.17017622 15.689 8.59E−09 Coding transcript intron
variant

PLEKHA7

rs269267 7 1 chr7:140372299.140372299 0.001 9.15E−09 Five prime utr intron
variant

DENND2A*

rs7003385 8 4 chr8:41558269.41586773 28.505 1.07E−08 Coding transcript intron
variant

ANK1

rs61915371 12 2 chr12:27893972.27896264 2.293 1.14E−08 Coding transcript intron
variant

MRPS35

rs62064490 17 12 chr17:9800979.9804724 3.746 1.16E−08 Coding transcript intron
variant

RCVRN

rs4841432 8 1 chr8:10583506.10583506 0.001 1.24E−08 Synonymous variant SOX7
rs2193261 7 2 chr7:117478028.117486934 8.907 1.32E−08 Coding transcript intron

variant
CTTNBP2

rs10985975 9 5 chr9:126101008.126123009 22.002 1.44E−08 Intergenic variant CRB2
rs583887 11 26 chr11:65575263.65663547 88.285 1.52E−08 Upstream gene variant CCDC85B, CFL1, CTSW, EFEMP2, FIBP,

FOSL1, MUS81, SNX32
rs17684514 8 2 chr8:8547642.8574282 26.641 1.59E−08 Intergenic variant CLDN23
rs1362910 8 2 chr8:30856464.30857668 1.205 2.27E−08 Coding transcript intron

variant
PURG

rs12891360 14 3 chr14:104008159.104011429 3.271 2.32E−08 Downstream gene
variant

TRMT61A*

rs34954697 2 1 chr2:226918363.226918363 0.001 2.85E−08 Intergenic variant IRS1*
rs1669801 14 5 chr14:46921092.46936747 15.656 2.98E−08 Intergenic variant LINC00871
rs2536951 9 1 chr9:126646519.126646519 0.001 3.13E−08 Coding transcript intron

variant
DENND1A

rs112583287 6 1 chr6:160919184.160919184 0.001 3.16E−08 Non-coding transcript
intron variant

LPAL2

rs4488763 22 1 chr22:32380164.32380164 0.001 3.49E−08 Intergenic variant YWHAH*
rs117981235 11 1 chr11:9820342.9820342 0.001 3.62E−08 Coding transcript intron

variant
SBF2, SBF2-AS1

rs6059938 20 4 chr20:33178324.33187130 8.807 4.18E−08 Coding transcript intron
variant

PIGU

rs536445 3 1 chr3:173120103.173120103 0.001 4.30E−08 Five prime utr intron
variant

NLGN1

rs117471638 10 1 chr10:93158084.93158084 0.001 4.39E−08 Intergenic variant LOC100188947
rs1465573 5 1 chr5:157985730.157985730 0.001 4.51E−08 Intergenic variant EBF1*
rs3735260 7 1 chr7:69064637.69064637 0.001 4.81E−08 Five prime utr exon

variant
AUTS2

rs2249850 10 1 chr10:104512006.104512006 0.001 4.87E−08 Coding transcript intron
variant

WBP1L
CHR, chromosome; SNP, single-nucleotide polymorphism; T2D, type 2 diabetes.
*The nearest gene to this locus.
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and glaucoma (64, 65). A sum of 38 loci, including 6 novel loci,
were found to be significantly associated with both smoking
status and MI (Supplementary Table 6). The top two significant
loci (index SNP rs12617922, pmeta = 4.36 × 10− 25; index SNP
rs12244388, pmeta = 7.40 × 10− 24) were located at RPL6P5 and
AS3MT. AS3MT encodes arsenite methyltransferase and plays a
role in arsenic metabolism by catalyzing the transfer of a methyl
group from S-adenosyl-L-methionine (AdoMet) to trivalent
arsenical (66). Cigarette smoke contains arsenic with adverse
effects and arsenic exposure has been proven to be linked with
the risk of acute MI (67). The genome-wide cross-trait meta-
analysis between smoking status and HF identified 28 genome-
wide significant loci, of which 3 loci were novel (Supplementary
Table 7). The strongest signal was observed on chromosome 3 at
the CADM2 region (index SNP rs34495106, pmeta = 3.02 ×
10− 19), a critical gene associated with a range of behavioral
and metabolic traits, including physical activity, alcohol and
cannabis use, and obesity (68).

Notably, some shared loci overlapped in the cross-trait meta-
analysis of smoking status–T2D and smoking status–CVDs
(Figures 3, 4). In addition to the SNP rs1412830 located at the
CDKN2B-AS1 region, we observed four overlapping significant
loci (index SNPs: rs12453682, rs1381274, rs2867112, and
rs4790874) in the genome-wide cross-trait meta-analysis of
smoking status–T2D and smoking status–CAD. Of these, the
SNP rs2867112 is near the protein-coding gene body TMEM18,
and genetic variants in the proximity of the gene have been
linked to obesity (69), insulin levels, and blood glucose levels
(70). In addition, two loci (index SNPs: rs72712556 and
rs10030552) mapped to MAML3 were found to be genome-
wide significant in the meta-analysis of smoking status–T2D and
smoking status–HF. These two loci reached genome-wide
Frontiers in Endocrinology | www.frontiersin.org 7
significance in the single-trait GWAS of smoking status, but
their association with T2D or HF remains unknown. More
importantly, genes AS3MT and SMG6 were identified in the
cross-trait meta-analysis of all four trait pairs (smoking status–
T2D, smoking status–CAD, smoking status–MI, and smoking
status–HF). Gene AS3MT is known to act in arsenic metabolism
(66), and polymorphisms in the AS3MT have been reported to be
associated with CVDs (71) and T2D risks (72, 73). SMG6 is
ubiquitously expressed in many tissues and cell types and has
dual functions in telomere maintenance and RNA surveillance
pathways (74). Multiple loci in SMG6 have been proven to be
associated with smoking behavior (17) and CAD (75, 76).
However, its role in T2D remains to explore.

Fine-Mapping Credible Set Analysis and
Colocalization Analysis
Based on Bayesian fine-mapping, we identified the 99% credible
set of causal variants at each of the shared loci. The lists of
credible sets of causal variants for each shared locus are provided
in Supplementary Tables 8–11. In addition, a colocalization
analysis was applied to determine whether the two traits were
associated and shared the same causal variant at each shared
locus. The number of the shared loci considered to colocalize in
each trait pair was 20 (smoking status–T2D), 7 (smoking status–
CAD), 4 (smoking status–MI), and 4 (smoking status–HF)
(Supplementary Tables 12–15). Among these, 3 loci (index
SNPs: rs329122, rs3742305, and rs1443750) reached a great
probability (>95%) of having shared causal variants of smoking
status and T2D, in addition to 2 loci (index SNPs: rs11556924
and rs10774625) for smoking status–CAD, 2 loci (index SNPs:
rs11556924 and rs653178) for smoking status–MI, and one locus
(index SNP: rs4766578) for smoking status–HF.
TABLE 3 | Novel shared loci in the cross-trait meta-analysis of smoking status and CAD, MI, and HF (pmeta < 5 × 10−8; single trait p < 0.01).

Phenotype SNP CHR N Position kb pmeta Variant annotation Genes within clumping region

CAD rs715694 15 2 chr15:47488977.47489021 0.045 5.07E−09 Five prime utr intron variant SEMA6D
rs7868608 9 1 chr9:128746044.128746044 0.001 6.16E−09 Intergenic variant PBX3*
rs1603985 3 1 chr3:25148868.25148868 0.001 1.25E−08 Intergenic variant RARB*
rs530324 8 1 chr8:27491186.27491186 0.001 1.29E−08 Upstream gene variant SCARA3*
rs62263602 3 3 chr3:49991060.50152491 161.432 1.59E−08 Coding transcript intron variant RBM5, BM5-AS1, BM6
rs10818125 9 12 chr9:120986288.121008326 22.039 2.29E−08 Intergenic variant TUBB4BP6*
rs56399143 4 1 chr4:147630649.147630649 0.001 2.59E−08 Coding transcript intron variant TTC29
rs7546040 1 13 chr1:44202991.44247233 44.243 2.77E−08 Coding transcript intron variant ST3GAL3
rs6734603 2 1 chr2:182038729.182038729 0.001 2.81E−08 Intergenic variant ITGA4*
rs10183073 2 1 chr2:146408408.146408408 0.001 4.07E−08 Intergenic variant RPL6P5*
rs2107109 12 1 chr12:113212371.113212371 0.001 4.72E−08 Five prime utr intron variant RPH3A*
rs1362727 18 1 chr18:25235351.25235351 0.001 4.84E−08 Intergenic variant CDH2*

MI rs62216572 21 2 chr21:46488032.46491155 3.124 5.34E−09 Downstream gene variant SSR4P1
rs10490563 2 2 chr2:161914168.161915361 1.194 9.99E−09 Intergenic variant TANK*
rs10067365 5 3 chr5:125401016.125432585 31.57 1.47E−08 Intergenic variant GRAMD3*
rs530324 8 1 chr8:27491186.27491186 0.001 1.87E−08 Upstream gene variant SCARA3*
rs56399143 4 1 chr4:147630649.147630649 0.001 3.17E−08 Coding transcript intron variant TTC29
rs288159 5 1 chr5:107364363.107364363 0.001 4.85E−08 Coding transcript intron variant FBXL17

HF rs4697140 4 7 chr4:20092322.20114221 21.9 4.03E−08 Intergenic variant SLIT2*
rs2680705 17 1 chr17:56495584.56495584 0.001 4.52E−08 Upstream gene variant RNF43*
rs6917970 6 3 chr6:129428104.129428850 0.747 4.76E−08 Coding transcript intron variant LAMA2
February 20
CHR, chromosome; SNP, single-nucleotide polymorphism; CAD, coronary artery disease; MI, myocardial infarction; HF, heart failure.
*The nearest gene to this locus
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FIGURE 4 | The overlapping loci at the gene level identified by the cross-trait meta-analysis across different trait pairs. The Venn diagram illustrates the overlapping
loci at the gene level identified by the cross-trait meta-analysis across different trait pairs. T2D, type 2 diabetes; CAD, coronary artery disease; MI, myocardial
infarction; HF, heart failure.
FIGURE 3 | The overlapping loci at the SNP level identified by the cross-trait meta-analysis across different trait pairs. The Venn diagram illustrates the overlapping
loci at the SNP level identified by the cross-trait meta-analysis across different trait pairs. T2D, type 2 diabetes; CAD, coronary artery disease; MI, myocardial
infarction; HF, heart failure; SNP, single-nucleotide polymorphism.
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Tissue Enrichment Analysis
To determine whether shared genes from cross-trait meta-
analysis between smoking status and T2D, CAD, MI, and HF
were enriched for expression in the disease-relevant tissues, we
performed a tissue enrichment analysis using the TissueEnrich
web application and tissue-specific genes from RNA-Seq data of
the HPA. We found that the shared genes of smoking status with
T2D, CAD, MI, and HF were all most strongly enriched in the
adrenal gland (Figure 5). The stomach was another strongly
enriched tissue for the shared genetic genes of smoking status–
CAD and smoking status–MI, in addition to the cerebral cortex
for the shared genetic genes of smoking status–HF (Figure 5).

Overrepresentation Enrichment Analysis
The overrepresentation enrichment analysis of the GO biological
processes highlighted several significantly enriched biological
processes for the shared genes between smoking status and
T2D, mainly involving regulation of insulin secretion and
regulation of peptide hormone secretion (Supplementary
Table 16). In addition, the shared genes between smoking
status and CAD were significantly enriched in the positive
regulation of leukocyte adhesion to vascular endothelial cells,
axon development, cell morphogenesis involved in neuron
differentiation, and neuron projection morphogenesis
(Supplementary Table 17). However, no significantly enriched
biological process for the shared genes of smoking status–MI and
smoking status–HF was found.

Transcriptome-Wide Association Analysis
We conducted a TWAS analysis to explore the genes whose
expression in different tissues was associated with smoking
status, T2D, CAD, MI, and HF, and to determine if these
genes were common among these traits. The lists of gene–
tissue pairs significantly associated with each trait are shown in
Supplementary Tables 18–22. Among these gene–tissue pairs,
354 gene–tissue pairs overlapped between smoking status and
T2D, in addition to 37 gene–tissue pairs for smoking status–
CAD, 17 gene–tissue pairs for smoking status–MI, and one
gene–tissue pair for smoking status–HF (Supplementary
Table 23). Notably, 17 gene–tissue pairs involving four genes
(FAM117B, FES, ICA1L, and NBEAL1) for smoking status–MI
were contained in gene–tissue pairs for smoking status–CAD,
most of which were observed in the nervous, cardiovascular,
exo-/endocrine, and digestive systems. C2orf69–Brain Caudate
basal ganglia gene–trait pair was the only one observed
overlapping gene–tissue pair between smoking status and HF.
Moreover, the enrichment of smoking status and T2D genes
expressed were across multiple tissues, not only including
nervous, cardiovascular, exo-/endocrine, and digestive systems
but also involving the genital system.

Mendelian Randomization Analysis
We performed a bidirectional MR analysis to explore the causal
relationship between smoking status and T2D, 6 major CVDs,
and 8 related metabolic traits. In the detection of the causal effect
of smoking status on cardiometabolic traits, we found that
Frontiers in Endocrinology | www.frontiersin.org 9
smoking status had significant positive causal effects on T2D
(b = 0.385, p = 3.31 × 10−3), CAD (b = 0.670, p = 7.86 × 10−11),
MI (b = 0.725, p = 2.32 × 10−9), and HF (b = 0.520, p = 1.53 ×
10−6) (Table 4). However, the causal effects of smoking status on
other traits (IS, ICH, AF, FG, FI, HOMA-B, HOMA-IR, HDL-C,
LDL, TC, and TG) were not identified (Table 4). In addition, we
did not observe any significant causal effect of cardiometabolic
traits on smoking status (Table 4). Consistent findings that
smoking status had significant positive causal effects on T2D,
CAD, and HF were observed using additional GWAS data
(Supplementary Table 24). MR-Egger regression analysis
showed that none of the results were affected by horizontal
pleiotropy (Table 4). These results corroborated each other and
supported the robustness of our primary findings.
DISCUSSION

To our knowledge, this is the first study to systematically explore
shared genetic etiology and the causal relationship between
smoking status and T2D and CVDs. First, we found strong
positive genetic correlations and further identified shared genetic
loci between smoking status and T2D, CAD, MI, and HF.
Second, we found that the shared genetic loci were mainly
enriched in the adrenal gland and stomach tissues and the
biological pathways of nervous system development and
regulation of peptide hormone secretion. Third, our TWAS
further provided evidence that the enrichment of shared genes
expressed was across multiple tissues, including exo-/endocrine,
cardiovascular, nervous, digestive, and genital systems. Finally,
we identified the causal associations of smoking status with T2D,
CAD, MI, and HF. In general, exploration of the shared genetic
architecture and causality between smoking status and T2D or
CVDs furthers the understanding of the biological mechanisms
underlying this comorbidity.

The strong genetic correlations consistent with previous
studies (21, 77) suggested that the phenotypic correlations
between smoking status and T2D, CAD, MI, and HF were due
to a common genetic predisposition base, and we further
identified 210 shared genetic loci for smoking status–T2D, in
addition to 63 loci for smoking status–CAD, 38 loci for smoking
status–MI, and 28 loci for smoking status–HF in the genome-
wide cross-trait meta-analysis. Among these shared genetic
variants, 32 novel loci were found for smoking status–T2D,
along with 12 novel loci for smoking status–CAD, 6 novel loci
for smoking status–MI, and 3 novel loci for smoking status–HF,
demonstrating the great power of cross-trait meta-analysis in
identifying specific shared loci. We highlight several overlapping
loci or genes in different trait pairs, which may provide more
effective genetic targets for the timely prevention, diagnosis, and
treatment of smoking-related T2D and CVDs. The only top locus
common to the smoking status–T2D, smoking status–CAD, and
smoking status–MI meta-analysis was rs1412830 mapped to
CDKN2B-AS1. CDKN2B-AS1 gene is an indispensable long
non-coding RNA in multiple diseases (65). In addition to T2D
and CVDs (64), CDKN2B-AS1 has been shown to be aberrantly
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expressed in various malignancies, idiopathic pulmonary
fibrosis, endometriosis, inflammatory bowel disease, and
primary open-angle glaucoma and to participate in the
progression of lipids, carbohydrate metabolism, and
inflammation regulation (65), which is likely to serve as a
promising therapeutic target or prognostic biomarker in
multiple human diseases. The SNP rs2867112 near the protein-
coding gene body TMEM18 was found to be significant in the
meta-analysis for smoking status–T2D and smoking status–
CAD. TMEM18 is an important susceptibility locus for obesity
(69), which is an independent risk factor for the development
and progression of T2D and CVDs. A previous study provided
evidence that smoking might modify the genetic effects
of TMEM18 on body mass index (BMI), a proxy for
Frontiers in Endocrinology | www.frontiersin.org 10
adiposity (78). In addition, two loci (index SNPs: rs72712556
and rs10030552) mapped to MAML3 were found to have
genome-wide significance in the meta-analysis of smoking
status–T2D and smoking status–HF, which reached genome-
wide significance in the single-trait GWAS of smoking status, but
its association with HF or T2D remains unknown and deserves
in-depth study. AS3MT and SMG6 are two important genes that
were identified in the cross-trait meta-analysis of all four trait
pairs (smoking status–T2D, smoking status–CAD, smoking
status–MI, and smoking status–HF). Cigarette smoke is a vital
source of ingested low-level arsenic, and chronic arsenic
exposure is associated with increased morbidity and mortality
from CVDs (71, 79) and an increased risk of T2D (72, 73).
Polymorphisms in AS3MT gene are associated with the efficiency
A

B

D

C

FIGURE 5 | Tissue enrichment analysis for the expression of cross-trait-associated genes between smoking status and T2D (A), CAD (B), MI (C), and HF (D). The
vertical axis illustrates the logarithm of tissue expression enrichment fold change based on two. The horizontal axis illustrates 35 independent tissue types. T2D, type
2 diabetes; CAD, coronary artery disease; MI, myocardial infarction; HF, heart failure.
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of arsenic biotransformation (66, 72), suggesting that the
mechanisms of arsenic metabolism and biotransformation may
play an important role in smoking-related T2D and CVDs.
Multiple loci in SMG6 have been proven to be associated with
smoking behavior (17) and CAD (75, 76). Moreover, a previous
study has shown that tobacco smoking is associated with the
methylation of genes related to CAD, which includes SMG6 gene
(75). These findings provide novel insights into the pathways
that link tobacco smoking to the risk of CVDs. However, the role
of SMG6 gene in smoking-related T2D remains to be explored.

In addition to the significant findings in the shared genes
related to both smoking and T2D or CVDs, we identified the
relevant tissues and biological processes that the shared genes
enriched in which suggests the potential biological mechanisms
that confer comorbid effects. Tissue enrichment analysis showed
that the shared genes of smoking status with T2D, CAD, MI, and
HF were all most strongly enriched in the adrenal gland. A
previous study has reported that cigarette smoking is a strong
activator of the hypothalamus–pituitary–adrenal (HPA) axis
followed by significant elevations in the adrenal hormone
Frontiers in Endocrinology | www.frontiersin.org 11
cortisol (80). Cortisol plays an important role in lipid and
glucose metabolism; and elevated cortisol levels, if prolonged,
lead to a redistribution of body fat characterized by truncal
obesity, which is a risk factor for T2D and CVDs (81). Activation
of the HPA axis is also thought to contribute to drug abuse
during the addictive process, which may also contribute to the
abuse-related effects of cigarette smoking (82). In the
overrepresentation enrichment analysis, the biological pathway
of insulin secretion was found to be significant for the shared
genes of smoking status and T2D, indicating that smoking can
affect pancreatic islet cell function. Many studies have found
neuronal nicotinic acetylcholine receptors (nAChRs) expressed
on pancreatic islet cells (83), and these functional nAChRs
sensitive to nicotine in pancreatic cells may be a switch to
modulate pancreatic cell physiological function and involved in
tobacco toxicity (84). Furthermore, several studies in animal
models have shown that nicotine can increase apoptosis of islet
b-cells, thus reducing insulin secretion (85–88). Mitochondrial
dysfunction, oxidative stress, and inflammation are involved as
underlying mechanisms for the direct toxicity induced by
TABLE 4 | Bidirectional MR analysis of smoking status and T2D, CVDs, and related metabolic traits.

Exposure Outcome SNPs, n Inverse variance weighted MR-Egger MR-Egger

b p-Value FDR b p-Value Intercept p-Value

Smoking status T2D 127 0.385 3.31E−03 2.48E−02* −0.022 0.969 0.004 0.470
CAD 127 0.670 7.86E−11 2.36E−09* 0.195 0.669 0.005 0.286
MI 127 0.725 2.32E−09 3.48E−08* 0.288 0.596 0.004 0.410
HF 127 0.520 1.53E−06 1.53E−05* 0.589 0.222 −0.001 0.884
IS 59 0.573 5.26E−02 1.81E−01 −0.007 0.996 0.005 0.665
ICH 87 −0.202 7.73E−01 9.41E−01 −2.175 0.469 0.019 0.499
AF 127 0.018 9.09E−01 9.41E−01 −0.131 0.853 0.001 0.828
FG 58 0.027 6.65E−01 9.41E−01 −0.240 0.391 0.003 0.328
FI 58 −0.017 8.02E−01 9.41E−01 0.369 0.224 −0.004 0.193
HOMA-b 58 0.016 8.07E−01 9.41E−01 0.503 0.082 −0.005 0.084
HOMA-IR 58 0.014 8.47E−01 9.41E−01 0.328 0.307 −0.003 0.315
HDL-C 57 −0.145 8.43E−02 2.13E−01 −0.668 0.077 0.005 0.153
LDL-C 57 0.116 1.95E−01 4.19E−01 0.318 0.430 −0.002 0.606
TG 57 0.169 5.96E−02 1.81E−01 0.709 0.077 −0.005 0.164
TC 57 0.158 6.05E−02 1.81E−01 0.203 0.593 0.000 0.903

T2D Smoking status 202 0.003 2.93E−01 5.17E−01 −0.002 0.727 0.000 0.363
CAD 47 −0.001 9.03E−01 9.41E−01 −0.008 0.522 0.001 0.517
MI 25 0.003 6.40E−01 9.41E−01 −0.024 0.105 0.003 0.048
HF 12 −0.003 8.30E−01 9.41E−01 −0.035 0.546 0.002 0.568
ISa 19 0.010 1.11E−01 2.55E−01 −0.029 0.248 0.004 0.110
ICHa 13 0.001 7.34E−01 9.41E−01 −0.007 0.457 0.002 0.404
AF 24 0.006 8.52E−02 2.13E−01 0.005 0.571 0.000 0.815
FG 14 0.025 4.97E−02 1.81E−01 0.048 0.108 −0.001 0.361
FIa 11 −0.026 2.52E−01 4.72E−01 0.070 0.328 −0.003 0.170
HOMA-b 4 −0.049 2.17E−01 4.34E−01 −0.240 0.222 0.006 0.287
HOMA-IRa 13 −0.004 8.38E−01 9.41E−01 0.025 0.735 −0.001 0.678
HDL-C 87 0.000 9.72E−01 9.72E−01 0.004 0.662 0.000 0.619
LDL-C 77 −0.007 5.77E−02 1.81E−01 −0.002 0.636 0.000 0.263
TG 55 −0.001 8.43E−01 9.41E−01 0.004 0.642 0.000 0.463
TC 88 −0.009 1.27E−02 7.61E−02 −0.005 0.415 0.000 0.393
February 2022 | Vo
lume 13 | Article
False discovery rate (FDR) Benjamini–Hochberg procedure was used to correct for multiple testing (FDR < 0.05).
MR, Mendelian randomization; SNPs, single-nucleotide polymorphisms; Rg, genetic correlation estimate; SE, standard error of genetic correlation estimate; T2D, type 2 diabetes; CAD,
coronary artery disease; MI, myocardial infarction; HF, heart failure; IS, ischemic stroke; ICH, intracerebral hemorrhage; AF, atrial fibrillation; FG, fasting glucose; FI, fasting insulin; HOMA-b,
b-cell function obtained by homeostasis model assessment; HOMA-IR, insulin resistance obtained by homeostasis model assessment; HDL-C, high-density lipoprotein cholesterol; LDL-
C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride.
aFew SNPs achieved genome-wide significance in the original GWAS; in order to obtain valid and reliable instrumental variables for MR analysis, we set the p-value threshold to 1 × 10−5.
*A significant p-value after Benjamini-Hochberg correction.
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nicotine via nAChRs (84). The stomach was another strongly
enriched tissue for the shared genetic loci of smoking status–
CAD and smoking status–MI. Relevant studies have shown that
smoking can increase the probability of getting heartburn and
peptic ulcers (89), and gastrointestinal diseases may trigger
myocardial ischemia-related chest pain probably through the
afferent vagal fibers shared by the esophagus and the heart to
induce a coronary spasm (90, 91). In addition, the shared genes
for smoking status–HF/CAD were enriched in cerebral cortex
tissue and the biological pathways of nervous system
development, indicating the important role of the nervous
system on the comorbidity of smoking and CVDs. Nicotine
and fine particulate matter in tobacco smoke can lead to
increased sympathetic nerve activity (92), which is one of the
hallmarks of chronic congestive HF (93) and plays a role in the
process of atherosclerosis (94).

Our TWAS further provided evidence that the shared genes
were mostly from the exo-/endocrine, cardiovascular, nervous,
and digestive systems. In addition, the TWAS result reported the
enrichment of the shared genes between smoking status and T2D
from the genital system. Smoking and T2D have a variety of
adverse effects on the genital system (95, 96). More importantly,
smoking and diabetes may influence the epigenetic modification
during the production of germ cells, and these epigenetic
dysregulations may be inherited through the germ line and
passed onto more than one generation, which in turn may
increase the risk of related diseases in offspring (97). A total of
58 significant genes in TWAS were also found to be genome-
wide significant in cross-trait meta-analysis for smoking status–
T2D, in addition to 13 genes for smoking status–CAD and 3
genes for smoking status–MI, which further indicated the fact
that a significant portion of shared genetic loci we identified in
the cross-trait meta-analysis were indeed functional variants of
modulating gene expression on influencing both phenotypes.
Among these, we highlight the importance of the gene TCF7L2,
which showed significance in the cross-trait meta-analysis and
TWAS of smoking status and T2D. SNPs in TCF7L2 are
especially known to be associated with a higher risk of
developing T2D (98). Recently, a study has suggested that
TCF7L2 links nicotine addiction to diabetes in animal models.
This study has revealed that TCF7L2 is densely expressed in the
medial habenula and plays an important role in regulating the
function of nAChRs in the habenula and in controlling nicotine
intake (22). Habenular neurons provide polysynaptic input to
the pancreas, and nicotine acts on this habenula–pancreas
circuit, in a TCF7L2-dependent manner and via the autonomic
nervous system, to increase blood glucose levels (22).
Furthermore, FES, ICA1L, and NBEAL1 genes showed
significance in the cross-trait meta-analysis and TWAS of
smoking status–CAD and smoking status–MI and expressed in
multiple tissues, including the brain, nerve, artery, adipose,
pancreas, and thyroid tissues. Gene FES, which encodes the
human cellular counterpart of a feline sarcoma retrovirus
protein with transforming capabilities, is well known to be
associated with myeloid leukemia (99), but recent studies
observed the function of FES in modulating atherosclerotic
Frontiers in Endocrinology | www.frontiersin.org 12
plaque vulnerability (100) and the effect of tobacco smoking on
DNA methylation of FES (75). Genes ICA1L and NBEAL1 were
mapped by the same locus (index SNP: rs114123510), and both
are related to cholesterol metabolism, in which dysregulation
promotes the pathology of atherosclerosis, MI, and strokes (101).
Notably, C2orf69–Brain Caudate basal ganglia gene–trait pair
was the only one observed overlapping gene–tissue pair between
smoking status and HF. C2orf69 is an evolutionarily conserved
gene whose function needs to be further clarified, but recent
studies have shown its association with a fatal autoinflammatory
syndrome that disrupts the development/homeostasis of the
immune and central nervous systems (102, 103), which may
contribute to the link between smoking and HF.

In addition to pleiotropy, the associations between smoking
status and these cardiometabolic traits may be due to causality.
Consistent with previous large cohort (4, 5) and MR studies
(104–106), our exploratory bidirectional MR analysis found that
smoking status had significant positive causal effects on T2D,
CAD, MI, and HF, which suggests that the genetic correlations of
the above trait pairs are attributed to both shared genetic
architecture and causality. However, we did not observe a
significant causal association between smoking status and IS,
which is inconsistent with two recent studies (104, 105). This
may be due to the different definitions of smoking, involving
different ancestry populations, and different sample sizes, which
need further confirmation. Besides, we did not observe any
causality in the detection of the causal effect of 15
cardiometabolic traits on smoking status, excluding the
possibility of reverse causation between smoking status and
T2D or CVDs. The potential mechanisms underlying the
causal relationship between smoking and T2D or CVDs
require further investigation, but the shared loci and related
pathways could provide new insights and directions.

In addition, we explored the genetic correlations between
smoking status and T2D/CVD-related metabolic traits and
observed a nominal positive correlation of smoking status with
FG, a weak negative correlation of smoking status with HDL-C,
and a weak positive correlation of smoking status with TG. Lipid
and glycemic traits, resulting from complex and interwoven
physiological mechanisms, are indicators of T2D and CVD
risks, and understanding their associations with smoking can
provide better insight into the pathophysiological intersect of
T2D and CVDs. Previous studies have proven the role of
smoking in elevating plasma TG concentration, decreasing
plasma HDL-C concentration (107), and increasing the risk of
impaired FG (108) and insulin resistance (109), which enhance
the increased risk of T2D and CVDs. Although smoking
cessation can ameliorate these changes, it is worth noting that
smoking cessation is frequently followed by weight gain, which
can contribute to the increased short-term risk of T2D (5, 110).
Therefore, for smokers at risk for T2D, smoking cessation should
be coupled with strategies for T2D prevention and early
detection (5).

We acknowledge the limitations of our study. Despite the
large sample sizes and high power of the GWAS summary
statistics coming from meta-analysis studies, the homogeneity
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among different summary statistics was reduced. However, each
study conducted study-specific quality control to ensure data
quality. In addition, simulations have confirmed that the effect of
population structure and cryptic relatedness could be controlled
well by our cross-trait meta-analysis method CPASSOC. Second,
because of the concerns on sample size, accuracy, and availability
of the GWAS data, we only analyzed smoking status in this study
and did not consider quantitative smoking phenotypes such as
cigarettes smoked per day or the years of smoking. Besides,
smokeless tobacco products such as snuff tend to show different
associations with T2D or CVDs as compared to cigarette
smoking (111–113). It is important to consider these
phenotypes in future investigations to shed light on the
relationship between smoking and T2D or CVDs. Third,
limited to the existing original GWASs, the sample sizes of
some original trait-specific GWASs, especially ICH, were
relatively small, which resulted in limited statistical power
(Supplementary Table 25). Fourth, to yield reliable results, we
used the data from the largest or latest GWASs, but there may be
sample overlap between smoking status and T2D, CAD, and HF,
which can influence the inference of causality in MR analysis.
However, we used additional GWAS data of these traits with no
sample overlap with smoking status GWAS to further confirm
our primary findings and observed highly consistent results.
Such consistency reinforced the robustness of our findings. Fifth,
additional appropriate data were not available for us to replicate
our findings. However, we used the data from the largest or latest
GWASs for these traits to yield reliable results, and if possible, we
will perform replication analysis in the future. Finally, our study
was limited to assessing the shared genetic etiology between
smoking status and T2D or CVDs. The effects of environmental
factors and gene–environment interactions between smoking
status and T2D or CVDs still need to be explored in
further studies.

In summary, our findings provide strong evidence on shared
genetic etiology and causal associations between smoking status
and T2D or CVDs, underscoring the potential shared biological
mechanisms underlying the link between smoking and T2D or
CVDs. This work is important and opens up a new way for more
effective and timely prevention, diagnosis, and treatment of
smoking-related T2D or CVDs.
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