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Abstract
Background: Women living with HIV (WLWH) experience higher rates of human papillomavirus (HPV) infection and
cervical cancer than women without HIV. Changes in the vaginal microbiome have been implicated in HPV-related disease
processes such as persistence of high-risk HPV infection but this has not been well defined in a population living with HIV.
Methods: Four hundred and 20 girls andWLWH, age ≥9, across 14 clinical sites in Canada were enrolled to receive three
doses of quadrivalent HPV vaccine for assessment of vaccine immunogenicity. Blood, cervical cytology, and cervico-vaginal
swabs were collected. Cervico-vaginal samples were tested for HPV DNA and underwent microbiota sequencing.
Results: Principal component analysis (PCA) and hierarchical clustering generated community state types (CSTs). Re-
lationships between taxa and CSTs with HPV infection were examined using mixed-effects logistic regressions, Poisson
regressions, or generalized linear mixed-effects models, as appropriate. Three hundred and fifty-six cervico-vaginal mi-
crobiota samples from 172 women were sequenced. Human papillomavirus DNA was detected in 211 (59%) samples; 110
(31%) contained oncogenic HPV. Sixty-five samples (18%) were taken concurrently with incident oncogenic HPV infection
and 56 (16%) were collected from women with concurrent persistent oncogenic HPV infection.
Conclusions: No significant associations between taxa, CST, or microbial diversity and HPV-related outcomes were
found. However, we observed weak associations between a dysbiotic microbiome and specific species, including Gard-
nerella, Porphyromonas, and Prevotella species, with incident HPV infection.
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Background

There are higher rates of both incident and persistent human
papillomavirus (HPV) infections in women living with HIV
(WLWH) compared to women without HIV.1–3 Women
living with HIV also thereby experience increased rates of
cervical intraepithelial neoplasia (CIN), faster progression
of CIN, and increased rates of cervical cancer.4–6 Changes in
the vaginal microbiome have been associated with in-
fections and disease states such as HPV, HIV, bacterial
vaginosis, and cervical cancer.7–12 The healthy vaginal
microbiome is typically dominated by a Lactobacillus
species, most commonly L. crispatus or L. gasseri, which
creates an acidic environment and keeps the growth of other
bacterial species at bay.10,11 Increased diversity and the
dominance of anaerobic bacteria including Gardnerella,
Prevotella, and Atopoium13 increase the vaginal pH due to
the loss of the Lactobacillus predominance. The lactic acid
produced by lactobacilli has a role in inhibition of pro-
inflammatory cytokines, increased degradation of patho-
gens through autophagy,14 and inactivation of pathogens
such as HIV.15,16 Thus, the higher pH seen in some vaginal
microbiomes creates a permissible environment for dele-
terious processes such as increased survival of cell-
associated HIV in leukocytes and increased inflammatory
cytokines which can disrupt the vaginal epithelium.17

The role of the vaginal microbiome with respect to HPV
infection in women with and without HIV is not well un-
derstood. Studies in women without HIV have shown in-
creased biological diversity18 and a greater proportion of
community state type (CST) III (L. iners dominated –

considered an intermediary state type) and CST IV-B (low
Lactobacillus)18,19 microbiota contributing to HPV in-
fection.20,21 In fact, the clearance of high-risk HPV (HR-
HPV) in individuals without HIV has been associated with
a specific increase in L. crispatus,22 a decrease in dysbiosis,
and a decrease in inflammatory cytokines, compared to
those with persistent HR-HPV.23 However, the literature is
conflicting in that a lack of association between HPV
persistence and cervical microbiota has also been
reported.24

The causal relationship between persistent HPVinfection
and cervical cancer is well established.25–28 The prevalence
of HPV is doubled in WLWH compared to women without
HIVat approximately 50%, while the rate of persistent HPV
is 3–6 fold higher among WLWH at approximately 20–
24%.29–31 This highlights the importance of understanding
factors contributing to HPV persistence in WLWH.

Alterations in the vaginal microbiome in the setting of both
prevalent HPV infection and CIN include a decreased
abundance of L. crispatus and a predominance of species
such as L. iners, Atopobium vaginae, Gardnerella vaginalis,
andMycoplasma.19,21,32,33 However, the contribution of the
cervico-vaginal microbiome to the incidence and persis-
tence of HPV infection is still unclear, particularly in the
presence of HIV co-infection. The objective of this analysis
was to assess the relationship between the vaginal micro-
biota and HPV-related outcomes, including incidence and
persistence, in WLWH. We hypothesized that WLWH with
oncogenic HPV infection would be more likely to have non-
Lactobacillus dominated microbiota than WLWH without
oncogenic HPV infection.

Methods

As part of an HPV vaccine study, 420 girls andWLWH aged
nine and over from 14 clinical sites across Canada were
enrolled to receive three doses of quadrivalent HPV vaccine
at months 0, 2, and 6. Study visits took place at months �3,
0, 2, 6, 12, 18, 24, and annually thereafter, until a maximum
of 8 years of follow up. Blood samples for serology and
cervical cytology samples (ThinPrep liquid based cytology)
were collected throughout the study with HPV DNA testing
on samples collected at months �3, 0, 6, 12, 18, 24, and
annually thereafter. An aliquot of the cytology samples in
PreservCyt underwent HPV DNA testing. Extracted DNA
was tested with the Linear array (Roche Diagnostic, Laval,
Qc, Canada) for the detection of 36 genotypes of HPV and
for β-globin to determine the adequacy of the sample. Weak
positive HPV controls were included in each amplification
run. Samples negative for HPV DNA and β-globin were
considered inadequate. The HPV types detected have
previously been published.34,35 Cervico-vaginal swab
samples were collected by physicians during genital ex-
amination, prior to pap collection, at up to three visits
between years three and eight of the study. Physicians rolled
sterile flocked swabs against the lateral vaginal wall three
times.

Total genomic DNA was purified from cervico-vaginal
swabs using the MagMAX Total Nucleic Acid Isolation Kit
(Applied Biosystems, Life Technologies, Burlington, ON,
Canada). Extraction negative controls including only kit
reagents were included to monitor for contaminants. cpn60
barcode PCR and sequencing library preparation was per-
formed as described in detail elsewhere.36 No template
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controls were included with each batch of PCR reactions.
Indexed amplicon libraries from samples and all negative
controls were pooled and sequenced on the MiSeq platform
(500 cycles, with 400 cycles for read 1; only read 1 used in
downstream analysis).

Amplification primer sequences were removed using
CUTADAPT. Quality trimming was then performed using
TRIMMOMATIC with a quality cut-off of 30 and minimum
length of 150. Quality trimmed reads were loaded into
QIIME2 for sequence variant calling and read frequency
calculation with DADA237 and a truncation length of 150.38

Variant sequences were aligned with the cpnDB_nr refer-
ence database (version 20190305, downloaded from www.
cpndb.ca) using WATERED-BLAST for taxonomic iden-
tification.39 In instances where sequence variants had the
same best database reference, they were grouped together
into nearest neighbour ‘species’ by summing their total read
counts within samples. The nearest neighbour taxonomic
labels were used in this analysis.

We used compositional data analysis methods including
centre log-ratio transformation of data in ALDEx2,40,41

then visualised communities with principal component
analysis (PCA) and hierarchical clustering to generate the
CSTs. Human papillomavirus variables we investigated
included any HPV positivity, incident oncogenic HPV
infection (HPV16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59,
68, and 82; defined as detection of a new HPV genotype
not detected in the prior visit), persistent oncogenic HPV
infection (defined as the same HPV genotype detected
in ≥2 consecutive samples taken ≥6 months apart),
clearance of any oncogenic HPV (defined as presence of
a type in one visit followed by absence at the subsequent
visit), HIV viral load (suppressed at <50 copies/mL vs. not
suppressed), and the total number of oncogenic HPV
types. The relationship between taxa abundance or CSTs
and incident or persistent oncogenic HPV infection and
HIV viral load was investigated with mixed-effects logistic
regressions. The relationship between taxon relative
abundance or CSTs with number of oncogenic HPV types
or HPV positivity was examined using Poisson re-
gressions. Generalized linear mixed-effects models were
used to determine if there was any relationship between
microbiota diversity and any of the HPV-associated out-
come variables listed above.

Results

The demographics of the study population eligible for this
sub-analysis are shown in Table 1. The median age at
study baseline was 37.8 years (interquartile range [IQR]:
31.9–44.3, range = 13.6–58.6), and most women received
all three doses of quadrivalent HPV vaccine (94.2%). The
median baseline CD4+ T-cell count was 489 cells/mm3

(IQR: 370–675), and a modest majority had an HIV viral
load under 50 copies/mL (64.5%). The baseline

antiretroviral therapy was variable, including integrase
inhibitor-based regimens in 39%, protease inhibitor (PI)-
based regimens in 34.9%, and non-nucleoside reverse
transcriptase inhibitor (NNRTI)-based regimens in 24.4%
of study participants.

Analyses were restricted to cervico-vaginal microbiota
samples that had at least 1000 quality-filtered sequence
reads, of which there were a total of 356 samples from 172
women (28% women had one sample sequenced, 37% had
two samples, and 35% had three samples). Samples were
taken between 3 and 8 years post-HPV vaccination (8% at
3 years, 12% at 4 years, 17% at 5 years, 28% at 6 years,
21% at 7 years, and 14% at 8 years). The presence of HPV
DNAwas detected in 211 samples (59% of samples) from
122 women (Table 2). One hundred and 10 samples (31%)
from 73 women had detectable oncogenic HPV. Incident
oncogenic HPV infection was found in 65 samples (18%)
from 59 women, persistent oncogenic HPV infection was
found in 56 samples (16%) from 32 women, while

Table 1. Participant characteristics at baseline (n = 172).

Characteristic n (%) or median (IQR)

Age at vaccination, years 37.8 (31.9–44.3)
Age at vaccination, categorical
14–19 6 (3.5%)
20–24 10 (5.8%)
25–29 17 (9.9%)
30–34 28 (16.3%)
35–39 37 (21.5%)
40–44 33 (19.2%)
45+ 40 (23.3%)

Ethnicity
African/Black/Caribbean 66 (38%)
White 63 (37%)
Indigenous 30 (17%)
Other 12 (7%)

Number of HPV vaccine doses
1 4 (2.3%)
2 5 (2.9%)
3 162 (94.2%)
Missing 1 (0.6%)

Baseline HIV viral load
>50 copies/mL 55 (32.0%)
<50 copies/mL 111 (64.5%)
Missing 13 (7.6%)

Baseline antiretroviral therapy
Integrase inhibitor-based 67 (39.0%)
PI Based-based 60 (34.9%)
NNRTI based-based 42 (24.4%)
NRTI only 1 (0.6%)
None 1 (0.6%)
Missing 1 (0.6%)
Baseline CD4 count, cells/mm3 489 (370–675)
CD4 nadir, cells/mm3 230 (120–360)
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clearance of any oncogenic HPV was found in 24 samples
(6.7%) from 24 women.

Principal component analysis resulted in three prin-
cipal component axes that explained 42% of the variance
in taxon relative abundance (Figure 1; PC1 = 26%, PC2 =
9%, PC3 = 7%). Higher scores on PCA axis 1 (PC1)
indicated greater relative abundance of Clostridiales sp.,
Megasphaera genomosp type 1, Prevotella timonensis,
Prevotella buccalis, Porphyromonas uenonis, Prevotella

amnii, and Dialister pneumosintes. Lower scores on PC1
indicated a greater relative abundance of Lactobacillus
crispatus, L. iners, and L. jensenii. Higher scores on PCA
axis 2 (PC2) indicated a greater relative abundance of L.
crispatus, while lower scores indicated a greater relative
abundance of L. iners and Gardnerella vaginalis.

Hierarchical clustering analysis on the Euclidean dis-
tances in relative abundance had relatively good support for

six clusters. Both silhouette width and Pearson-Gamma
indicated that six clusters had the most support (Figures 1
and 2). The six clusters are as follows: (i) CST IVA with
a mixture of profiles with diverse dominant bacterial
types, but very little Lactobacillus or Megasphaera, (ii)
CST IVC has communities with high relative abundance
of Gardnerella vaginalis, and G. swidsinskii, (iii) CST
IVD.1 contains communities with high relative abun-
dance ofMegasphaera, Clostridiales sp., Prevotella spp.,
Dialister pneumosintes and Porphyromonas uenonis, (iv)
CST IVD.2 contains very little Megasphaera, with ap-
preciable abundance of Clostridiales sp., Prevotella spp.,
and Porphyromonas uenonis, (v) CST III/V with high
relative abundance of L. iners, and/or L. jensenii, (vi)
CST I with communities dominated mainly by L.
crispatus.

A number of weak and non-significant associations to
specific taxa were found. Incident oncogenic HPV infection
was non-significantly increased with greater relative

abundance ofGardnerella swidsinskii (OR = 1.10, 95%CI =
0.98–1.22, p = .08) and decreased with greater relative
abundance of L. crispatus (OR = 0.91, 95%CI = 0.84–1.01,
p = .09). Greater total number of oncogenic HPV types were
associated with greater relative abundance of Porphyr-
omonas uenonis (p = .09) and Prevotella timonesis (p = .02).
No taxa were significantly associated with HPV persistence
or clearance.

Figure 1. Hierarchical clustering results with PCA axes 1 and 2. The ellipses indicate the clusters and they extend to 1SD in both
directions. Grey = CST IVD.1, orange = CST IVA, green = CST IVC, blue = CST IVD.2, light blue = CST III + V (mixed lactobacilli), and
pink = CST I.

Table 2. HPV results for samples sequenced.

HPV result n (%)

Incident oncogenic HPV 65 (18)
Persistent oncogenic HPV 56 (16)
Any oncogenic HPV 110 (31)
Any HPV 211 (59)
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Investigations at the level of CST suggested that in-
dividuals with incident oncogenic HPV infection, a higher
number of oncogenic HPV types, and a higher number of
total HPV types were more likely to be classified into CST
IVD.2 (Porphyromonas, Clostridiales, and Prevotella), but
this did not remain significant after controlling for repeated
measures. There were no significant relationships between
any of the HPV variables and diversity either as Shannon’s
diversity index (H) (Figure 3), or the number of detected
species.

Discussion

In our study of HPV-vaccinated WLWH, we detected in-
cident oncogenic HPV DNA in 31% of cervico-vaginal
swabs and persistent oncogenic HPV DNA in 16% of
cervico-vaginal swabs. We did not find any strongly sig-
nificant associations between taxa, CST, or microbial

diversity and HPV variables including incident or persistent
oncogenic HPV infection, especially given the large number
of tests conducted. However, the trends we found were
consistent with expectations based on the current un-
derstanding of the roles of the specific taxa investigated and
were consistent with the associations found in some other
studies. For example, we found a non-significant associa-
tion of decreased incident oncogenic HPV infection with
greater relative abundance of L. crispatus. Prior evidence
has shown that D-lactate produced by L. crispatus increases
the viscosity of the cervico-vaginal mucus, thereby en-
hancing its viral particle trapping potential; such en-
hancement could represent a mechanism behind the
reduction in incident oncogenic HPV infection we observed
with increasing relative abundance of these bacteria.42

Additionally, the associations between oncogenic HPV
infection and greater relative abundance of Gardnerella and
Prevotella were not unexpected, as it is known that some of

Figure 2. Heatmap of centred log-ratio-transformed relative abundance showing six clusters. The orange cluster corresponds to IVA
with a mixture of profiles with diverse dominant bacterial types, but very little Lactobacillus or Megasphaera. The green cluster has
communities with high relative abundance of Gardnerella vaginalis, and G. swidsinskiiwhich is similar to CST IVC. The dark blue cluster and
the grey cluster appear to be what was collectively IVD previously. The grey cluster, IVD.1, contains communities with high relative
abundance ofMegasphaera, Clostridiales sp., Prevotella spp., Dialister pneumosintes and Porphyromonas uenonis. The dark blue cluster, IVD.2,
contains very little Megasphaera, with appreciable abundance of Clostridiales sp., Prevotella spp., and Porphyromonas uenonis. Finally, the
light blue cluster is a mix of CST III and V with high relative abundance of L. iners, and/or L. jensenii, while the pink cluster corresponds to
CST I with communities dominated mainly by L. crispatus.
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these species exhibit sialidase activity,43 which can neg-
atively impact the cervical mucosa and reduce viral
trapping via mucin degradation, potentially facilitating
HPV infection. Gardnerella species have further been
implicated in disrupting vaginal epithelial cytoskeleton
proteins, causing damage and desquamation which may
facilitate HPV entry into its target basal epithelial cells.44

The lack of associations between bacterial taxa and HPV
persistence is consistent with recent findings from a Nor-
wegian study.24

This cohort included some WLWH who did not have
a suppressed HIV viral load at baseline (32%). However,
this rate of HIV viral load suppression is consistent with
other studies among WLWH in Canada and therefore
appears to be representative of the Canadian context.45 A
small proportion of participants included in this analysis
acquired HIV through perinatal infection (n = 10, 5.8%),
and therefore may have differing risks for HPVacquisition.
The lack of strong associations between vaginal micro-
biota and HPV infection outcomes in this analysis may

have been due to the small overall number of HPV in-
fection outcomes, particularly given that this cohort of
WLWH had been previously vaccinated against HPV.
Future studies with larger sample sizes are needed to fully
elucidate the role of the vaginal microbiome in HPV in-
fection and disease within WLWH. Such improvements in
understanding are critically important, as they could lead
to interventions to reduce the high burden of HPV among
WLWH, and ultimately contribute to the global elimina-
tion of cervical cancer.

Conclusions

This analysis supports previous associations of dysbiotic
microbiota and specific bacterial taxa, including Gardner-
ella, Porphyromonas, and Prevotella species, with incident
HPV infection. The lack of association between dysbiosis
and HPV persistence may be related to low numbers of
events in this cohort of HPV-vaccinated WLWH.

Figure 3. Shannon Diversity Index (H) by oncogenic HPV. (A) Incident oncogenic HPV, (B) Persistent oncogenic HPV, (C) Any
oncogenic HPV, (D) Number of oncogenic HPV types. Dark lines indicate the medians, boxes indicate the interquartile ranges, and
whiskers extend to 1.5 times the interquartile range.
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