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The day is rapidly approaching where current antibiotic therapies will no longer be effective
due to the development of multi-drug resistant bacteria. Antimicrobial peptides (AMPs) are
a promising class of therapeutic agents which have the potential to help address this
burgeoning problem. Proline-rich AMPs (PrAMPs) are a sub-class of AMPs, that have
multiple modes of action including modulation of the bacterial protein folding chaperone,
DnaK. They are highly effective against Gram-negative bacteria and have low toxicity to
mammalian cells. Previously we used an in silico approach to identify new potential
PrAMPs from the DRAMP database. Four of these peptides, antibacterial napin, attacin-C,
P9, and PP30, were each chemically assembled and characterized. Together with
synthetic oncocin as a reference, each peptide was then assessed for antibacterial
activity against Gram-negative/Gram-positive bacteria and for in vitro DnaK modulation
activity. We observed that these peptides directly modulate DnaK activity independently of
eliciting or otherwise an antibiotic effect. Based on our findings, we propose a change to
our previously established PrAMP definition to remove the requirement for antimicrobial
activity in isolation, leaving the following classifiers: >25% proline, modulation of DnaK
AND/OR the 70S ribosome, net charge of +1 or more, produced in response to bacterial
infection AND/OR with pronounced antimicrobial activity.
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INTRODUCTION

Antimicrobial peptides (AMPs) are an appealing class of naturally occurring, and engineered,
peptides with potent and varied antimicrobial activities (Li et al., 2014; Sheard et al., 2019). Moreover,
AMPs have distinct modes of activity ranging from membrane permeabilization to enzyme
inhibition with some AMPs having multiple differing activities (Raheem and Straus, 2019).
Some AMPs are active only against Gram-negative bacteria (Scocchi et al., 2011), which makes
them attractive potential antibacterial agents given the level of antibiotic resistance present in such
pathogens (Morris and Cerceo, 2020).

Proline rich antimicrobial peptides (PrAMPs) were first reported in 1989 with the discovery of
apidaecin in Apis mellifera lymph fluid (Casteels et al., 1989). Since then, they have been found in
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plants (Cao et al., 2015), insects (Casteels et al., 1990; Bulet et al.,
1993; Cociancich et al., 1994; Shen et al., 2010), crustaceans
(Destoumieux et al., 1997; Stensvåg et al., 2008), and
mammals (Agerberth et al., 1991; Mardirossian et al., 2018).
In addition to having a direct antimicrobial effect, PrAMPs can
also act to inhibit protein synthesis, ultimately contributing to
bacterial death, through inhibiting DnaK activity and/or
ribosomal translocation through the 70S ribosome (Otvos
et al., 2000; Otvos et al., 2001; Krizsan et al., 2014).

Until recently, PrAMPs were classified based on a variety of
different criteria depending on the publication (Welch et al.,
2020). The definition of a PrAMP was recently updated and
confined to those antimicrobial peptides having a 25% or more
proline content, a net positive charge, and the capacity to inhibit
either DnaK or the 70S ribosome (Welch et al., 2020). This
definition does not include an indicator of membrane
permeability as PrAMPs are often present as part of an
antimicrobial mixture and may gain access to their
intracellular target through membrane permeabilization
elicited by another peptide (Rabel et al., 2004). Other than
membrane permeabilization, PrAMP uptake into the target
cell is facilitated primarily through the Gram-negative inner
membrane transporters, SbmA and YgdD, although MdtM is
also implicated at high PrAMP concentrations (Krizsan et al.,
2015; Paulsen et al., 2016; Graf and Wilson, 2019).

Recently, we assessed a new set of criteria for PrAMPs and
scanned the DRAMP database (http://dramp.cpu-bioinfor.org/)
to detect novel PrAMPs based on similarity to known DnaK
inhibitors (Welch et al., 2020). Using these guidelines, eight new
peptides were identified as potential new members of the PrAMP
family. These are: alpha-defensin-related sequences 7, 10, and 12,
antibacterial 6.5 kDa protein, antibacterial napin, attacin C, P9
and PP30. However, this in silico identification does not confirm
or otherwise the ability to modulate DnaK. Here, we undertook
screening of these putative new members for their ability to
modulate DnaK activity. A known PrAMPDnaK binder, oncocin
(Krizsan et al., 2014), was included in this study as a control. The
antibacterial properties of any DnaK modulators were assessed in
direct comparison with oncocin to enable objective analysis of the
role of DnaK modulation in PrAMP antimicrobial potency.
Interestingly, the PRP motif (found in oncocin and other
PrAMPs) has been reported to be responsible for binding to
DnaK (Zahn et al., 2013). With the potential PrAMPs each
lacking this motif, their capacity to modulate, or otherwise,
DnaK activity is of interest as it suggests different potential
modes of binding. The PRP motif is also absent in other
DnaK modulating peptides such as abaecin (Shen et al., 2010),
heliocin and formaecin, but each still has significant DnaK
inhibition activity (Welch et al., 2020). This confirms that
these AMPs bind DnaK at multiple sites (Kragol et al., 2001).

With the current high level of antimicrobial resistance (AMR),
the great majority of AMP studies are angled towards eventual
potential application in pharmaceutical settings. For PrAMPs to
be summarily applied, they need to be simple and cost effective to
produce. As such we have selected those putative PrAMPs which
lack disulfide bonds and/or cyclic backbones for further
investigation. Moreover, we chose not to assess peptides that

lack a previously identified, fully defined sequence (i.e. avoiding
antibacterial 6.5 kDa protein). The chosen peptides were
antibacterial napin, attacin-C, oncocin, P9, and PP30 (Table 1).

MATERIALS AND METHODS

Bacterial Strains
For the antimicrobial assays, the strains used were as follows:
Staphylococcus aureus ATCC 29213, Escherichia coli ATCC
25922 and E. coli BAA 3051.

Peptide Synthesis and Purification
All peptides were synthesized by Fmoc/tBu solid-phase synthesis
methods using a Biotage Initiator + Alstra microwave assisted
synthesizer, on Rink amide resin with a 0.43 mmol/g loading
(RAPP Polymere, Germany) (Li et al., 2017; 2020). Standard
Fmoc peptide synthesis protocols were used with 4-fold molar
excess of the Fmoc-protected amino acid in the presence of 4-fold
O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate (HCTU) and 8-fold DIPEA (N,
N-diisopropylethylamine). After synthesis, the peptides were
cleaved from the solid support using a cleavage cocktail of
95% Trifluoroacetic acid (TFA): 2.5% triisopropylsilane (TIPS):
2.5% H2O, for 2 h at room temperature. After cleavage, the resin
was removed through a cotton filter and the eluate was
transferred to a fresh vessel before evaporating the TFA under
a continuous stream of N2. The scavengers were removed with
two successive washes with ice cold diethyl ether where the ether
precipitated the peptide which was collected by centrifugation at
4,000 x G for 5 min before decantation of the ether. The peptides
were then purified by reverse-phase high performance liquid
chromatography (RP-HPLC) using a Shimadzu LC-20AP with
an SPD-20ABLK detector and a column oven at 40 °C with
solvents of water and acetonitrile each containing 0.1% TFA,
using a gradient of 10–60% acetonitrile in 60 min. The final
products were characterized by RP-HPLC over 20 or 30 min from
0 to 100% acetonitrile as well as by matrix-assisted laser
desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS) on a Shimadzu MALDI-8020 MALDI-TOF
mass spectrometer (Supplementary Information). After
achieving >95% purity as determined by analytical RP-HPLC,
all peptides were exchanged to HCl salt through four rounds of
resuspension in 0.2 M HCl followed by freeze drying.

DnaK Activity Assay
Peptides were assessed for their capacity to inhibit the ATPase
activity of DnaK by a colorimetric assay. Peptide at 300 µM
concentration were assayed in 100 µl format where each
reaction contained 0.3 µM of DnaK in DnaK assay buffer
(20 mM TRIS, 150 mM KCl, 5 mM MgCl2, 1 mM ATP, pH
7.5). After 60 min, 20 µl samples were taken (3 x per reaction)
for assessment by Malachite Green Phosphate assay kit
(Sigma—MAK307). The samples were added to 80 µl of Milli-
Q water in a 96 well plate, before adding 20 µl of staining solution,
and incubated at room temperature for 30 min before measuring
A620 on a plate reader (Zahn et al., 2013). A negative control was
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included for each peptide where the same assay conditions are
used in the absence of DnaK. The relative activity of DnaK in the
presence of each of the putative DnaK binding peptides was
assessed using the following equation:

DnaKacitivity% � (OD620 sample − OD620 negative control)

(OD620 positive control − OD620 negative control)
× 100

Antibacterial Assay
Peptides were assessed for their MIC against various bacterial
strains. Peptides were serially diluted at two x final concentration
across a 96 well plate with the final well containing no peptide and
control lanes of no antibacterial agent, and lanes of no bacteria or
antibacterial agent. All dilutions were in sterile MHB. Each
bacterial strain was grown overnight before inoculation of a
fresh culture in the morning of assay, the culture was allowed
to grow until OD600 = ~1.0 before dilution to achieve 2 ×
10̂6 CFU/ml based of the equations 2e + 7e(2.9218pOD600) for
E. coli and 2e + 7e(2.5537pOD600). Bacteria were added 1:1 to
wells containing the serially diluted peptide(s) and were
allowed to grow for 6 h, in regards to E. coli, or 24 h, in
regards to S. aureus, before measuring OD620 on a plate
reader. Bacterial growth per well was determined using the
following equation:

Bacterial growth% � (OD600 sample − OD600 negative control)

(OD600 positive control − OD600 negative control)
× 100

The MIC breakpoint was determined using GraphPad PRISM
observing for the concentration at which growth surpassed 10%.

RESULTS AND DISCUSSION

We selected four potential PrAMPs from the list of newly
identified PrAMPs for evaluation. We selected these as they
are amenable to ready chemical synthesis, ultimately making
them appealing for any downstream pharmaceutical applications
(Table 1). Each was chemically synthesized, purified, and
exchanged into HCl salt prior to investigation of antimicrobial
properties (Supplementary Information, Supplementary
Figure S1). The ability of the potential PrAMPs to modulate
the activity of DnaK was assessed at 300 µM in vitro through a
colorimetric assay with a known binder of DnaK, oncocin, as a
positive control peptide (Figure 1). It is clear that each of these
peptides affected the ATP processing capacity of DnaK but to a
greatly varying extent.

The peptides listed in Table 1, antibacterial napin, attacin-C,
P9 and PP30, had not been previously reported to interact with
DnaK until our most recent study in which computational
analysis of AMPs from the DRAMP database was used to
identify potential PrAMPs (Welch et al., 2020). As shown in
Figure 1, it is clear that our model for predicting DnaK
modulating PrAMPs has a 100% success rate where each and
every peptide which we have predicted to have an effect on DnaK,
in fact do. Antibacterial napin, attacin C, and PP30 each inhibit
DnaK activity whereas, somewhat surprisingly, P9 increases the
ATP hydrolysis of DnaK. Yet, increasing or decreasing DnaK
activity both require interaction with DnaK, although likely
through different modes of action. The capacity to accurately
identify peptides with the ability to interact with DnaK due to
proline content and charge through computational analysis
shows promise for narrowing database findings to screen
peptides more efficiently for desired characteristics.

The peptides were grouped into two classes: activator (P9), and
inhibitors (antibacterial napin, attacin C, and PP30).
Interestingly, all these peptides lack PRP motifs. In previous
reports, such motifs have been shown to be very important for
binding DnaK, with peptides containing multiple PRP motifs
having multiple binding modes (Zahn et al., 2013). Our findings
of these peptides lacking PRP motifs but still retaining DnaK

TABLE 1 | Predicted PrAMPs used in this study. The known PrAMPs and control PrAMP, oncocin, is included for reference. Each peptide was synthesized with a
C-terminal amide.

Name Sequence
(Single Letter Code)

# AA %Pro Net Charge PRP Motifs MW Calc MW Obs

Antibacterial napin PAQPFRFPKHPQGPQTRPPI 20 35.0 +3 0 2,295.6 2,300.5
Attacin-C QRPYTQPLIYYPPPPTPPRIYRA 23 34.8 +3 0 2,784.2 2,789.8
Oncocin VDKPPYLPRPRPPRRIYNR 19 31.6 +5 1 2,389.8 2,395.2
P9 RFIPPILRPPVRPPFRPPFRPPFRPPPIIRFFGG 34 38.2 +7 0 4,034.9 4,040.9
PP30 YVPPVQKPHPNGPKFPTFP 19 36.8 +2 0 2,146.5 2,151.0

FIGURE 1 | Ability of potential new PrAMPs to impact DnaK activity.
Each was incubated with DnaK for 1 h at 37°C and the free phosphate
generated was detected with a Malachite Green-based stain. Activities are
reported in % activity relative to DnaK positive and DnaK negative
samples with constraints at 0% activity. All peptides were assayed at 300 µM.
One-way ANOVA followed by Dunnett’s multiple comparisons test was
performed to compare the control (DnaK) to each of the peptides, p < 0.05 (*)
and p < 0.001 (**) are indicated.
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binding suggest PRP motifs are not the only motif, nor the
primary factor, to be able to bind DnaK, with further specific
structure activity analysis is required to determine the binding
motifs of each of our peptides. This finding is supported by the
work of Zahn et al. who identified two other motifs associated
with DnaK binding (NRLLLTG and ELPPVKI) (Zahn et al.,
2013).

The finding that P9 increased DnaK activity warrants further
investigation and mechanistic studies which are outside of the
scope of this primary investigation. The effect on bacterial
homeostasis with an increase in DnaK activity and associated
ATP hydrolysis also needs to be investigated for its potential
antimicrobial properties. Increasing DnaK activity may lead to
alterations in the protein synthesis pathways within bacteria and
ultimately negatively affect their ability to utilize energy sources
effectively making them more susceptible to host immune
responses. Alternatively, this could improve stress resistance,
particularly in response to heat stimuli with DnaK being
responsible for the bacterial response to heat. An increase in
DnaK activity may promote bacterial resistance to heat stress. As
another potential response, the ATP hydrolysis of DnaK may be
upregulated without permitting more chaperone-based refolding
as a result. If DnaK is trapped in a non-receptive state which is
turning over ATP without entering the open conformation which
enables refolding of target peptides, it may be realistically
inactivated while still using ATP. This would be a double hit
to the bacteria as it is not just inactive, it is also utilizing valuable
ATP resources.

The relationship between the effect on DnaK and
antimicrobial potency has not been explored for any of these
peptides. Each of these peptides has had some level of
antimicrobial testing performed in the past, however, side by
side analysis—especially in comparison with oncocin—has not
previously been undertaken. Consequently, the relative
antimicrobial properties of each of these DnaK modulating
peptides was determined (Figure 2).

The MIC data provided interesting insight into the activity of
the PrAMPs, particularly P9 which was shown to increase the
ATP hydrolysis of DnaK, but in MIC assessment it was shown to
have potent antimicrobial activity against E. coli. PP30 has
previously been shown to be membrane-lytic (Shen et al.,
2010). This dual mode of action of PP30, membrane lysis and
DnaK activation, is novel and unreported for other native

PrAMPs. Interestingly a dimeric form of the artificial PrAMP
Chex-Arg20, A3-APO (Szabo et al., 2010), has been shown to be
predominantly membrane-lytic (Li et al., 2017; 2022). The dual
mode of action of PP30 has not however resulted in observable
MICs in the assays here which may be due to a range of factors.
We speculate that it is due to the assay conditions of the original
research, perhaps due to the specific strains assayed. Nevertheless,
E. coli was the most responsive of the Gram-negative bacterial
strains assayed for MIC (Shen et al., 2010).

It is interesting to note that the peptides tested which inhibit
DnaK are in fact not antimicrobial at concentrations of 128 µM or
less. This may be because the peptides act in vivo as part of a
complex multi-peptide cocktail with synergistic effects.
Interestingly, antibacterial napin has been shown to be inactive
against E. coli (Gram-negative bacterium) (Ngai and Ng, 2004),
which is corroborated here. However, our observation that it is
also inactive against the Gram-positive bacteria S. aureus strains
tested is in contrast to earlier findings that it is active against a
different Gram-positive bacterium Bacillus subtilis (Ngai and Ng,
2004). This variation in response to Gram-positive bacterium by
antibacterial napin suggests that internalization of the different
peptides may vary from species to species.

The lack of direct antimicrobial activity of PP30, attacin-C and
antibacterial napin, at realistically achievable therapeutic
concentrations on the strains explored here indicates that,
although these peptides can modulate DnaK in vitro, they do
not inhibit in vivo bacterial growth of E. coli in isolation. One
potential reason is that these peptides are unable to access the
cytoplasm of the cell. Consequently, the synergistic capacity of
PP30, attacin-C, and antibacterial napin with oncocin or P9 was
examined (Figure 3). The combination treatment of these
peptides showed no synergistic effects. This could be because
the peptides are unable to access the cell or because the shared
target of DnaK does not allow the peptides to work in synergy.
This suggests that co-treatment peptide therapeutic options may
be better served with using AMPs with distinct modes of action,
as they may be able to act synergistically on different cellular
components to improve their potency when compared to their
actions when in isolation.

Previously, many PrAMPs have been shown to bind DnaK
through their PRP motif(s) which are absent from the PrAMPs
explored in this study (excluding the control peptide oncocin).
This suggests that PRP is not the only motif that facilitates DnaK

FIGURE 2 | Minimum inhibitory concentration of potential PrAMPs. Each of the potential PrAMPs were assayed for MIC against E. coli ATCC 25922 (A), E. coli
BACC 3051 (B), and S. aureus 29213 (C), up to 128 µM in MHB media.
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binding and, in turn, contribute to antibacterial activity. The PRP
motif is needed to bind to the substrate-binding pocket of DnaK
(Kragol et al., 2001). While this binding inhibits DnaK protein
folding and contributes to killing bacteria, other binding sites on
DnaK likely modulate other enzymatic activities that are not
necessarily related to antibacterial action. This aspect was
highlighted by a recent publication in which 47 analogues of
oncosin were evaluated across several different modes of activity
including 70S ribosomal binding, inner and outer membrane
transport and antimicrobial activity. The lack of clear correlation
between these variables led to the conclusion that several
parameters, including additional targets such as DnaK, are in
continuous play with respect to ultimate antimicrobial action
(Brakel et al., 2022; Kolano et al., 2022). Our data confirms this
inability to reply solely on one or two in vitro assays for the design
and prediction of novel antimicrobial peptide analogues. Yet,
each of the new PrAMPs assessed here represent interesting and
potentially significant new lead compounds in their own right.

CONCLUSION

Here we have chemically synthesized, assayed four potential new
PrAMP members and confirmed through their interaction with the
chaperoneDnaK that potential modulators of DnaK can be predicted
through computational analysis of antimicrobial peptide databases.
However, and importantly, an ability to effect DnaK does not
necessarily equate to direct antimicrobial activity. The
antimicrobial activity of the PrAMPs tested here, only one of
which showed an observable potency, is likely elicited through
more complex interaction with other cellular proteins or pathways
or in combination with other peptides produced as part of the host
defense reaction to a bacterial infection. Considering this change in
understanding of antimicrobial activity, we propose an update to the
PrAMPdefinition as follows: Peptides with over 25% proline content,
a net charge of +1 or greater, modulation of Dnak AND/OR the 70S
ribosome, produced in response to bacterial infection AND/OR with
pronounced antimicrobial activity.
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