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Abstract Single-molecule Förster Resonance energy transfer (smFRET) is an adaptable method

for studying the structure and dynamics of biomolecules. The development of high throughput

methodologies and the growth of commercial instrumentation have outpaced the development of

rapid, standardized, and automated methodologies to objectively analyze the wealth of produced

data. Here we present DeepFRET, an automated, open-source standalone solution based on deep

learning, where the only crucial human intervention in transiting from raw microscope images to

histograms of biomolecule behavior, is a user-adjustable quality threshold. Integrating standard

features of smFRET analysis, DeepFRET consequently outputs the common kinetic information

metrics. Its classification accuracy on ground truth data reached >95% outperforming human

operators and commonly used threshold, only requiring ~1% of the time. Its precise and rapid

operation on real data demonstrates DeepFRET’s capacity to objectively quantify biomolecular

dynamics and the potential to contribute to benchmarking smFRET for dynamic structural biology.

Introduction
Single-molecule Förster resonance energy transfer (smFRET) combined with TIRFm (total internal

reflection fluorescence microscopy) is a key powerful method to study the structure of biomolecules

and provide a dynamic perspective in structural biology (Lerner et al., 2018). Capturing the real-

time readouts of nanometer-scale distances of individual biomolecules by smFRET allows the direct

observations of dynamics, interactions, and intermediates of stochastic non-accumulating events, as

well as dynamic equilibria between unsynchronized molecules, all of which are obscured in ensemble

averaging techniques (Dimura et al., 2016; Hellenkamp et al., 2018; Holmstrom et al., 2019;

Juette et al., 2016; Newton et al., 2019; Preus et al., 2015; Roy et al., 2008; Schuler and Eaton,

2008; Stella et al., 2018). The high fidelity and proficiency of smFRET established it as a key toolbox

for the accurate characterization of mechanisms, biomolecular interactions function, and even struc-

tures of biomolecules (Craggs and Kapanidis, 2012; Dulin et al., 2018; Kalinin et al., 2012;

Kilic et al., 2018; Ratzke et al., 2014), under both in vitro (Schluesche et al., 2007; Sharma et al.,

2008; Stein et al., 2011) and in vivo (Okamoto et al., 2020; Sakon and Weninger, 2010) condi-

tions. Despite its great quantitative utility and profound impact on structural biology, smFRET is not

a direct imaging modality and data treatment for extracting quantitative dynamic information relies
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on multiple layers of preprocessing: raw image treatment, trace selection, and data analysis. Raw

image treatment (Greenfeld et al., 2012; Hon and Gonzalez, 2019; Juette et al., 2016;

Preus et al., 2015; Stella et al., 2018) and data analysis of the selected smFRET traces is in general

well-standardized and relies on well-defined methodologies with strong theoretical backing

(Hon and Gonzalez, 2019; Schmid et al., 2016).

The actual trace selection can be time-consuming but crucial due to the presence of undesired

phenomena at the single-molecule scale, such as sample aggregation, fluorescent contaminants,

incomplete or incorrect sample labeling, complex photophysical behaviors, and high noise, to men-

tion a few (Algar et al., 2019; Hellenkamp et al., 2018; Roy et al., 2008). Existing software

(Greenfeld et al., 2012; Hellenkamp et al., 2018; Hon and Gonzalez, 2019; Juette et al., 2016;

Preus et al., 2015; Stella et al., 2018) by single-molecule labs can simplify the tedious and time-

consuming selection of traces and were recently expanded to large datasets (Juette et al., 2016)

albeit requiring some form of manual supervision and hyper-parameter tuning selecting the proper

thresholds by an expert user. This need for human intervention could potentially be subjected to

cognitive biases especially by less experienced users and could limit the expansion of smFRET to

classic biology labs. The increasing expansion of smFRET to structural biology labs would benefit

from rapid and benchmarked methodologies, reproducible across laboratories, with minimal human

intervention. This is highlighted by several initiatives to standardize the smFRET field

(Greenfeld et al., 2012; Hellenkamp et al., 2018; Lerner et al., 2018; Sali et al., 2015).

Recent advances in machine learning (ML) and specifically deep learning (DL) (LeCun et al.,

2015), have radically improved our capacity to access and extract information from abstract and

noisy inputs independently of human interventions as we (ATLAS collaboration, 2014) and others

have shown (Berg et al., 2019; Christiansen et al., 2018; Falk et al., 2019; Gómez-Garcı́a et al.,

2018; Jones, 2019; Ouyang et al., 2018; Smith et al., 2019; Zhang et al., 2018). DL implementa-

tions are providing high-level robust performances and have been successfully used to analyze and

augment a wide range of the fluorescence microscopy analysis pipeline including assessing micro-

scope image quality (Yang et al., 2018), in-silico cell labeling (Christiansen et al., 2018), single-cell

morphology analysis (Berg et al., 2019; Falk et al., 2019), detecting single molecules (White et al.,

2020; Wu and Rifkin, 2015) and linking smFRET experiments with molecular dynamics simulations

(Matsunaga and Sugita, 2018), amongst others (Berg et al., 2019; Christiansen et al., 2018;

eLife digest Proteins are folded into particular shapes in order to carry out their roles in the

cell. However, their structures are not rigid: proteins bend and rotate in response to their

environment. Identifying these movements is an important part of understanding how proteins work

and interact with each other. Unfortunately, when researchers study the structures of proteins, they

often look at the ‘average’ shape a protein takes, missing out on other conformations the protein

might only be in temporarily.

An important technique for studying protein flexibility is known as single molecule Förster

resonance energy transfer (FRET). In this technique, two light-sensitive tags are attached to the

same protein molecule and give off a signal when they come into close contact. This nano-scale

sensor allows structural biologists to get information from individual protein movements that can be

lost when looking at the average conformations of proteins.

Advances in the instruments used to perform FRET have made observing the motion of individual

proteins more widely accessible to non-specialists, but the analysis of the data that these

instruments produce still requires a high level of expertise. To lower the barrier for non-specialists to

use the technology, and to ensure that experiments can be reproduced on different instruments and

by different researchers, Thomsen et al. have developed a new way to automate the data analysis.

They used machine learning technology to recognize, filter and characterize data so as to produce

reliable results, with the user only needing to perform a couple of steps.

This new analysis approach could help expand the use of single-molecule FRET to different fields

, allowing researchers to investigate the importance of protein flexibility for certain diseases, or to

better understand the roles that proteins have in a cell.
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Falk et al., 2019; Gómez-Garcı́a et al., 2018; Jones, 2019; Ouyang et al., 2018; Smith et al.,

2019; Zhang et al., 2018).

Deep learning-based analysis has several advantages over other approaches: It recognizes

abstract patterns and learns useful features directly from the raw input data, which allows

the implementation of analysis routines that do not require extensive data preprocessing or empiri-

cally defined rules, and thus offer reproducible and less opinionated evaluation of single-molecule

data; It is significantly faster than human annotation for large single-molecule datasets; it comes

close to, or outperforms human performance; and its performance is increased when increasing

dataset size constituting an ideal case for evaluating the large datasets obtained from single-mole-

cule data (Berg et al., 2019; Christiansen et al., 2018; Falk et al., 2019; Gómez-Garcı́a et al.,

2018; Jones, 2019; Ouyang et al., 2018; Smith et al., 2019; Zhang et al., 2018). Especially impor-

tant are convolutional deep neural networks (DNN), artificial neural networks that learn to approxi-

mate the underlying function that transforms input to associated output through multiple rounds of

optimization. The strength of DNN is the ability to learn arbitrarily complex functions to best recog-

nize particular aspects of the given input data and model complex nonlinear relationships. The DNN

is then able to classify data into predefined classes based on the provided training labels. While the

training of a DNN is generally a computationally intensive process, once trained the final model can

easily be shared and used for making predictions at almost no computational cost to end-users.

Here we provide DeepFRET, an all-inclusive analysis software with a pre-trained DNN at its core,

for a rapid, objective, and accurate assessment of smFRET data for quantifying biomolecular dynam-

ics. The fully automated analysis software operates with minimal crucial human intervention and

requires only a threshold on the data quality confidence, as an initial step, to output detailed quanti-

fication of structural dynamic from raw images. This is attained by an intuitive and user-friendly inter-

face that integrates and automates common smFRET analysis procedures (Greenfeld et al., 2012;

Hellenkamp et al., 2018; Hon and Gonzalez, 2019; Juette et al., 2016; Preus et al., 2015;

Stella et al., 2018) from raw image analysis and background-corrected intensity trace extraction

(Thomsen et al., 2019), to sophisticated trace classification, statistical analysis of single-molecule

data and production of publication-quality figures of dynamic structural biology insights (see Materi-

als and methods). DeepFRET comes as a free-to-use standalone executable for both Windows and

Mac users allowing end-users with limited programming skills to easily operate it. A script-based ver-

sion implemented entirely in Python enables experts to adjust features pipelining the analysis speci-

fied for their needs. We anticipate DeepFRET to take full advantage of the widespread digitization

and open repository of smFRET data and form a reference point setting a bar for the data quality

and data classification performance metrics, offering additional benchmarking the field for dynamic

structural biology.

Results

DeepFRET software package
DeepFRET is an open-source software package that implements a neural network model architecture

for data evaluation integrating into a user-friendly platform all common procedures for smFRET anal-

ysis (Figure 1, Figure 1—figure supplements 1–2). The neural network model architecture used

here is based on a deep convolutional neural network to recognize particular spatial features present

in the data. The model first passes the data through several layers of convolutions of different

lengths, and in the process learns to recognize which particular elements of a sample are present at

different length scales, to best classify it correctly. This has previously been used to label time-series

data such as electrocardiographs (Hannun et al., 2019) or electrical readouts in DNA sequencing

(Wick et al., 2018). Additionally, we added a long short-term memory (LSTM) layer after the convo-

lutional layers, as this will also help the model to learn temporality in the data and propagate to the

later frames the learned information (Karim et al., 2018; Oh et al., 2018). A detailed description of

the model hyperparameters and architecture can be found in the Materials and methods section.

To ensure that the predictions of DeepFRET would generalize to a wide range of experimentally

observable behaviors independently of biological systems or experimental conditions, we provide a

fully pre-trained DNN model. The implemented DNN is pre-trained on 150,000 simulated traces that

uniformly sample all possible FRET states, their respective lifetimes, occupancies, and transition
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Figure 1. Overview of smFRET evaluation and analysis using DeepFRET. (a) Cartoon of the typical heterogeneous data acquired in smFRET

experiments. Varying criteria for data selection for downstream analysis may yield different structural and kinetic information. (b) Screenshots of the

provided standalone software that integrates deep learning and reduces the selection to a single-user-adjustable criterion: the DEEP FRET confidence

threshold. The simple and intuitive GUI integrates all the features of our approach for rapid traces extraction from raw images to filtering of traces

based on the predicted classification, treatment of smFRET data to extraction of publication-quality figures. (c) End-to-end sequence classification of

smFRET traces by deep learning. Raw signals of donor-donor, donor-acceptor, and acceptor-acceptor intensities in the form of ASCII files can also be

loaded with the DeepFRET software. The pre-trained DNN will classify individual frames into one of six different categories: bleached, static smFRET,

dynamic smFRET, aggregate, noisy, and scrambled. A final smFRET confidence score is calculated, depending on each of the categories, that is used

for threshold.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Data underlying Figure 1—figure supplements 3, 4 , and 7.

Figure supplement 1. Schematic overview of the neural network model architecture.

Figure supplement 2. Data generator algorithm overview.

Figure supplement 3. FRET values, dynamic FRET state lifetimes, and transition pathways are uniformly sampled for all ground truth smFRET traces.

Figure supplement 4. Noise threshold for simulated data.

Figure supplement 5. Examples of randomly generated traces.

Figure supplement 6. Trace simulator interface.

Figure supplement 7. Training label dependence on the frame number.

Figure supplement 8. Calculation of confidence score from model predictions.

Figure supplement 9. Histogram interface window.

Figure supplement 10. Transition density window.

Figure supplement 11. Traces window.

Thomsen et al. eLife 2020;9:e60404. DOI: https://doi.org/10.7554/eLife.60404 4 of 21

Tools and resources Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.60404


pathways, as well as all possible noise levels, ensuring that the data represents all theoretically possi-

ble configurations (see Figure 1, Figure 1—figure supplements 3–5, Materials and methods for

software and algorithms). As such DeepFRET does not require the selection of any direct initial

guesses of FRET values or user-defined parameter pretraining. However, we do provide both a

script-based method for simulating smFRET data and a simple graphical interface for expert end-

users to adjust simulation distribution parameters (see Figure 1b, Figure 1—figure supplement 6

and Materials and methods) for model re-training if needed (e.g. for specific circumstances or

stricter criteria). This offers experts the possibility to benchmark the impact of, for example, one’s

sorting criteria, noise, and optical correction factors.

We built DeepFRET to treat both alternating laser excitation (ALEX) and non-ALEX FRET data.

DeepFRET imports raw microscope images and performs colocalization of the two channels, to

extract background corrected intensity traces of DD (donor excitation; donor emission), DA (donor

excitation; acceptor emission), their respective stoichiometry, and in the case of ALEX data, also AA

(acceptor excitation; acceptor emission; see Figure 1a, Figure 1—figure supplement 4). Alterna-

tively, one can directly load and process previously-obtained time-traces ASCII format as exported

from the popular software package iSMS (Preus et al., 2015) without their associated videos.

For a given time trace the DNN predicts and outputs six softmaxed probabilities pi to each time

frame (Figure 1c, Figure 1—figure supplement 5 and Materials and methods), representing the six

categories it has been trained to recognize: bleached (B), static smFRET within the experimental

time frame (S), dynamic smFRET (D), aggregate (A), noisy (N), and all other types of non treatable

data smFRET data defined here as scrambled (X) (Figure 1c, Figure 1—figure supplements 5 and

7). Both static and dynamic traces are included for further analysis. Given these probabilities, which

sums to one, a simple sliding window then searches for frames predicted by the DNN to be

bleached (pB >0.5, see (Figure 1, Figure 1—figure supplements 5–8) for evaluation accuracy, and

blinking exclusion). When bleaching is found, the rest of the trace is removed to exclude the photo-

bleached frames part of a trace from further analysis. If the trace still contains a minimum number of

viable frames (here set to 15 but adjustable), the probabilities are summed up over all remaining

time frames for each of the five remaining categories and divided by the number of frames for nor-

malization (see Materials and methods and Figure 1c, Figure 1—figure supplements 5–8). We

define the summaries of the combined static and dynamic trace scores as the ‘DeepFRET score’, rep-

resenting the DNN model confidence that a trace is truly smFRET. The user-friendly interface dis-

plays all the categories and their associated probabilities, and offers the option for expert users to

manually revise the classified traces.

If the DeepFRET score is above the user-defined threshold, the trace is accepted for

the subsequent analysis (see Figure 1, Figure 1—figure supplement 8 and Materials and methods).

Subsequent analysis involves two-channel fitting of idealized FRET traces using Hidden Markov

modeling HMM (using the open-source package pomegranate); data and statistical evaluation of the

abundance of FRET states and lifetimes; application of correction factors; and transition density plots

(see Figure 1b, Figure 1—figure supplements 6 and 9–11). The number of underlying FRET distri-

butions is automatically determined using Bayesian information criterion (BIC), offering the unbiased

analysis of distribution of biomolecular distances (see Figure 1b, Figure 1—figure supplements 6

and 9–11). All data can be directly exported in publication-quality figures or extracted as data for

user specific analysis if required.

Performance of DeepFRET
To test our DeepFRET performance in practice, we initially compared it with commonly used thresh-

old values. To be on the safe site, we simulated 200 ground truth smFRET traces and merged them

with a dataset containing 5000 random, non-smFRET traces (too noisy, aggregates of multiple mole-

cules, aberrant single-molecule behavior, see Materials and methods for parameter descriptions).

The obtained overall FRET distribution would be akin to what one would observe experimentally

before any preprocessing of smFRET data on a low purity protein sample (Figure 2a). Common pro-

cedures for pre-selecting valid data for treatment often rely on an initial automatic threshold for dis-

carding this large fraction of non-smFRET data (see Figure 1a). This is based on any number of

combinations of the anticorrelated signal of the donor and acceptor, fluorophore bleaching, noise

levels, or certain ranges of fluorophore stoichiometry, if recorded using ALEX methods

(Hellenkamp et al., 2018; Hohlbein et al., 2014; Juette et al., 2016; Lee et al., 2005;
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Figure 2. High quality FRET data evaluation. (a) Simulated dynamic smFRET traces transitioning between FRET states 0.3 and 0.7 (left, ‘ground truth’)

were mixed with a larger number of traces not showing smFRET (center). The overall distribution (right, ‘combined’) shows how the desired data can be

drowned out in non-smFRET contaminant traces. The distribution would correspond to a raw distribution as extracted from raw image analysis of

smFRET on low purity protein sample before any trace selection. (b) Automatic selection of data based on median stoichiometry, single-molecule

intensity and bleaching. The number n designates the number of traces accepted by the model. Tightening the selection thresholds results in slight

improvement of the poor overlap of the selected data with ground truth data, highlighting the need for a time-consuming and prone to potential

cognitive biases human intervention. (c) Automatic classification of all traces of the combined set by DeepFRET, based only on the DeepFRET score

threshold variation. Even at a low threshold DeepFRET selection follows the ground truth data. Increasing the score threshold further increases the

fidelity of data selection. DeepFRET correctly assigns the dynamic, bleaching and aggregate behavior on the same smFRET traces as in (b) (see

Figure 1—figure supplement 5 for more data). The single-user adjustable score threshold outperforms commonly used thresholds offering rapid,

cross-lab reproducibility, and fully automatic data treatment. P: precision, R: recall, TN: true negatives, FP: false positives, FN: false negatives, TP: true

positives.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Data underlying Figure 2 and Figure 2—figure supplements 1–3.

Source data 2. Data underlying Figure 2 and Figure 2—figure supplements 1–3.

Source data 3. Data underlying Figure 2 and Figure 2—figure supplements 1–3.

Figure 2 continued on next page
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McKinney et al., 2006; Preus et al., 2015; van de Meent et al., 2014). We first removed photo-

bleaching and then accepted or rejected traces based on commonly used thresholds of median stoi-

chiometry and max intensity (but not anticorrelation, see Materials and methods) without any

manual post-inspection of the data. Figure 2b displays ground truth distribution (green) and the dis-

tribution of the accepted traces (pink) for varying the above thresholds. We recovered a poorly-

defined FRET distribution that even at the tightest threshold does not recapitulate the underlying

ground truth two-state conformational equilibrium. We calculated the common model evaluation

metrics ‘precision’ and ‘recall’ (see Materials and methods) to quantify the quality of the predictions.

The precision and recall, though improved by tightening the threshold, remain around 0.22 and

0.40, in the best case for simple thresholding (Figure 2b). The fact that out of 366 selected traces

only 80 were true positive, while 286 were false positive and 120 false negative, highlights the need

for human intervention as many traces are indistinguishable with simple statistical characterization

(selected examples are shown below the histograms [Figure 2b]).

DeepFRET, on the other hand, allowed the high-fidelity recovery of the underlying ground truth

distribution reaching a precision of 0.91 when setting a DeepFRET score of 0.85 (Figure 2c) without

the need for human intervention. The virtually identical FRET distributions, matching the ground

truth data, that are derived for a large fraction of score thresholds (0.5– 0.85) show no systematic

biases originating from data evaluation and illustrate the minimum impact of human interventions

when using DeepFRET (see Figure 2, Figure 2—figure supplement 1). As expected, the fidelity of

DeepFRET pertained to correctly identifying single or complex multistate FRET distributions (see

Figure 2, Figure 2—figure supplements 1–2) reaching precision 0.91 as compared to just 0.22 for

standard threshold setting in the absence of further human intervention. The practically identical

precision and recall for single, double or triple, state FRET distributions independently of threshold

further support the wide applicability to multiple biological systems.

Quantification of precision and recall of the selection for various DeepFRET score thresholds dis-

plays the tradeoffs in recovering a high fraction of useful data. Thresholding data with scores in the

regime 0.8–0.9 appears optimal for maintaining sufficient and high-fidelity data (Figure 2, Figure 2—

figure supplement 1) for the trace characteristics here. Based on these data, we employed a Deep-

FRET score threshold of 0.85 as optimal for maintaining high precision at reasonable recall values.

We note that depending on datasets, imaging condition, noise levels, etc., users may need to adjust

the threshold. The power of DeepFRET is further highlighted by the classification for the traces that

were assigned as false negative and false positive by commonly accepted thresholds (traces in

Figure 2b and Figure 2c, Figure 2—figure supplement 3). In summary, the fidelity of classification

accuracy appears to supersede currently used simple thresholding, without human interventions.

This was achieved in a fraction of the time required for data classification by human operators (~1

min for 10,000 traces on a normal laptop, as compared to potentially days for manually inspected

traces). This improved classification was also achieved entirely without any preprocessing or post-

inspection of data, illustrating the power of DeepFRET to operate without human interventions and

its potential to benchmark the reproducibility of smFRET data acquisition methods for multiple bio-

molecular systems across laboratories.

We quantified and displayed using confusion matrix the discordance between the ground truth

data and the data selected and classified by DeepFRET (Figure 3). In the confusion matrices, dis-

played in Figure 3, each row represents the predicted classification of traces while each column rep-

resents the ground truth data. The high classification accuracy for the annotation of individual

frames is highlighted by the clear diagonal feature. We found similar classification performance for a

DNN trained on non-ALEX FRET (by a DNN with only DD and DA inputs, which we will refer to as

‘ALEX-disabled’; Figure 3 right panels) signifying the applicability of the DeepFRET approach to

both ALEX and non-ALEX FRET data. The misclassification between static and dynamic smFRET

Figure 2 continued

Source data 4. Data underlying Figure 2 and Figure 2—figure supplements 1–3 .

Figure supplement 1. Precision-recall for correctly identifying smFRET traces at different thresholds.

Figure supplement 2. Comparison of smFRET distribution recovery by DeepFRET at different thresholds and semi-automated methodologies under

various conditions in the absence of further human intervention.

Figure supplement 3. Relationship between model performance and noise level.
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traces is practically non-existent and consists of <3% dynamic traces being misclassified as static, for

both model types. This is important for accurately quantifying the abundance of static and dynamic

subpopulations within the experimental time frame, which has been shown to have a clear experi-

mental impact (He et al., 2019; Kilic et al., 2018; Osuka et al., 2018; Wood et al., 2012).

Figure 3. Confusion matrices of DeepFRET classification based on the ground truth data test. (a) Classification accuracy of data in the six categories for

the ALEX-enabled model, or the ALEX-disabled model. The absolute number of frames is shown while the fractions for each classification is displayed

in parentheses (as calculated row-wise for each true label). The diagonal percentages show the accurate classification of DeepFRET (b) per-trace

classification accuracy based on accepting only traces that are classified as smFRET (static/dynamic), and non-FRET data.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Precision-recall of the neural network and human participants.

Figure supplement 1—source data 1. Data underlying Figure 3—figure supplement 1.
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DeepFRET was found to classify bleached or aggregated frames with a 98% the true positives for

ALEX-FRET model enabled (97% for the non-ALEX model), whereas only 89% (and 83% for ALEX-

disabled) of the scrambled traces were correctly classified (see also Figure 2—figure supplement 3

for a detailed breakdown of the precision and recall). We note that the model is trained with a noise

contribution that is drawn from a normal distribution of varying width (s uniformly distributed

between 0.01 and 0.30, multiplied by the maximum single fluorophore intensity) with a small contri-

bution of gamma-distributed noise. As such, traces with s above 0.25 are characterized by the

employed DNN as ‘noisy’ (see Figure 2, Figure 2—figure supplement 3 and Materials and meth-

ods). In a regime where transition rates are similar to the imaging temporal resolution, traces may

be incorrectly classified as noisy by the model. To allow experts to accept more noisy traces or

traces with fast transition rates that may appear as noisy for given imaging conditions, we integrated

into the DeepFRET a visual trace simulator. This user-friendly simulator allows the generation of

traces with ground truth labels of traces where all parameters are tunable to integrate the specific

needs of each lab (see Figure 1, Figure 1—figure supplements 6 and 11).

We found the classification accuracy of each frame to be consistent with the classification accu-

racy on each trace, later derived from the overall most probable class given all predictions of individ-

ual frames of a trace (Figure 3a, Figure 3b, Figure 1, Figure 1—figure supplement 6 and Materials

and methods). This is achieved by adding a bidirectional long short-term memory, LSTM, layer at

the end of the DNN (Figure 1, Figure 1—figure supplement 1). The LSTM layer allows coherent

predictions throughout the trace and forward propagation of information detected in the first

frames, such as fluorophore detection or bleaching, to the predictions for later frames. By collapsing

the per-trace confusion matrix into a binary ‘smFRET’ and ‘non-smFRET’ (as shown by the cross-lines

in Figure 3b), DeepFRET was found to be very balanced overall, with a true-positive rate of 94% for

smFRET traces, and a true-negative rate of non-smFRET traces (Figure 3c), resulting in an overall

balanced classification accuracy of 94% for the ALEX-enabled model and 93% for the ALEX-disabled

model.

We then compared the classification accuracy of DeepFRET to the accuracy of three different

human operators working with smFRET to evaluate the feasibility of manually inspecting and making

decisions about smFRET examples. We simulated 1000 ground truth traces, of which only 46 con-

tained actual smFRET, at different, randomly chosen levels of noise. The participants were neither

informed about the underlying distribution nor the true number of smFRET traces. The test revealed

that the average performance of the human operators, scoring 0.76 ± 0.10 in precision and 0.83 ±

0.14 in recall, was close to the precision-recall curve of the DNN, on a relatively small dataset (Fig-

ure 3, Figure 3—figure supplement 1). Notably, one participant scored slightly better than the

model in both precision and recall but spent an average of 5 s per trace, which would significantly

increase data treatment time, thus making this unfeasible in a high-throughput setting. The large

Figure 4. Method evaluation on real previously published smFRET data. (a) Raw FRET distribution as it would look before any sorting to remove

incomplete or multi-labeled proteins, aggregates, cross talk, etc. (b, c) Comparison of DeepFRET data selection with published distributions for 0.7 in

(b) and 0.85 in (c) thresholds. At the DeepFRET score threshold of 0.85, a high-fidelity data selection is achieved resulting in a similar distribution as

compared to manual selection.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Data underlying Figure 4 and Figure 4—figure supplements 2–4.

Figure supplement 1. DeepFRET applied to experimentally-obtained data.

Figure supplement 2. Distribution of trace quality of the experimental dataset.

Figure supplement 3. Comparison of DeepFRET, SPARTAN, iSMS, HAMMY, and ebFRET performance on simulated, ground truth data.

Figure supplement 4. Comparison of DeepFRET, SPARTAN, and iSMS performance on the published experimental data.
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spread on precision and recall attained by human operators on these data furthermore suggest a

large possible spread in experimental outcomes and highlights the advantages of unifying, repro-

ducible methodologies independent of human interventions. We, therefore, argue that DeepFRET is

equally good, or better, as careful manual inspection while offering orders of magnitude faster data

evaluation.

DeepFRET performance on real data compared to the existing robust
software for smFRET analysis
The model’s generalizability was initially examined by evaluation on real experimental smFRET data

previously published by us (Stella et al., 2018). The selected published dataset contains thousands

of traces that included aggregates and incomplete labeled molecules, due to low labeling efficiency.

Our pre-screening (using median stoichiometry and intensity distributions) and subsequent manual

inspection of the data resulted in 214 traces to exhibit smFRET. Applying our trained model with a

threshold of 0.85, without any other parameter tuning, recovered 228 traces, with a FRET distribu-

tion very closely matching manual selection (Figure 4, Figure 4—figure supplement 1). The Deep-

FRET score of human versus machine selection displays the importance of quantitative and

reproducible assessment of trace scores (Figure 4, Figure 4—figure supplement 2). The total data

evaluation time of <50 ms per trace (on a recent laptop) free of human intervention highlights the

potential of DeepFRET to rapidly and reliably evaluate high throughput smFRET data. Most impor-

tantly, the trace selection is deterministic, strictly relies on the score threshold, and is thus indepen-

dent of potential human cognitive bias. This demonstrates the ability of the DNN to generalize to a

completely new set of experimental data, without any prior expectations for signal-to-noise ratio,

anti-correlation, underlying FRET distribution, etc., offering the possibility to rapidly analyze smFRET

data for structural biology insights.

To further evaluate the performance of DeepFRET we compared it to the existing, robust, and

widely used software packages for classification and treatment of smFRET data, iSMS, and SPARTAN

(Juette et al., 2016; Preus et al., 2015), as well as ebFRET and HAMMY that focus on the kinetic

analysis (McKinney et al., 2006; van de Meent et al., 2014). The performance was initially tested

on simulated, ground truth data and further evaluated on published and publicly available experi-

mental data (Kilic et al., 2018; Hellenkamp et al., 2018). For the simulated data, 200 ground truth

smFRET traces were merged with 1800 simulated, non-smFRET traces and sorted by the various

software packages. SPARTAN and iSMS both have sophisticated tools for automated sorting of

traces (intensity, stoichiometry, and FRET thresholds in iSMS, and 26 parameter thresholds in SPAR-

TAN including donor/acceptor correlation, SNR, intensity, FRET lifetime, and exclusion of photo-

blinking), while ebFRET and HAMMY relies on simple thresholds on the intensity and FRET. Here,

practically the commonly used thresholds were employed in all software packages. DeepFRET was

found to sort traces at least similarly to, or better than, both SPARTAN and iSMS without any param-

eter tuning, closely matching the underlying ground truth distribution, while ebFRET and HAMMY

would require further sorting by manual selection or additional software packages for optimal results

(see Figure 4—figure supplement 3). We then compared the performance of the three software

packages offering advanced sorting on experimental data from other groups (Kilic et al., 2018;

Hellenkamp et al., 2018). To ensure proper testing, the performance was evaluated on both ALEX

and non-ALEX data. Our data show that all software packages were able to reproduce published

FRET distributions from raw tif files with a little discrepancy (see Figure 4—figure supplement 4).

We used practically the default settings in both software. We note that expert users are well trained

to navigate through all thresholds and define their own to further, and even more accurately, opti-

mize data selection. This task however may become more challenging on data where the ground

truth distribution is unknown and fine-tuning parameters could be subject to bias, especially for non-

specialized users. The use of a single threshold and thus minimal required expertise, offered by

DeepFRET may be crucial for a greater number of scientists to take advantage of this tool.

To ensure the facile operation of DeepFRET by non-machine learning experts and users without

any programming skills, we provided a standalone executable along with simple and detailed

instructions on how to use it (see Materials and methods). DeepFRET implements and automates in

a user-friendly and intuitive platform all common procedures for smFRET analysis: sophisticated raw

image analysis from raw. tiff files; particle and signal detection and localization; pixel intensity extrac-

tion for each biomolecule on both spectral channels and background corrected fluorescence and
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FRET trace trajectories; automatic trace classification and sorting; unbiased analysis of number of

FRET states based on BIC analysis; 2-channel fitting of idealized FRET traces using HMM analysis

based on calculated number of states by BIC; data and statistical evaluation of abundance of FRET

states and lifetimes; application of correction factors; and transition density plots (see Figure 1, Fig-

ure 1—figure supplements 9–11). DeepFRET furthermore offers interoperability and backward-

compatible trace loading from. txt files exported from the popular iSMS software package. The soft-

ware can export all results to publication-ready quality figures and also allows the extraction of data

for further user-specific downstream analysis if desired.

The freely available open-source code and the underlying mathematical operations that are based

on many commonly used packages (e.g. NumPy, SciPy, Matplotlib) will allow expert users to adjust

features pipelining the analysis depending on their needs (see Code Availability). The DNN model is

trained using Keras/TensorFlow, one of the most popular frameworks for deep learning. While the

DNN is pre-trained with DeepFRET, we also provide the option for simulating new data with addi-

tional parameters offering the possibility of DNN model re-training to meet the specialized needs of

trained users (e.g. multicolor FRET). The programming interface, on the other hand, allows the con-

venient implementation of additional scripts pipelining the analysis and to potentially expand it to

additional single-molecule time-series analysis.

Discussion
smFRET is a powerful toolkit, key for exploring dynamic structural biology, but to meet its full poten-

tial, automated standardized and user-independent analysis of data is essential. Because the experi-

mental conditions, instruments, and biological systems drastically vary across laboratories, the

treatment of data based on semi-automatic methods and simplified assumptions could yield differ-

ent conclusions. DeepFRET is designed to fill this void and analyze data independently of any

assumptions and reproducibly across laboratories. Our experiments show that a neural network clas-

sifier trained on purely simulated smFRET time-series accurately and efficiently recognizes and classi-

fies smFRET both in simulated ground truth data and in a real-world dataset. DeepFRET

classification accuracy consistently outperformed trace selection using commonly published thresh-

olds. Similarly, it supersedes the selection accuracy of human operators and importantly, only requir-

ing a fraction of the time (minutes versus weeks if traces are manually selected). Such a drastic

reduction of analysis times will allow the acquisition of even larger datasets expanding the field for

high throughput analysis and improving the robustness of conclusion. The fact that DeepFRET does

so only requiring a score threshold, as a sole human intervention, demonstrates its strength as a

novel smFRET analysis method and its potential to form a reference against which the quality of the

data and the structural biology insights are benchmarked. DeepFRET was found to perform accu-

rately for both ALEX and non-ALEX smFRET data (Figure 4, Figure 4—figure supplements 3–

4) highlighting its precise classification and applicability across laboratories and methods. The lim-

ited effect of human operators on data selection on the other hand illustrates its potential to contrib-

ute to the standardization of the field, increasing reproducibility across laboratories. We anticipate

that DeepFRET, combined with the advent of commercial single-molecule instruments, will contrib-

ute in materializing the smFRET as a robust mainstream toolkit for structural biology labs.

DeepFRET is currently trained and thoroughly tested to operate on 2-color ALEX and non-ALEX

smFRET data. Other experimental techniques such as 3- and 4-color FRET (Stein et al., 2011;

Yoo et al., 2020), protein-induced fluorescence enhancement (PIFE; Hwang and Myong, 2014),

metal-induced energy transfer (MIET; Chizhik et al., 2014) or intraparticle surface energy transfer (i-

SET; Zhou et al., 2020) could be implemented in the future through additional simulation of training

data with subsequent DNN re-training and software optimization (see Materials and methods and

data availability for instructions). The simulation of data in DeepFRET is based on the assumption

that protein dynamics as observed by smFRET follows a Markov process. Based on this assumption,

practically any kind of experimental data can be simulated, using the implemented visual trace simu-

lator, to meet specific requirements. This may include additional noise levels above 0.30, transition

probabilities larger than 0.2, traces with more than 4 FRET states, slower or faster lifetimes that may

be classified as noisy, etc. In its current version, DeepFRET operates on surface-immobilized particles

only, however implementing single-particle tracking as described in Bohr et al., 2019 would allow

simultaneous tracking and extraction of dynamics through smFRET on freely diffusing particles open
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up exciting possibilities, for example, live cell imaging with single-particletracking (Singh et al.,

2020) and in vivo high throughput smFRET studies (White et al., 2020).

DeepFRET’s neural network is trained to operate for smFRET data but our approach of time-

series classification and sequence annotation can conveniently be extended to consider a spectrum

of stochastic single-molecule trajectories of individual turnovers including tracking (Bohr et al.,

2019; Ferro et al., 2019; Lu et al., 1998; Persson et al., 2013), constant force measurements

(Goldman et al., 2015) and blinking of individual molecules (Durisic et al., 2014; Wang et al.,

2019) using either simulated or high-quality annotated experimental data for training. Consequently,

we expect the neural network of DeepFRET or similar approaches to be a paradigm shift and enable

new fully automated analysis methodologies related to biomolecular recognition, protein folding

and dynamics, and super resolution. Such advances are paramount for increasing the breadth and

impact of single-molecule studies to be fully exploited in structural biology.

Materials and methods
We first define a nomenclature that will be used throughout the text and plots: DD, DA, AA (donor

excitation!donor emission, donor excitation!acceptor emission, acceptor excitation!acceptor

emission, respectively). A separate background signal is not considered, as we assume all model

inputs to be background-corrected (i.e. background is 0).

Synthetic smFRET data generation
Deep learning requires large amounts of diverse data in order to generalize well to unseen data. We

have developed a method to generate the required thousands of ground truth traces to cover every

type of empirically observed trace, with a dedicated user interface option (Figure 1—figure supple-

ments 2 and 6). This algorithm includes the generation of TIRF-microscopy smFRET traces of ALEX

or non-ALEX data. The traces sample any given FRET value with tunable dye photobleaching life-

time, signal noise, dye blinking, donor bleedthrough, aggregates (i.e. more than one donor/acceptor

fluorophore) of any given size, as well as a ‘scrambling’ feature, to account for fluorophore phenom-

ena that could not be classified as stemming from smFRET.

In order to generate traces, for each pair, we first generate the underlying FRET states from an

adjustable Hidden Markov model and assume unscaled unit-intensities for DD, DA, AA. Then, if the

energy transferred is defined by

FRET ¼DA = ðDDþDAÞ (1)

the remaining intensity of the donor is

DD¼ 1�FRET (2)

and from (1), the transferred intensity is

DA¼�ðDD * FRETÞ = ðFRET � 1Þ (3)

In a perfectly-aligned setup, one can expect that

DD þ DA¼ AA (4)

such that the stoichiometry S will be exactly

S¼ ðDDþDAÞ = ðDDþDAþAAÞ ¼ 0:5 (5)

Initially, all fluorophores are simulated with an intensity of 1 (with absolute scaling only adjusted

after applying all other parameters). Additionally, the intensity of AA should always be 1, regardless

of the current FRET state. In practice, the AA intensity may not be exactly half of DD+DA (and con-

sequently one might observe S that deviates slightly from 0.5). To account for this, we uniformly

sample ‘AA-mismatch’ as a percentage of the unit intensity signal. Upon fluorophore photobleach-

ing, with lifetimes sampled from an exponential distribution, either DD or DA/AA is set to 0. Noise,

AA-mismatch, and donor bleedthrough are added to the ground truth signals to obtain the observ-

able DD, DA, and AA, we can calculate realistic, observable values for E and S. For each synthetic
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trace, the noise is drawn from a Normal (m = 0, s) distribution of varying s. We found that, on top of

the normally distributed noise, we could add the noise from a (centered) Gamma(k = 1, q = 1.1) dis-

tribution multiplied with the noise amplitude at each frame (and is thus controlled via the noise

parameter). This did not visually alter the spread of the distribution significantly but improved

the robustness of predictions on real data, as we found empirically that the noise of experimental

data never exactly followed a pure normal distribution.

State-of-the-art neural networks can achieve human-like or better performance on a wide range

of classification tasks. Recently, however, it has been demonstrated how small modifications to the

input can lead to wildly inaccurate outputs (Goodfellow et al., 2014). During the development of

our smFRET classification model, we observed how photophysical artifacting (described as ‘interest-

ing effects’ by TJ Ha’s group [Roy et al., 2008]) would lead the model to make confident yet very

inaccurate predictions to fix this, our trace generation algorithm contains extensive ‘scrambling’; we

found that by randomly flipping one of the channels, creating strong correlations by multiplication of

the channels or adding bursts of high noise and long dark states we could avoid ‘adversarial-like’

predictions. We note that scrambled data is not meant to mimic observable data but instead to

make the model robust against mispredictions on highly aberrant data that does not fall into the

other observable categories.

We generated ground truth traces, where every frame of the sequence was labeled as one of five

categories: ‘(B) bleached’, ‘(A) aggregate’, ‘(N) noisy’, ‘(X) scrambled’, ‘(S) static smFRET’, or ‘(D)

dynamic smFRET’ (see Figure 1—figure supplements 5–7). Additionally, we applied label smooth-

ing with a strength of 0.05, as this has been shown to greatly improve model robustness and predic-

tion confidence (Shafahi et al., 2019).

A central element of model training is the uniform sampling of the infinite number of possible

permutations of FRET data (FRET states, occupancies, lifetimes, transition pathways, and noise). For

training the model, we set the following parameters (easily adjustable in the interface, see Figure 1—

figure supplement 6):

. Up to four distinct FRET states within each trace uniformly sampled between FRET values 0
and 1 with a minimum distance of 0.1 FRET between states to be able to distinguish actual
transitions from noise fluctuations. The uniformly sampled occupancies as well as FRET values
are shown in Figure 1—figure supplement 3a.

. A transition probability from one state to another, at any frame, uniformly sampled between 0
and 0.2. In a 4-state system, the maximum sampled transition probability is thus 0.2 between
each of the four states yielding a total transition probability of 0.2*(4-1)=0.6 and thus a 1–
0.6 = 0.4 probability of not transitioning at any given frame. The lifetime distribution of
dynamic FRET states is an evenly weighted average over the exponential decays for each pos-
sible number of FRET states and transition probabilities. A Monte Carlo simulation on 10,000
traces sampling transition probabilities uniformly between 0 and 0.2 on 2–4 state traces, veri-
fies that our training data follows the underlying model (see Figure 1—figure supplement
3b).

. 0.15 probability that the trace is an aggregate.

. Transition pathway sampling of an unbiased fraction of the entire smFRET space as shown in
Figure 1—figure supplement 3c, where a transition density plot of 1000 simulated traces is
plotted displaying a random transition pathway with no measurable bias.

. 0.20 probability that a non-aggregate trace contains photoblinking.

. 0.15 probability that a trace is scrambled, and in this case 0.90 probability that the scrambling
is due to incorrectly colocalized fluorophores.

. Acceptor-only mismatch between 70% and 130% of the donor intensity.

. Donor-bleedthrough between 0% and 15% the donor intensity into the acceptor channel.

. Noise drawn from a Normal(0, s) distribution with s values uniformly distributed between 0.01
and 0.30 (see Figure 1—figure supplement 4).

. 0.8 probability that the noise has an additional layer of gamma noise on top, to mimic shot
noise.

. Individual trace duration of 300 frames.

. Exponentially decaying photobleaching lifetime centered around 500 frames (which will gener-
ate a fraction of traces that do not contain any photobleaching).

. 0.1 probability that the molecule will fall off the surface at a time given by an exponentially
decaying lifetime centered around 500 frames (so it might not happen during the time of
observation).
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With these parameters, directly applicable as input for the algorithm (see Code availability), we

randomly initially generated 250.000 traces of 300 frames each of randomized configurations. We

then under-sampled data to balance the labels (as neural network classifiers perform worse if trained

on highly class-imbalanced datasets) based on the first frame of each trace. This resulted in approxi-

mately 150,000 traces, roughly equally distributed over the five possible classes (bleaching being

present in most traces naturally ends up accounting for a higher fraction of the overall frames). We

used 80% for training the classifier and the remaining 20% for validation. After the training proce-

dure, we generated an additional test set with 33.000 new traces and under-sampled it as previ-

ously, to roughly 20.000 traces, and based our statistical analysis on those alone.

We supplied only the raw features DD, DA, and AA to the model (or only DD and DA for the

non-ALEX-enabled model), where for each trace, signals were normalized to the max of all signals in

that trace to preserve the relative intensities between donor and acceptor. In this way, predictions

done on individual smFRET traces are fully independent from every other in a given experiment, and

also independent of non-standardized instrument intensity units (i.e. ‘arbitrary units’).

Neural network model setup and hyperparameters
An LSTM-RNN (long short-term memory recurrent neural network) classifier was implemented in

Keras with TensorFlow as backend. The structure of the network (Figure 1—figure supplement 1)

was inspired by a recent sequence classifier for ECG time-series (Hannun et al., 2019) that employs

both skip connections and batch normalization as means to prevent overfitting. Here we replaced

the global pooling layer with stride-1 max pooling layers, and added a bidirectional LSTM layer

before the final fully connected layer, which we found lead to more temporally causal and context-

sensitive predictions (e.g. if the model spots multiple bleaching steps in the beginning of a trace,

this information is propagated throughout, so the whole trace can be confidently marked as

aggregated).

Each residual block (‘Res’ in Figure 1—figure supplement 1) contains n = 2x filters, where x is

five and is incremented by 1 at every 4th block. The kernel size k starts from 16 and is reduced by 4

at every 4th Res block, so as to learn larger-scale features and gradually smaller ones. The initial con-

volution has the same hyper-parameters as the first residual block. A 1 � k convolution is added in

each residual block for efficiency (He et al., 2016). To avoid problems with vanishing gradients

throughout such a deep model, each residual block keeps a copy of the input vector and adds it to

the output vector (denoted by the ‘+” symbol). The long short-term memory (LSTM) cell is bidirec-

tional and contains 16 units, and has a dropout rate of 0.4 applied to the outputs. For each frame,

the outputs are distributed among six different classes by a dense layer with softmax activation.

The model loss was minimized in batches of 32 samples with the Adam optimizer, using the

default parameters and the default learning rate of 0.001. The learning rate was decreased by a fac-

tor of 10 if validation loss showed no improvement over two consecutive epochs. The training was

stopped early if no improvement in the validation loss was observed over five consecutive epochs.

Convolutional kernels were initialized as proposed by He et al., 2015. Other layer configurations

were left at their Keras defaults. The final model output is passed through a softmax layer, thus that

for each frame the probabilities between all classes sum up to exactly 1. Further experimentation

with optimizers and learning rates showed no significant improvement over the above configuration.

Bleaching detection
In order to avoid having single-frame bleaching triggering the remainder of the trace being marked

as bleached, we employ a sliding window over the whole trace. In each window, at least 4 out of 7

frames must be marked as bleached with >0.5 probability by the model. If this condition is satisfied,

all frames in the window and every frame onwards is marked as bleached, and excluded from the

calculation of smFRET confidence. The model predicts with >99% accuracy bleaching (Figure 3).

Additionally, if bleaching happens faster than the first 15 frames, the whole trace is classified as

bleached, regardless of model classification, as the DeepFRET score would otherwise end up being

artificially inflated (see below).

For stoichiometry-based thresholding (Figure 2), we employed a similar sliding window but

instead marked frames as bleached if the stoichiometry was outside of the range (0.3, 0.7).
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Precision and recall
We use precision and recall to quantify classifier performance. These are defined as,

Precision : P¼Tp = ðTpþFpÞ (6)

Recall : R¼Tp = ðFnþTpÞ (7)

where Tp, Fp, Fn are True positive, False positive, and False negative, respectively.

DeepFRET score calculation and trace classification
In order to calculate the confidence score, probabilities for all categories for each frame are first pre-

dicted by the model, and bleached frames (see above) excluded from the score calculation. The

average probability pi over all frames t, for each of the remaining five categories is calculated, result-

ing in five category scores Pi for each category i.

Pi ¼

P
t pitPP
t pit

Pi ¼

P
t pitPP
t pit

Static smFRET (S), dynamic smFRET (D) scores are summed into the final DeepFRET score, and

aggregate (A), noisy (N), and scrambled (X) scores ignored for calculation of this (but retained and

displayed for explainability for the user). See Figure 1—figure supplements 5–8 for examples on all

trace types.

Model performance evaluation
Noise level of synthetic data
We changed the label of traces to ‘noisy’ if the initial noise was drawn from a normal(m = 0, s) with s

above 0.25. Traces above this level of noise could no longer statistically be approximated as nor-

mally distributed by D’Agostino-Pearson two-sided test for normality (Figure 1—figure supplement

4; which is a requirement for fitting the correct number of FRET states in a trace, using a mixture

model). Although a s of 0.20 also fulfilled the p<0.05 test statistic, we chose to opt for a limit of

0.25, as we found that the neural network would otherwise tend to discard less noisy data too

frequently.

Trends in human versus machine selection
To test for differences in the way a human versus our trained model would select traces, three partic-

ipants partook in the manual selection of generated data (Figure 3—figure supplement 1), similar

to that of Figure 2, only this time with 1000 traces, wherein 46 were true smFRET traces and 954

non-usable traces. The number of true smFRET traces and underlying distributions were unknown to

the participants.

Performance test and comparison with existing software
For testing simple thresholding versus DeepFRET (Figure 2, Figure 2—figure supplements 1–2 and

Figure 4—figure supplement 4) we generated data with the following parameters:

. Acceptor-only mismatch between 70% and 130% of the donor intensity.

. Donor-bleedthrough of 5% of the donor intensity into the acceptor channel.

. Noise drawn from a normal(s = 0.11) distribution

. 1 (0.5 FRET), 2 (0.3, 0.7 FRET), or 3 FRET states (0.2, 0.5, 0.8 FRET)

. Transition probability of 0.1 between states, at each frame.

Other parameters were set to the same value as what is used to generate training data. Further-

more, all generated ground truth traces that did not bleach were discarded.

Our definition of ‘simple thresholding’ is based on single-molecule intensity, median stoichiome-

try, and the presence of bleaching. Here we chose not to use any values for anti-correlation as this

assumes that all molecules of interest are equally dynamic, when smFRET studies have shown that

this may not always be the case (He et al., 2019; Kilic et al., 2018; Osuka et al., 2018).
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Extra features of the software platform
Hidden Markov model and statistical analysis
The DeepFRET GUI has the option to fit traces with a Hidden Markov model, with adjustable strict-

ness on the number of states, according to recent best practices for smFRET data analysis, including

the ability to switch between predicting states from raw fluorescence intensities or EFRET values

(Kelly et al., 2012). We fit the traces using the pomegranate implementation of the Baum-Welch

algorithm (Schreiber, 2018). We further provide the option to predict state values directly from the

Markov Model or from the median of the classified frames for each trace, to maintain compatibility

and comparability with current results in the field. We provide clustering of subsequent transition

density plots, lifetime estimates with detection of degenerate states, and publication-ready plots for

Pearson’s correlation coefficients, DD/DA histograms, and EFRET-stoichiometry histograms.

The Hidden Markov model was verified on externally available data from the kinSoft challenge, as

well as simulated data produced within DeepFRET.

Data availability
All data used for model training and instructions on how to use it, is available at https://github.com/

hatzakislab/DeepFRET-Model (Thomsen, 2020; copy archived at https://github.com/elifesciences-

publications/DeepFRET-Model).

Code availability
We provide DeepFRET as an accessible GUI for everyone, as well as the Python source code for

expert users. The code for the GUI as well as compiled executables, with instructions for how to edit

and recompile the GUI is located at https://github.com/hatzakislab/DeepFRET-GUI.
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